DRV8841 - Texas Instruments

DRV8841
www.ti.com
SLVSAC0E – MAY 2010 – REVISED AUGUST 2013
DUAL H-BRIDGE DRIVER IC
Check for Samples: DRV8841
FEATURES
1
•
2
•
•
•
•
Dual H-Bridge DC Motor Driver
– Drives Two DC Motors, One Stepper Motor
or Other Loads
– Two-Bit Winding Current Control Allows Up
to 4 Current Levels
– Low MOSFET On-Resistance
2.5-A Maximum Drive Current at 24 V, 25°C
Built-In 3.3-V Reference Output
Industry-Standard PWM Control Interface
8.2-V to 45-V Operating Supply Voltage Range
•
Thermally Enhanced Surface Mount Package
APPLICATIONS
•
•
•
•
•
•
Printers
Scanners
Office Automation Machines
Gaming Machines
Factory Automation
Robotics
DESCRIPTION
The DRV8841 provides an integrated motor driver solution for printers, scanners, and other automated
equipment applications. The device has two H-bridge drivers, and can be used to drive two DC motors, one
stepper motor, or other loads. The output driver block for each consists of N-channel power MOSFET’s
configured as H-bridges. The DRV8841 can supply up to 2.5-A peak or 1.75-A RMS output current (with proper
heatsinking at 24 V and 25°C) per H-bridge.
Separate inputs to independently control each half of the H-bridge are provided.
Internal shutdown functions are provided for over current protection, short circuit protection, under voltage
lockout and overtemperature.
TheDRV8841 is available in a 28-pin HTSSOP package with PowerPAD™ (Eco-friendly: RoHS & no Sb/Br).
ORDERING INFORMATION (1)
TA
–40°C to 85°C
(1)
(2)
PACKAGE (2)
PowerPAD™ (HTSSOP) - PWP
Reel of 2000
ORDERABLE PART
NUMBER
TOP-SIDE
MARKING
DRV8841PWPR
8841
For the most current packaging and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
1
2
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PowerPAD is a trademark of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2010–2013, Texas Instruments Incorporated
DRV8841
SLVSAC0E – MAY 2010 – REVISED AUGUST 2013
www.ti.com
DEVICE INFORMATION
Functional Block Diagram
VM
VM
Internal
Reference &
Regs
3.3V
CP1
Int. VCC
LS Gate
Drive
V3P3OUT
0.01mF
CP2
VM
Charge
Pump
VCP
3.3V
0.1mF
Thermal
Shut down
HS Gate
Drive
1MW
VM
AVREF
VMA
BVREF
AOUT1
Motor
Driver A
AIN1
AIN2
DCM
AOUT2
AI0
ISENA
AI1
BIN1
BIN2
BI0
Control
Logic
VM
VMB
BI1
BOUT1
DECAY
Motor
Driver B
nRESET
DCM
BOUT2
nSLEEP
ISENB
nFAULT
GND
2
GND
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
Product Folder Links: DRV8841
DRV8841
www.ti.com
SLVSAC0E – MAY 2010 – REVISED AUGUST 2013
Table 1. TERMINAL FUNCTIONS
NAME
PIN
I/O (1)
EXTERNAL COMPONENTS
OR CONNECTIONS
DESCRIPTION
POWER AND GROUND
GND
14, 28
-
Device ground
VMA
4
-
Bridge A power supply
VMB
11
-
Bridge B power supply
V3P3OUT
15
O
3.3-V regulator output
CP1
1
IO
Charge pump flying capacitor
CP2
2
IO
Charge pump flying capacitor
VCP
3
IO
High-side gate drive voltage
Connect a 0.1-μF 16-V ceramic capacitor and
a 1-MΩ resistor to VM.
AIN1
21
I
Bridge A input 1
Logic input controls state of AOUT1. Internal
pulldown.
AIN2
20
I
Bridge A input 2
Logic input controls state of AOUT2. Internal
pulldown.
AI0
24
I
Bridge A current set
Sets bridge A current: 00 = 100%,
01 = 71%, 10 = 38%, 11 = 0
Internal pulldown.
Connect to motor supply (8.2 - 45 V). Both
pins must be connected to same supply.
Bypass to GND with a 0.47-μF 6.3-V ceramic
capacitor. Can be used to supply VREF.
Connect a 0.01-μF 50-V capacitor between
CP1 and CP2.
CONTROL
AI1
25
I
BIN1
22
I
Bridge B input 1
Logic input controls state of BOUT1. Internal
pulldown.
BIN2
23
I
Bridge B input 2
Logic input controls state of BOUT2. Internal
pulldown.
BI0
26
I
Bridge B current set
Sets bridge B current: 00 = 100%,
01 = 71%, 10 = 38%, 11 = 0
Internal pulldown.
BI1
27
I
DECAY
19
I
Decay mode
Low = slow decay, open = mixed decay,
high = fast decay. Internal pulldown and
pullup.
nRESET
16
I
Reset input
Active-low reset input initializes internal logic
and disables the H-bridge outputs. Internal
pulldown.
nSLEEP
17
I
Sleep mode input
Logic high to enable device, logic low to enter
low-power sleep mode. Internal pulldown.
AVREF
12
I
Bridge A current set reference input
BVREF
13
I
Bridge B current set reference input
18
OD
Fault
Logic low when in fault condition (overtemp,
overcurrent)
ISENA
6
IO
Bridge A ground / Isense
Connect to current sense resistor for bridge A
ISENB
9
IO
Bridge B ground / Isense
Connect to current sense resistor for bridge B
AOUT1
5
O
Bridge A output 1
AOUT2
7
O
Bridge A output 2
BOUT1
10
O
Bridge B output 1
BOUT2
8
O
Bridge B output 2
Reference voltage for winding current set.
Can be driven individually with an external
DAC for microstepping, or tied to a reference
(e.g., V3P3OUT).
STATUS
nFAULT
OUTPUT
(1)
Connect to motor winding A
Connect to motor winding B
Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
Product Folder Links: DRV8841
3
DRV8841
SLVSAC0E – MAY 2010 – REVISED AUGUST 2013
www.ti.com
PWP PACKAGE
(TOP VIEW)
CP1
CP2
VCP
VMA
AOUT1
ISENA
AOUT2
BOUT2
ISENB
BOUT1
VMB
AVREF
BVREF
GND
1
28
2
27
3
4
26
5
24
25
6
7
8
23
GND
(PPAD)
22
21
9
20
10
19
11
18
12
17
13
16
14
15
GND
BI1
BI0
AI1
AI0
BIN2
BIN1
AIN1
AIN2
DECAY
nFAULT
nSLEEP
nRESET
V3P3OUT
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted)
VMx
VREF
(1) (2)
VALUE
UNIT
Power supply voltage range
–0.3 to 47
V
Digital pin voltage range
–0.5 to 7
V
Input voltage
–0.3 to 4
V
–0.3 to 0.8
V
Internally limited
A
2.5
A
ISENSEx pin voltage
Peak motor drive output current, t < 1 μS
Continuous motor drive output current
(3)
Continuous total power dissipation
TJ
Operating virtual junction temperature range
TA
Tstg
(1)
(2)
(3)
4
See Dissipation Ratings table
–40 to 150
°C
Operating ambient temperature range
–40 to 85
°C
Storage temperature range
–60 to 150
°C
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
All voltage values are with respect to network ground terminal.
Power dissipation and thermal limits must be observed.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
Product Folder Links: DRV8841
DRV8841
www.ti.com
SLVSAC0E – MAY 2010 – REVISED AUGUST 2013
THERMAL INFORMATION
DRV8841
THERMAL METRIC (1)
PWP
UNITS
28 PINS
Junction-to-ambient thermal resistance (2)
θJA
31.6
(3)
θJCtop
Junction-to-case (top) thermal resistance
θJB
Junction-to-board thermal resistance (4)
5.6
ψJT
Junction-to-top characterization parameter (5)
0.2
ψJB
Junction-to-board characterization parameter (6)
5.5
θJCbot
Junction-to-case (bottom) thermal resistance (7)
1.4
(1)
(2)
(3)
(4)
(5)
(6)
(7)
15.9
°C/W
For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as
specified in JESD51-7, in an environment described in JESD51-2a.
The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB
temperature, as described in JESD51-8.
The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).
The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).
The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
Spacer
RECOMMENDED OPERATING CONDITIONS
over operating free-air temperature range (unless otherwise noted)
MIN
Motor power supply voltage range (1)
VM
(2)
NOM
MAX
8.2
45
UNIT
V
VREF
VREF input voltage
1
3.5
IV3P3
V3P3OUT load current
0
1
mA
fPWM
Externally applied PWM frequency
0
100
kHz
(1)
(2)
V
All VM pins must be connected to the same supply voltage.
Operational at VREF between 0 V and 1 V, but accuracy is degraded.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
Product Folder Links: DRV8841
5
DRV8841
SLVSAC0E – MAY 2010 – REVISED AUGUST 2013
www.ti.com
ELECTRICAL CHARACTERISTICS
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
POWER SUPPLIES
IVM
VM operating supply current
VM = 24 V, fPWM < 50 kHz
5
8
mA
IVMQ
VM sleep mode supply current
VM = 24 V
10
20
μA
VUVLO
VM undervoltage lockout voltage
VM rising
7.8
8.2
V
3.3
3.4
V
V3P3OUT REGULATOR
V3P3
V3P3OUT voltage
IOUT = 0 to 1 mA
3.2
LOGIC-LEVEL INPUTS
VIL
Input low voltage
VIH
Input high voltage
2.2
0.6
VHYS
Input hysteresis
0.3
IIL
Input low current
VIN = 0
IIH
Input high current
VIN = 3.3 V
RPD
Internal pulldown resistance
0.45
–20
0.7
V
5.25
V
0.6
V
20
μA
100
100
μA
kΩ
nFAULT OUTPUT (OPEN-DRAIN OUTPUT)
VOL
Output low voltage
IO = 5 mA
IOH
Output high leakage current
VO = 3.3 V
0.5
V
1
μA
0.8
V
±40
μA
DECAY INPUT
VIL
Input low threshold voltage
For slow decay (brake) mode
0
VIH
Input high threshold voltage
For fast decay (coast) mode
2
IIN
Input current
RPU
Internal pullup resistance
RPD
Internal pulldown resistance
V
130
kΩ
80
kΩ
H-BRIDGE FETS
RDS(ON)
HS FET on resistance
RDS(ON)
LS FET on resistance
IOFF
Off-state leakage current
VM = 24 V, IO = 1 A, TJ = 25°C
0.2
VM = 24 V, IO = 1 A, TJ = 85°C
0.25
VM = 24 V, IO = 1 A, TJ = 25°C
0.2
VM = 24 V, IO = 1 A, TJ = 85°C
0.25
–20
0.32
0.32
20
Ω
Ω
μA
MOTOR DRIVER
fPWM
Internal current control PWM
frequency
tBLANK
Current sense blanking time
tR
Rise time
30
200
ns
tF
Fall time
30
200
ns
160
180
°C
3
μA
50
kHz
μs
3.75
PROTECTION CIRCUITS
IOCP
Overcurrent protection trip level
tTSD
Thermal shutdown temperature
3
Die temperature
150
A
CURRENT CONTROL
IREF
VREF input current
VTRIP
xISENSE trip voltage
AISENSE
Current sense amplifier gain
6
VREF = 3.3 V
–3
xVREF = 3.3 V, 100% current setting
635
660
685
xVREF = 3.3 V, 71% current setting
445
469
492
xVREF = 3.3 V, 38% current setting
225
251
276
Reference only
Submit Documentation Feedback
5
mV
V/V
Copyright © 2010–2013, Texas Instruments Incorporated
Product Folder Links: DRV8841
DRV8841
www.ti.com
SLVSAC0E – MAY 2010 – REVISED AUGUST 2013
FUNCTIONAL DESCRIPTION
PWM Motor Drivers
The DRV8841 contains two H-bridge motor drivers with current-control PWM circuitry. A block diagram of the
motor control circuitry is shown in Figure 1.
VM
OCP
VM
VCP, VGD
AOUT1
Predrive
AIN1
DCM
AIN2
AOUT2
DECAY
PWM
OCP
AISEN
+
AI[1:0]
A=5
DAC
2
AVREF
VM
OCP
VM
VCP, VGD
BOUT1
Predrive
BIN1
DCM
BIN2
BOUT2
PWM
OCP
BISEN
+
BI[1:0]
A =5
DAC
2
BVREF
Figure 1. Motor Control Circuitry
Note that there are multiple VM pins. All VM pins must be connected together to the motor supply voltage.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
Product Folder Links: DRV8841
7
DRV8841
SLVSAC0E – MAY 2010 – REVISED AUGUST 2013
www.ti.com
Bridge Control
The AIN1 and AIN2 input pins directly control the state of the AOUT1 and AOUT2 outputs; similarly, the BIN1
and BIN2 input pins directly control the state of the BOUT1 and BOUT2 outputs. Either input can also be used
for PWM control of the load. Table 2 shows the logic.
Table 2. H-Bridge Logic
xIN1
xIN2
xOUT1
xOUT2
0
0
L
L
0
1
L
H
1
0
H
L
1
1
H
H
The control inputs have internal pulldown resistors of approximately 100 kΩ.
Current Regulation
The current through the motor windings is regulated by a fixed-frequency PWM current regulation, or current
chopping. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage
and inductance of the winding. Once the current hits the current chopping threshold, the bridge disables the
current until the beginning of the next PWM cycle.
For stepping motors, current regulation is normally used at all times, and can changing the current can be used
to microstep the motor. For DC motors, current regulation is used to limit the start-up and stall current of the
motor.
If the current regulation feature is not needed, it can be disabled by connecting the xISENSE pins directly to
ground and the xVREF pins to V3P3.
The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor
connected to the xISEN pins, multiplied by a factor of 5, with a reference voltage. The reference voltage is input
from the xVREF pins, and is scaled by a 2-bit DAC that allows current settings of 100%, 71%, 38% of full-scale,
plus zero.
The full-scale (100%) chopping current is calculated in Equation 1.
VREFX
ICHOP = 5¾
· RISENSE
(1)
Example:
If a 0.25-Ω sense resistor is used and the VREFx pin is 2.5 V, the full-scale (100%) chopping current will be
2.5 V / (5 x 0.25 Ω) = 2 A.
Two input pins per H-bridge (xI1 and xI0) are used to scale the current in each bridge as a percentage of the fullscale current set by the VREF input pin and sense resistance. The xI0 and xI1 pins have internal pulldown
resistors of approximately 100 kΩ. The function of the pins is shown in Table 3.
Table 3. H-Bridge Pin Functions
8
xI1
xI0
RELATIVE CURRENT
(% FULL-SCALE CHOPPING CURRENT)
1
1
0% (Bridge disabled)
1
0
38%
0
1
71%
0
0
100%
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
Product Folder Links: DRV8841
DRV8841
www.ti.com
SLVSAC0E – MAY 2010 – REVISED AUGUST 2013
Note that when both xI bits are 1, the H-bridge is disabled and no current flows.
Example:
If a 0.25-Ω sense resistor is used and the VREF pin is 2.5 V, the chopping current will be 2 A at the 100%
setting (xI1, xI0 = 00). At the 71% setting (xI1, xI0 = 01) the current will be 2 A x 0.71 = 1.42 A, and at the
38% setting (xI1, xI0 = 10) the current will be 2 A x 0.38 = 0.76 A. If (xI1, xI0 = 11) the bridge will be disabled
and no current will flow.
Decay Mode
During PWM current chopping, the H-bridge is enabled to drive current through the motor winding until the PWM
current chopping threshold is reached. This is shown in Figure 2 as case 1. The current flow direction shown
indicates the state when the xIN1 pin is high and the xIN2 pin is low.
Once the chopping current threshold is reached, the H-bridge can operate in two different states, fast decay or
slow decay.
In fast decay mode, once the PWM chopping current level has been reached, the H-bridge reverses state to
allow winding current to flow in a reverse direction. As the winding current approaches zero, the bridge is
disabled to prevent any reverse current flow. Fast decay mode is shown in Figure 2 as case 2.
In slow decay mode, winding current is re-circulated by enabling both of the low-side FETs in the bridge. This is
shown in Figure 2 as case 3.
Figure 2. Decay Mode
The DRV8841 supports fast decay, slow decay and a mixed decay mode. Slow, fast, or mixed decay mode is
selected by the state of the DECAY pin - logic low selects slow decay, open selects mixed decay operation, and
logic high sets fast decay mode. The DECAY pin has both an internal pullup resistor of approximately 130 kΩ
and an internal pulldown resistor of approximately 80 kΩ. This sets the mixed decay mode if the pin is left open
or undriven. Note that the DECAY pin sets the decay mode for both H-bridges.
Mixed decay mode begins as fast decay, but at a fixed period of time (75% of the PWM cycle) switches to slow
decay mode for the remainder of the fixed PWM period.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
Product Folder Links: DRV8841
9
DRV8841
SLVSAC0E – MAY 2010 – REVISED AUGUST 2013
www.ti.com
Blanking Time
After the current is enabled in an H-bridge, the voltage on the xISEN pin is ignored for a fixed period of time
before enabling the current sense circuitry. This blanking time is fixed at 3.75 μs. Note that the blanking time also
sets the minimum on time of the PWM.
nRESET and nSLEEP Operation
The nRESET pin, when driven active low, resets the internal logic. It also disables the H-bridge drivers. All inputs
are ignored while nRESET is active.
Driving nSLEEP low will put the device into a low power sleep state. In this state, the H-bridges are disabled, the
gate drive charge pump is stopped, the V3P3OUT regulator is disabled, and all internal clocks are stopped. In
this state all inputs are ignored until nSLEEP returns inactive high. When returning from sleep mode, some time
(approximately 1 ms) needs to pass before the motor driver becomes fully operational. Note that nRESET and
nSLEEP have internal pulldown resistors of approximately 100 kΩ. These signals need to be driven to logic high
for device operation.
Protection Circuits
The DRV8841 is fully protected against undervoltage, overcurrent and overtemperature events.
Overcurrent Protection (OCP)
An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this
analog current limit persists for longer than the OCP time, all FETs in the H-bridge will be disabled and the
nFAULT pin will be driven low. The device will remain disabled until either nRESET pin is applied, or VM is
removed and re-applied.
Overcurrent conditions on both high and low side devices; i.e., a short to ground, supply, or across the motor
winding will all result in an overcurrent shutdown. Note that overcurrent protection does not use the current sense
circuitry used for PWM current control, and is independent of the ISENSE resistor value or VREF voltage.
Thermal Shutdown (TSD)
If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT pin will be
driven low. Once the die temperature has fallen to a safe level operation will automatically resume.
Undervoltage Lockout (UVLO)
If at any time the voltage on the VM pins falls below the undervoltage lockout threshold voltage, all circuitry in the
device will be disabled and internal logic will be reset. Operation will resume when VM rises above the UVLO
threshold.
10
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
Product Folder Links: DRV8841
DRV8841
www.ti.com
SLVSAC0E – MAY 2010 – REVISED AUGUST 2013
THERMAL INFORMATION
Thermal Protection
The DRV8841 has thermal shutdown (TSD) as described above. If the die temperature exceeds approximately
150°C, the device will be disabled until the temperature drops to a safe level.
Any tendency of the device to enter TSD is an indication of either excessive power dissipation, insufficient
heatsinking, or too high an ambient temperature.
Power Dissipation
Power dissipation in the DRV8841 is dominated by the power dissipated in the output FET resistance, or
RDS(ON). Average power dissipation of each H-bridge when running a DC motor can be roughly estimated by
Equation 2.
P = 2 · RDS(ON) · (IOUT)2
(2)
where P is the power dissipation of one H-bridge, RDS(ON) is the resistance of each FET, and IOUT is the RMS
output current being applied to each winding. IOUT is equal to the average current drawn by the DC motor. Note
that at start-up and fault conditions this current is much higher than normal running current; these peak currents
and their duration also need to be taken into consideration. The factor of 2 comes from the fact that at any
instant two FETs are conducting winding current (one high-side and one low-side).
The total device dissipation will be the power dissipated in each of the two H-bridges added together.
The maximum amount of power that can be dissipated in the device is dependent on ambient temperature and
heatsinking.
Note that RDS(ON) increases with temperature, so as the device heats, the power dissipation increases. This must
be taken into consideration when sizing the heatsink.
Heatsinking
The PowerPAD™ package uses an exposed pad to remove heat from the device. For proper operation, this pad
must be thermally connected to copper on the PCB to dissipate heat. On a multi-layer PCB with a ground plane,
this can be accomplished by adding a number of vias to connect the thermal pad to the ground plane. On PCBs
without internal planes, copper area can be added on either side of the PCB to dissipate heat. If the copper area
is on the opposite side of the PCB from the device, thermal vias are used to transfer the heat between top and
bottom layers.
For details about how to design the PCB, refer to TI application report SLMA002, " PowerPAD™ Thermally
Enhanced Package" and TI application brief SLMA004, " PowerPAD™ Made Easy", available at www.ti.com.
In general, the more copper area that can be provided, the more power can be dissipated.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
Product Folder Links: DRV8841
11
PACKAGE OPTION ADDENDUM
www.ti.com
13-Aug-2013
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
DRV8841PWP
ACTIVE
HTSSOP
PWP
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
DRV8841
DRV8841PWPR
ACTIVE
HTSSOP
PWP
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
DRV8841
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 1
Samples
PACKAGE MATERIALS INFORMATION
www.ti.com
13-Aug-2013
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
DRV8841PWPR
Package Package Pins
Type Drawing
SPQ
HTSSOP
2000
PWP
28
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
330.0
16.4
Pack Materials-Page 1
6.9
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
10.2
1.8
12.0
16.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
13-Aug-2013
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
DRV8841PWPR
HTSSOP
PWP
28
2000
367.0
367.0
38.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated