TMS320C6472 Fixed-Point Digital Signal

TMS320C6472
SPRT490B – OCTOBER 2008 – REVISED JUNE 2011
www.ti.com
TMS320C6472 Fixed-Point Digital Signal Processor Technical Brief
Check for Samples: TMS320C6472
1 Features
• Six On-Chip TMS320C64x+ Megamodules
• Endianess: Little Endian, Big Endian
• C64x+ Megamodule Main Features:
– High-Performance, Fixed-Point
TMS320C64x+ DSP
– 500/625/700 MHz
– Eight 32-Bit Instructions/Cycle
– 4000 MIPS/MMACS (16-Bits) at 500 MHz
– Dedicated SPLOOP Instruction
– Compact Instructions (16-Bit)
– Instruction Set Enhancements
– Exception Handling
– L1/L2 Memory Architecture:
• 256K-Bit (32K-Byte) L1P Program
RAM/Cache [Direct Mapped, Flexible
Allocation]
• 256K-Bit (32K-Byte) L1D RAM/Cache
[2-Way Set-Associative, Flexible
Allocation]
• 4.75M-Bit (608K-Byte) L2 Unified Mapped
RAM/Cache [4-Way Set-Associative,
Flexible Allocation]
• L1P Memory Controller
• L1D Memory Controller
• L2 Memory Controller
– Time Stamp Counter
– One 64-Bit General-Purpose/Watchdog Timer
• Shared Peripherals and Interfaces
– EDMA Controller
(64 Independent Channels)
– Shared Memory Architecture
• Shared L2 Memory Controller
• 768K-Byte of RAM
• Boot ROM
– Three Telecom Serial Interface Ports (TSIPs)
• Each TSIP is 8 Links of 8 Mbps per
Direction
– 32-Bit DDR2 Memory Controller (DDR2-533
SDRAM)
• 256 M-Byte x 2 Addressable Memory
Space
– Two 1x Serial RapidIO® Links,
v1.2 Compliant
• 1.25-, 2.5-, 3.125-Gbps Link Rates
• Message Passing, DirectIO Support,
•
•
•
•
•
•
•
•
•
•
•
Error Management Extensions, and
Congestion Control
• IEEE 1149.6 Compliant I/Os
– UTOPIA
• UTOPIA Level 2 Slave ATM Controller
• 8/16-Bit Transmit and Receive
Operations up to 50 MHz per Direction
• User-Defined Cell Format up to 64 Bytes
– Two 10/100/1000 Mb/s Ethernet MACs
(EMACs)
• Both EMACs are IEEE 802.3 Compliant
• EMAC0 Supports:
– MII, RMII, SS-SMII, GMII, and RGMII
– 8 Independent Transmit (TX)
Channels
– 8 Independent Receive (RX)
Channels
• EMAC1 Supports:
– RMII, SS-SMII and RGMII
– 8 Independent Transmit (TX)
Channels
– 8 Independent Receive (RX)
Channels
• Both EMACs (EMAC0 and EMAC1) Share
MDIO Interface
– 16-Bit Host-Port Interface (HPI)
– One Inter-Integrated Circuit (I2C) Bus
– Six Shared 64-Bit General-Purpose Timers
System PLL and PLL Controller
Secondary PLL and PLL Controller, Dedicated
to EMAC
Third PLL and PLL Controller Dedicated to
DDR2 Memory Controller
16 General-Purpose I/O (GPIO) Pins
IEEE-1149.1 (JTAG™)
Boundary-Scan-Compatible
737-Pin Ball Grid Array (BGA) Package
(CTZ or ZTZ Suffix), 0.8-mm Ball Pitch
0.09-μm/7-Level Cu Metal Process (CMOS)
3.3-, 1.8-, 1.5-, 1.2-V I/O Supplies
1.0-/1.1-, 1.2-V Core Supplies
Commercial Temperature [0°C to 85°C]
Extended Temperature [-40°C to 100°C]
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCT PREVIEW information concerns products in the formative
or design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right
to change or discontinue these products without notice.
Copyright © 2008–2011, Texas Instruments Incorporated
PRODUCT PREVIEW
1
TMS320C6472
SPRT490B – OCTOBER 2008 – REVISED JUNE 2011
1.1
www.ti.com
CTZ/ZTZ BGA Package (Bottom View)
The TMS320C6472 devices are designed for a package temperature range of 0°C to 85°C (commercial
temperature range) or -40°C to 100°C (extended temperature range).
NOTE
Extended temperature (A) range is available only on 500-MHz and 625-MHz devices.
AJ
AH
AF
AD
AG
AE
AC
PRODUCT PREVIEW
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3 5 7 9 11 13 15 17 19 21 23 25 27 29
2 4 6 8 10 12 14 16 18 20 22 24 26 28
Figure 1-1. CTZ/ZTZ 737-Pin Ball Grid Array (BGA) Package (Bottom View)
2
Features
Copyright © 2008–2011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s) :TMS320C6472
TMS320C6472
SPRT490B – OCTOBER 2008 – REVISED JUNE 2011
www.ti.com
1.2
Description
The TMS320C6472 device is a Texas Instruments next-generation fixed-point digital signal processor
(DSP) targeting high-performance computing applications, including high-end industrial, mission-critical,
high-end image and video, communication, media gateways, and remote access servers. This device was
designed with these applications in mind. A common key requirement of these applications is the
availability of large on-chip memories to handle vast amounts of data during processing. With 768K-Byte
of shared RAM and 608K-Byte local L2 RAM per C64x+ Megamodule, the TMS320C6472 device can
eliminate the need for external memory, thereby reducing system power dissipation and system cost and
optimizing board density.
The C64x+ megamodule core employs eight functional units, two register files, and two data paths. Like
the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+
megamodule core .M unit doubles the multiply throughput versus the C64x core by performing four
16-bit x 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit x 16-bit MACs can be
executed every cycle on the C64x+ core. At a 500-MHz clock rate, this means 4000 16-bit MMACs can
occur every second. Moreover, each multiplier on the C64x+ megamodule core can compute one
32-bit x 32-bit MAC or four 8-bit x 8-bit MACs every clock cycle.
The C64x+ megamodule integrates a large amount of on-chip memory organized as a two-level memory
system. The level-1 (L1) program and data memories on this C64x+ megamodule are 32KB each. This
memory can be configured as mapped RAM, cache, or some combination of the two. When configured as
cache, L1 program (L1P) is a direct mapped cache where as L1 data (L1D) is a two-way set associative
cache. The level 2 (L2) memory is shared between program and data space and is 608K-Byte in size. L2
memory can also be configured as mapped RAM, cache, or some combination of the two. The C64x+
megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a
system component with reset/boot control, interrupt/exception control, a power-down control, and a
free-running 32-bit timer for time stamp.
The peripheral set includes: three Telecom Serial Interface Port (TSIPs); an 16/8 bit Universal Test and
Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two
10/100/1000 Ethernet media access controllers (EMACs), which provide an efficient interface between the
C6472 DSP core processor and the network; a management data input/output (MDIO) module (shared by
both EMACs) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the
system; a Serial RapidIO® with two 1x lanes and support for packet forwarding; a 32-bit DDR2 SDRAM
interface; 12 64-bit general-purpose timers; an inter-integrated circuit bus module (I2C); 16
general-purpose input/output ports (GPIO) with programmable interrupt/event generation modes; and a
16-bit multiplexed host-port interface (HPI16).
The C6472 device has a complete set of development tools which includes: a C compiler, an assembly
optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into
source code execution.
Features
Copyright © 2008–2011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s) :TMS320C6472
3
PRODUCT PREVIEW
The TMS320C6472 device has six optimized TMS320C64x+™ megamodules, which combine high
performance with the lowest power dissipation per port. The TMS320C6472 device includes three different
speeds: 500 MHz, 625 MHz, and 700 MHz. The C64x+ megamodules are the highest-performance
fixed-point DSP generation in the TMS320C6000™ DSP platform. The C64x+ megamodule is based on
the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture
developed by Texas Instruments (TI), making devices like TMS320C6472 an excellent choice for
applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI).
The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™
DSP platform.
TMS320C6472
SPRT490B – OCTOBER 2008 – REVISED JUNE 2011
1.3
www.ti.com
Functional Block Diagram
Figure 1-2 shows the functional block diagram of the C6472 device.
DDR2
SDRAM
32
DDR2
Memory
Controller
DSP Subsystem 5
DSP Subsystem 4
DSP Subsystem 3
PLL3 and
PLL3
Controller
DSP Subsystem 2
DSP Subsystem 1
Serial
RapidIO
DSP Subsystem 0
Boot ROM
L2 SRAM/Cache
608K Bytes
4-Way Set Assoc.
C64x+ DSP Core
Control Registers
16-/32-bit
Instruction Dispatch
RGMII
GMII
MII
RMII
SS-SMII
MDIO
Switched Central Resource (SCR)
PRODUCT PREVIEW
EMAC0
SPLOOP Buffer
Instruction
Decode
In-Circuit Emulation
M
e
g
a
m
o
d
u
l
e
Data Path A
Data Path B
A Register File
B Register File
A31-A16
A15-A0
B31-B16
B15-B0
.L1
.S1
.M1
xx .D1
xx
.D2
.M2
xx .S2
xx
System(C)
Instruction Fetch
UTOPIA (16/8)
.L2
Shared L2 Controller
TSIP2
Internal DMA (IDMA)
L1P Memory Controller (Memory Protect/Bandwidth Mgmt)
Interrupt and Exception Controller
Power Control
TSIP1
L2 Memory Controller
(Memory Protect/
Bandwidth Mgmt)
TSIP0
PLL2 and
PLL2 Controller
imer x [6 thru 1 ](A)
SL2 RAM 768K-Bytes
32K Bytes
L1P SRAM/Cache
Direct-Mapped
imer x [6 thru 1L1D
](A) Memory Controller (Memory Protect/Bandwidth Mgmt)
EMAC1
RGMII
imer x [6 thru 1 ](A)
SS-SMII
Timer x [6 thru 1 ](A)
imer x [6 thru 1 ](A)
RMII
32K-Bytes Total
L1D SRAM/Cache 2-Way
Set-Associative
HPI (16-bit)
I2C
EDMA 3.0
16
PLL1 and
PLL1 Controller
GPIO16
Timer x [6-11]
(Shared)
(A)(B)
Timer x [0-5]
(B)
Power-Down
Logic
Boot Configuration
A. Timers 6-11 are shared.
B. Each of the Timer peripherals are configurable as either one 64-bit general-purpose timer or two 32-bit general-purpose timers or
a watchdog timer.
C. System consists of Test, Emulation, Power Down, and Interrupt Controller.
Figure 1-2. C6472 Functional Block Diagram
4
Features
Copyright © 2008–2011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s) :TMS320C6472
TMS320C6472
SPRT490B – OCTOBER 2008 – REVISED JUNE 2011
www.ti.com
2 Device Operating Conditions
Absolute Maximum Ratings Over Operating Case Temperature Range (Unless
Otherwise Noted) (1) (2) (3)
Supply voltage range:
CVDD
-0.5 V to 1.5 V
CVDD2
-0.5 V to 1.5 V
DVDD33
-0.5 V to 4.2 V
DVDD18, AVDDA3, AVDDA4
-0.5 V to 2.5 V
AVDDA1, AVDDA2
-0.5 V to 2.5 V
DVDD15
-0.5 V to 2.5 V
DVDDR
-0.5 V to 2.5 V
CVDD1
-0.5 V to 1.5 V
AVDDA, DVDDD, AVDDT
Input voltage (VI) range:
-0.5 V to DVDD33 + 0.5 V
RGMII pins
-0.3 V to DVDD15 + 0.3 V
DDR2 memory controller pins
-0.3 V to DVDD18 + 0.3 V
RIO pins
Output voltage (VO) range:
0 V to 1.32 V
3.3-V pins
-0.5 V to DVDD33 + 0.5 V
RGMII pins
-0.3 V to DVDD15 + 0.3 V
DDR2 memory controller pins
-0.3 V to DVDD18 + 0.3 V
RIO pins
Operating case temperature range, TC:
0 V to 1.32 V
Standard
A version
0°C to 85°C
(4)
Storage temperature range, Tstg
(1)
(2)
(3)
(4)
-0.5 V to 1.5 V
3.3-V pins
-40°C to 100°C
-65°C to 150°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to VSS.
Overshoot and undershoot transients due to impedance mismatch on 3.3-V pins can be up to 30% of the supply voltage for up to 30%
of the signal period without significantly impacting reliability. For RGMII and DDR2 pins, limit overshoot/undershoot to 20% of supply
voltage for up to 20% of the duty cycle. These period limits assume continuous operation.
Extended temperature (A version) range is available only on 500-MHz and 625-MHz devices.
Device Operating Conditions
Copyright © 2008–2011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s) :TMS320C6472
5
PRODUCT PREVIEW
2.1
TMS320C6472
SPRT490B – OCTOBER 2008 – REVISED JUNE 2011
www.ti.com
Recommended Operating Conditions (1)
2.2
PARAMETER
CVDD
Supply voltage, Core
CVDD2
Supply voltage, SRIO Core
MIN
NOM
500 MHz
0.95
1.0
MAX UNIT
1.05
625 MHz
1.05
1.1
1.16
700 MHz
1.14
1.2
1.26
500 MHz
0.95
1.0
1.05
625 MHz
1.05
1.1
1.16
700 MHz
1.14
1.2
1.26
1.14
1.2
1.26
V
3.135
3.3
3.465
V
1.71
1.8
1.89
V
V
V
PRODUCT PREVIEW
CVDD1
Supply volttage, 1.2-V DDR Core
DVDD33
Supply voltage, 3.3-V I/O
DVDD18
Supply voltage, 1.8-V I/O (DDR)
DVDD15
Supply voltage, 1.8-V/1.5-V I/O (RGMII)
1.4
1.9
V
VREFHSTL
(0.5 * DVDD15)
Reference voltage, RGMII I/O
0.7
0.95
V
VREFSSTL
(0.5 * DVDD18)
Reference voltage, DDR2 I/O
0.855
0.9
0.945
V
AVDDA1
Analog supply voltage, PLL1 (System PLL)
1.71
1.8
1.89
V
AVDDA2
Analog supply voltage, PLL2 (EMAC PLL)
1.71
1.8
1.89
V
AVDDA3
Analog supply voltage, PLL3 (DDR PLL)
1.71
1.8
1.89
V
AVDDA4
Analog supply voltage, DDR
1.71
1.8
1.89
V
DVDDD
SRIO Digital supply voltage
1.14
1.2
1.26
V
AVDDA
SRIO Analog supply voltage
1.14
1.2
1.26
V
AVDDT
SRIO Termination voltage
1.14
1.2
1.26
V
DVDDR
SRIO Regulator supply voltage
1.35
1.5/1.8
1.98
V
3.3-V pins (except
I2C pins)
VIH
High-level input voltage
I2C pins
Low-level input voltage
PCDD
(1)
(2)
6
Core supply power
(2)
DVDD33 + 0.5
0.7 * DVDD33
DVDD33 + 0.5
VREFHSTL + 0.10
DVDD15 + 0.3
VREFSSTL + 0.125
DVDD18 + 0.3
3.3-V pins (except
I2C pins)
-0.5
0.8
I2C pins
-0.5
0.3 * DVDD33
RGMII pins
-0.3
VREFHSTL - 0.1
DDR2 memory
controller pins
-0.3
VREFSSTL - 0.125
RGMII pins
DDR2 memory
controller pins
VIL
2.0
CVDD = CVDD2 =
1.0 V, CPU
frequency =
500 MHz
2.38
CVDD = CVDD2 =
1.1 V, CPU
frequency =
625 MHz
3.76
CVDD = CVDD2 =
1.2 V, CPU
frequency =
700 MHz
5.42
V
V
W
Operating conditions are at 500 MHz, 625 MHz, or 700 MHz.
Assumes the following conditions: CPU utilization 30% DSP/60% control; DDR2 at 30% utilization (266 MHz), 35% writes, 32 bits, 15%
bit switching; TSIP0, TSIP1, and TSIP2 at 20% utilization, 15% switching; UTOPIA 50 MHz, 16-bit at 50% utilization, 15% switching
EMAC0, 1000 Mbps, RGMII, 50% utilization, 50% switching; EMAC1 disabled; SRIO both lanes disabled; all timers active; HPI disabled;
I2C enabled at 10% utilization; room temperature (25°C). The actual power consumption is application-dependent. For more details on
core and I/O activity, see the TMS320C6472/TMS320TCI6486 Power Consumption Summary (literature number SPRAAS4).
Device Operating Conditions
Copyright © 2008–2011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s) :TMS320C6472
TMS320C6472
SPRT490B – OCTOBER 2008 – REVISED JUNE 2011
www.ti.com
Recommended Operating Conditions(1) (continued)
PARAMETER
MIN
3.3-V Supply
(DVDD33)
I/O supply power (2)
MAX UNIT
0.2
1.8-V Supplies,
including PLLs
(DVDD18, AVDDA1,
AVDDA2, AVDDA3,
AVDDA4
0.26
1.5-V Supplies
(DVDD15, DVDDR)
0.05
1.2-V Supplies
(CVDD1, AVDDA,
DVDDD, AVDDT)
0.28
W
PRODUCT PREVIEW
PDDD
NOM
Device Operating Conditions
Copyright © 2008–2011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s) :TMS320C6472
7
TMS320C6472
SPRT490B – OCTOBER 2008 – REVISED JUNE 2011
2.3
www.ti.com
Electrical Characteristics Over Recommended Ranges of Supply Voltage and
Operating Case Temperature (Unless Otherwise Noted)
TEST
CONDITIONS (1)
PARAMETER
VOH
VOL
V
I2C pins
DVDD33 = MIN,
IOH = MAX
0.8 * DVDD33
V
RGMII pins
DVDD15 - 0.4
V
DDR2 memory
controller pins
DVDD18 - 0.4
V
3.3-V pins (except I2C
pins)
DVDD33 = MIN,
IOL = MAX
0.4
V
I2C pins
Pulled up to 3.3 V,
3 mA sink current
0.4
V
RGMII pins
0.4
V
DDR2 memory
controller pins
0.4
V
1
uA
Low-level ouput voltage
PRODUCT PREVIEW
VI = VSS to
DVDD33, pins
without internal
pull-up or
pull-down resistor
-1
VI = VSS to
DVDD33, pins with
internal pull-up
resistor
50
100
400
uA
VI = VSS to
DVDD33, pins with
internal pull-down
resistor
-400
-100
-50
uA
-10
10
uA
RGMII pins
-1
1
uA
DDR2 memory
controller pins
-1
1
uA
E Class Buffers EMU[18:0] and all
3.3-V Ethernet, except
MCRS0_RMCRSDV0,
MCOL0, GMDIO, and
GMDCLK
-7
mA
D Class Buffers GPIO[15:0], TDO,
HOUT, and
SYSCLKOUT
-3
mA
C Class Buffers - HPI,
TSIP, UTOPIA,
BOOTACTIVE,
WDOUT,
RESETSTAT, TIMO2,
MCRS0_RMCRSDV0,
MCOL0, GMDIO, and
GMDCLK
-3
mA
-8
mA
-13.4
mA
Input current (DC)
0.1 * DVDD33 ≤ VI ≤
0.9 * DVDD33
RGMII pins
DDR pins
(1)
8
UNIT
0.8 * DVDD33
High-level ouput voltage
High-level output current
MAX
DVDD33 = MIN,
IOH = MAX
I2C pins
IOH
TYP
3.3 V pins (except I2C
pins)
3.3-V pins (except I2C
pins)
II
MIN
For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table.
Device Operating Conditions
Copyright © 2008–2011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s) :TMS320C6472
TMS320C6472
SPRT490B – OCTOBER 2008 – REVISED JUNE 2011
www.ti.com
Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case
Temperature (Unless Otherwise Noted) (continued)
IOL
Low-level output current
MIN
TC
(2)
Operating case temperature
UNIT
7
mA
D Class Buffers GPIO[15:0], TDO,
HOUT, and
SYSCLKOUT
3
mA
C Class Buffers - HPI,
TSIP, UTOPIA,
BOOTACTIVE,
WDOUT,
RESETSTAT, TIMO2,
MCRS0_RMCRSDV0,
MCOL0, GMDIO, and
GMDCLK
3
mA
DDR pins
Off-state output current
MAX
E Class Buffers EMU[18:0] and all
3.3-V Ethernet, except
MCRS0_RMCRSDV0,
MCOL0, GMDIO, and
GMDCLK
RGMII pins
IOZ
TYP
8
mA
13.4
mA
3.3-V pins
-10
20
uA
RGMII pins
-10
10
uA
DDR pins
-10
10
uA
0
85
-40
100
commercial
temperature
extended
temperature (2)
PRODUCT PREVIEW
TEST
CONDITIONS (1)
PARAMETER
°C
Extended temperature (A) range is available only on 500-MHz and 625-MHz devices.
Device Operating Conditions
Copyright © 2008–2011, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s) :TMS320C6472
9
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Communications and Telecom www.ti.com/communications
Amplifiers
amplifier.ti.com
Computers and Peripherals
www.ti.com/computers
Data Converters
dataconverter.ti.com
Consumer Electronics
www.ti.com/consumer-apps
DLP® Products
www.dlp.com
Energy and Lighting
www.ti.com/energy
DSP
dsp.ti.com
Industrial
www.ti.com/industrial
Clocks and Timers
www.ti.com/clocks
Medical
www.ti.com/medical
Interface
interface.ti.com
Security
www.ti.com/security
Logic
logic.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Power Mgmt
power.ti.com
Transportation and
Automotive
www.ti.com/automotive
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
Wireless
www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions
www.ti.com/lprf
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated