ONSEMI 1.5SMC9.1AT3

1.5SMC6.8AT3 Series
1500 Watt Peak Power
Zener Transient Voltage
Suppressors
Unidirectional*
http://onsemi.com
The SMC series is designed to protect voltage sensitive
components from high voltage, high energy transients. They have
excellent clamping capability, high surge capability, low zener
impedance and fast response time. The SMC series is supplied in
ON Semiconductor’s exclusive, cost-effective, highly reliable
Surmetic package and is ideally suited for use in communication
systems, automotive, numerical controls, process controls, medical
equipment, business machines, power supplies and many other
industrial/consumer applications.
Specification Features:
•
•
•
•
•
•
•
•
•
•
PLASTIC SURFACE MOUNT
ZENER OVERVOLTAGE
TRANSIENT SUPPRESSORS
5.8 − 78 VOLTS
1500 WATT PEAK POWER
Cathode
Working Peak Reverse Voltage Range − 5.8 to 77.8 V
Standard Zener Breakdown Voltage Range − 6.8 to 91 V
Peak Power − 1500 Watts @ 1.0 ms
ESD Rating of Class 3 (>16 kV) per Human Body Model
Maximum Clamp Voltage @ Peak Pulse Current
Low Leakage < 5.0 A Above 10 V
UL 497B for Isolated Loop Circuit Protection
Maximum Temperature Coefficient Specified
Response Time is Typically < 1.0 ns
Pb−Free Packages are Available
Anode
SMC
CASE 403
PLASTIC
MARKING DIAGRAM
Mechanical Characteristics:
CASE: Void-free, transfer-molded, thermosetting plastic
FINISH: All external surfaces are corrosion resistant and leads are
readily solderable
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:
YWW
xxxA
Y
WW
xxxA
260°C for 10 Seconds
LEADS: Modified L−Bend providing more contact area to bond pads
POLARITY: Cathode indicated by molded polarity notch
MOUNTING POSITION: Any
ORDERING INFORMATION
Device**
1.5SMCxxxAT3
MAXIMUM RATINGS
1.5SMCxxxAT3G
Please See the Table on the Following Page
= Year
= Work Week
= Specific Device Code
= (See Table on Page 3)
Package
Shipping†
SMC
2500/Tape & Reel
SMC
(Pb−Free)
2500/Tape & Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
*Bidirectional devices will not be available in this series.
**The “T3” suffix refers to a 13 inch reel.
Individual devices are listed on page 3 of this data sheet.
 Semiconductor Components Industries, LLC, 2004
April, 2004 − Rev. 5
1
Publication Order Number:
1.5SMC6.8AT3/D
1.5SMC6.8AT3 Series
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Peak Power Dissipation (Note 1) @ TL = 25°C, Pulse Width = 1 ms
PPK
1500
W
DC Power Dissipation @ TL = 75°C
Measured Zero Lead Length (Note 2)
Derate Above 75°C
Thermal Resistance from Junction−to−Lead
PD
4.0
W
RJL
54.6
18.3
mW/°C
°C/W
W
mW/°C
°C/W
DC Power Dissipation (Note 3) @ TA = 25°C
Derate Above 25°C
Thermal Resistance from Junction−to−Ambient
PD
RJA
0.75
6.1
165
Forward Surge Current (Note 4) @ TA = 25°C
IFSM
200
A
TJ, Tstg
−65 to +150
°C
Operating and Storage Temperature Range
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
1. 10 X 1000 s, non−repetitive
2. 1″ square copper pad, FR−4 board
3. FR−4 board, using ON Semiconductor minimum recommended footprint, as shown in 403 case outline dimensions spec.
4. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.
ELECTRICAL CHARACTERISTICS (TA = 25°C unless
I
otherwise noted, VF = 3.5 V Max. @ IF (Note 5) = 100 A)
IPP
Maximum Reverse Peak Pulse Current
VC
Clamping Voltage @ IPP
VRWM
IR
VBR
IT
VBR
IF
Parameter
Symbol
VC VBR VRWM
Working Peak Reverse Voltage
IR VF
IT
Maximum Reverse Leakage Current @ VRWM
Breakdown Voltage @ IT
Test Current
Maximum Temperature Coefficient of VBR
IF
Forward Current
VF
Forward Voltage @ IF
IPP
Uni−Directional TVS
5. 1/2 sine wave or equivalent, PW = 8.3 ms
non−repetitive duty cycle
http://onsemi.com
2
V
1.5SMC6.8AT3 Series
ELECTRICAL CHARACTERISTICS (Devices listed in bold, italic are ON Semiconductor Preferred devices.)
Breakdown Voltage
VRWM
(Note 6)
IR @ VRWM
Volts
A
Min
Nom
VC @ IPP (Note 8)
@ IT
VC
IPP
VBR
Max
mA
Volts
Amps
%/°C
VBR Volts (Note 7)
Device
Device
Marking
1.5SMC6.8AT3
1.5SMC7.5AT3
1.5SMC8.2AT3
1.5SMC9.1AT3
6V8A
7V5A
8V2A
9V1A
5.8
6.4
7.02
7.78
1000
500
200
50
6.45
7.13
7.79
8.65
6.8
7.5
8.2
9.1
7.14
7.88
8.61
9.55
10
10
10
1
10.5
11.3
12.1
13.4
143
132
124
112
0.057
0.061
0.065
0.068
1.5SMC10AT3
1.5SMC11AT3
1.5SMC12AT3
1.5SMC13AT3
10A
11A
12A
13A
8.55
9.4
10.2
11.1
10
5
5
5
9.5
10.5
11.4
12.4
10
11
12
13
10.5
11.6
12.6
13.7
1
1
1
1
14.5
15.6
16.7
18.2
103
96
90
82
0.073
0.075
0.078
0.081
1.5SMC15AT3
1.5SMC15AT3G
1.5SMC16AT3
1.5SMC18AT3
1.5SMC20AT3
15A
15A
16A
18A
20A
12.8
12.8
13.6
15.3
17.1
5
5
5
5
5
14.3
14.3
15.2
17.1
19
15
15
16
18
20
15.8
15.8
16.8
18.9
21
1
1
1
1
1
21.2
21.2
22.5
25.2
27.7
71
71
67
59.5
54
0.084
0.084
0.086
0.088
0.09
1.5SMC22AT3
1.5SMC24AT3
1.5SMC27AT3
1.5SMC30AT3
22A
24A
27A
30A
18.8
20.5
23.1
25.6
5
5
5
5
20.9
22.8
25.7
28.5
22
24
27
30
23.1
25.2
28.4
31.5
1
1
1
1
30.6
33.2
37.5
41.4
49
45
40
36
0.092
0.094
0.096
0.097
1.5SMC33AT3
1.5SMC36AT3
1.5SMC39AT3
1.5SMC43AT3
33A
36A
39A
43A
28.2
30.8
33.3
36.8
5
5
5
5
31.4
34.2
37.1
40.9
33
36
39
43
34.7
37.8
41
45.2
1
1
1
1
45.7
49.9
53.9
59.3
33
30
28
25.3
0.098
0.099
0.1
0.101
1.5SMC47AT3
1.5SMC51AT3
1.5SMC56AT3
1.5SMC62AT3
1.5SMC62AT3G
47A
51A
56A
62A
40.2
43.6
47.8
53
53
5
5
5
5
5
44.7
48.5
53.2
58.9
58.9
47
51
56
62
62
49.4
53.6
58.8
65.1
65.1
1
1
1
1
1
64.8
70.1
77
85
85
23.2
21.4
19.5
17.7
17.7
0.101
0.102
0.103
0.104
0.104
1.5SMC68AT3
1.5SMC75AT3
1.5SMC82AT3
1.5SMC91AT3
68A
75A
82A
91A
58.1
64.1
70.1
77.8
5
5
5
5
64.6
71.3
77.9
86.5
68
75
82
91
71.4
78.8
86.1
95.5
1
1
1
1
92
103
113
125
16.3
14.6
13.3
12
0.104
0.105
0.105
0.106
Devices listed in bold, italic are ON Semiconductor Preferred devices. Preferred devices are recommended choices for future
use and best overall value.
* The “G” suffix indicates Pb−Free package available.
6. A transient suppressor is normally selected according to the working peak reverse voltage (VRWM), which should be equal to or greater than
the DC or continuous peak operating voltage level.
7. VBR measured at pulse test current IT at an ambient temperature of 25°C.
8. Surge current waveform per Figure 2 and derate per Figure 3 of the General Data − 1500 Watt at the beginning of this group.
NOTE:
http://onsemi.com
3
1.5SMC6.8AT3 Series
NONREPETITIVE
PULSE WAVEFORM
SHOWN IN FIGURE 2
PULSE WIDTH (tP) IS DEFINED
AS THAT POINT WHERE THE PEAK
CURRENT DECAYS TO 50%
OF IPP.
tr≤ 10 s
100
PEAK VALUE − IPP
VALUE (%)
Ppk, PEAK POWER (kW)
100
10
HALF VALUE −
50
IPP
2
tP
1
0.1 s
1 s
10 s
100 s
1 ms
0
10 ms
0
1
2
3
4
tP, PULSE WIDTH
t, TIME (ms)
Figure 1. Pulse Rating Curve
Figure 2. Pulse Waveform
1000
140
IT, TEST CURRENT (AMPS)
PEAK PULSE DERATING IN % OF
PEAK POWER OR CURRENT @ TA = 25° C
160
120
100
80
60
40
20
0
0
25
50
75
100
125
150
500
VBR(NOM)=6.8TO13V
20V
43V
24V
75V
TL=25°C
tP=10s
200
100
120V
50
180V
20
10
5
2
1
0.3
0.5 0.7 1
2
3
5
7
10
20
30
VBR, INSTANTANEOUS INCREASE IN VBR ABOVE VBR (NOM) (VOLTS)
TA, AMBIENT TEMPERATURE (°C)
Figure 4. Dynamic Impedance
Figure 3. Pulse Derating Curve
UL RECOGNITION
including Strike Voltage Breakdown test, Endurance
Conditioning, Temperature test, Dielectric Voltage-Withstand
test, Discharge test and several more.
Whereas, some competitors have only passed a
flammability test for the package material, we have been
recognized for much more to be included in their Protector
category.
The entire series has Underwriters Laboratory
Recognition for the classification of protectors (QVGV2)
under the UL standard for safety 497B and File #116110.
Many competitors only have one or two devices recognized
or have recognition in a non-protective category. Some
competitors have no recognition at all. With the UL497B
recognition, our parts successfully passed several tests
http://onsemi.com
4
1.5SMC6.8AT3 Series
APPLICATION NOTES
RESPONSE TIME
minimum lead lengths and placing the suppressor device as
close as possible to the equipment or components to be
protected will minimize this overshoot.
Some input impedance represented by Zin is essential to
prevent overstress of the protection device. This impedance
should be as high as possible, without restricting the circuit
operation.
In most applications, the transient suppressor device is
placed in parallel with the equipment or component to be
protected. In this situation, there is a time delay associated
with the capacitance of the device and an overshoot
condition associated with the inductance of the device and
the inductance of the connection method. The capacitive
effect is of minor importance in the parallel protection
scheme because it only produces a time delay in the
transition from the operating voltage to the clamp voltage as
shown in Figure 5.
The inductive effects in the device are due to actual
turn-on time (time required for the device to go from zero
current to full current) and lead inductance. This inductive
effect produces an overshoot in the voltage across the
equipment or component being protected as shown in
Figure 6. Minimizing this overshoot is very important in the
application, since the main purpose for adding a transient
suppressor is to clamp voltage spikes. The SMC series have
a very good response time, typically < 1.0 ns and negligible
inductance. However, external inductive effects could
produce unacceptable overshoot. Proper circuit layout,
DUTY CYCLE DERATING
The data of Figure 1 applies for non-repetitive conditions
and at a lead temperature of 25°C. If the duty cycle increases,
the peak power must be reduced as indicated by the curves
of Figure 7. Average power must be derated as the lead or
ambient temperature rises above 25°C. The average power
derating curve normally given on data sheets may be
normalized and used for this purpose.
At first glance the derating curves of Figure 7 appear to be
in error as the 10 ms pulse has a higher derating factor than
the 10 s pulse. However, when the derating factor for a
given pulse of Figure 7 is multiplied by the peak power value
of Figure 1 for the same pulse, the results follow the
expected trend.
http://onsemi.com
5
1.5SMC6.8AT3 Series
TYPICAL PROTECTION CIRCUIT
Zin
Vin
V
LOAD
V
Vin (TRANSIENT)
VL
OVERSHOOT DUE TO
INDUCTIVE EFFECTS
Vin (TRANSIENT)
VL
VL
Vin
td
tD = TIME DELAY DUE TO CAPACITIVE EFFECT
t
t
Figure 5.
Figure 6.
1
0.7
DERATING FACTOR
0.5
0.3
0.2
PULSE WIDTH
10 ms
0.1
0.07
0.05
1 ms
0.03
100 s
0.02
10 s
0.01
0.1 0.2
0.5
1
2
5
10
D, DUTY CYCLE (%)
20
50 100
Figure 7. Typical Derating Factor for Duty Cycle
http://onsemi.com
6
1.5SMC6.8AT3 Series
PACKAGE DIMENSIONS
SMC
CASE 403−03
ISSUE B
S
A
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. D DIMENSION SHALL BE MEASURED WITHIN
DIMENSION P.
B
INCHES
DIM MIN
MAX
A
0.260
0.280
B
0.220
0.240
C
0.075
0.095
D
0.115
0.121
H 0.0020 0.0060
J
0.006
0.012
K
0.030
0.050
P
0.020 REF
S
0.305
0.320
C
K
P
J
H
SOLDERING FOOTPRINT*
4.343
0.171
3.810
0.150
2.794
0.110
SCALE 4:1
mm inches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
7
MILLIMETERS
MIN
MAX
6.60
7.11
5.59
6.10
1.90
2.41
2.92
3.07
0.051
0.152
0.15
0.30
0.76
1.27
0.51 REF
7.75
8.13
1.5SMC6.8AT3 Series
Surmetic is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
http://onsemi.com
8
For additional information, please contact your
local Sales Representative.
1.5SMC6.8AT3/D