Datasheet - STMicroelectronics

M24C32-W M24C32-R M24C32-F
M24C32-X M24C32-DF
32-Kbit serial I²C bus EEPROM
Datasheet - production data
Features
• Compatible with all I2C bus modes:
– 1 MHz
– 400 kHz
– 100 kHz
PDIP8 (BN)
TSSOP8 (DW)
169 mil width
• Memory array:
– 32 Kbit (4 Kbyte) of EEPROM
– Page size: 32 byte
– Additional Write lockable page
(M24C32-D order codes)
SO8 (MN)
150 mil width
• Single supply voltage:
– 1.7 V to 5.5 V over –40 °C / +85 °C
– 1.6 V to 5.5 V over –20 °C / +85 °C
•
Write:
– Byte Write within 5 ms
– Page Write within 5 ms
• Random and sequential Read modes
UFDFPN8
(MC)
UFDFPN5
(MH)
• Write protect of the whole memory array
• Enhanced ESD/Latch-Up protection
• More than 4 million Write cycles
• More than 200-years data retention
Packages
• PDIP8 ECOPACK1®
WLCSP
(CU)
• SO8 ECOPACK2®
• TSSOP8 ECOPACK2®
• UFDFPN8 ECOPACK2®
• UFDFPN5 ECOPACK2®
• WLCSP ECOPACK2®
• Unsawn wafer (each die is tested)
Unsawn wafer
August 2015
This is information on a product in full production.
DocID4578 Rev 26
1/47
www.st.com
Contents
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Chip Enable (E2, E1, E0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5
VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.1
Operating supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.2
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.3
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.4
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5
4.1
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4
Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1
5.2
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.1
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.3
Write Identification Page (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . 17
5.1.4
Lock Identification Page (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . 17
5.1.5
ECC (Error Correction Code) and Write cycling . . . . . . . . . . . . . . . . . . 17
5.1.6
Minimizing Write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 18
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.1
2/47
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Contents
5.2.2
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.3
Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.4
Read Identification Page (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . 20
5.2.5
Read the lock status (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . . . . 21
6
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1
UFDFPN5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2
UFDFPN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.3
TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.4
SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.5
PDIP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.6
Ultra Thin WLCSP package information . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DocID4578 Rev 26
3/47
3
List of tables
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
4/47
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Most significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Least significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Operating conditions (voltage range W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Operating conditions (voltage range R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Operating conditions (voltage range F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Operating conditions (voltage range X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Cycling performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Memory cell data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DC characteristics (M24C32-W, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DC characteristics (M24C32-R device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DC characteristics (M24C32-F, device grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DC characteristics (M24C32-X, device grade 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
400 kHz AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1 MHz AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
UFDFPN5 (MLP5) – package dimensions (UFDFPN: Ultra thin Fine pitch
Dual Flat Package, No lead) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
UFDFPN8 (MLP8) – package dimensions (UFDFPN: Ultra thin Fine pitch
Dual Flat Package, No lead) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
TSSOP8 – 8-lead thin shrink small outline, package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
SO8N – 8-lead plastic small outline, 150 mils body width,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package mechanical data. . . . . . . . . . . . 39
Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Ordering information scheme (unsawn wafer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8-pin package connections, top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
UFDFPN5 package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
WLCSP 4 bump Ultra thin package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Chip enable inputs connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Write mode sequences with WC = 0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 15
Write mode sequences with WC = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 16
Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Read mode sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 14.
Maximum Rbus value versus bus parasitic capacitance Cbus) for
an I2C bus at maximum frequency fC = 1MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
UFDFPN5 (MLP5) – package outline (UFDFPN: Ultra thin Fine pitch
Dual Flat Package, No lead) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
UFDFPN8 (MLP8) – package outline (UFDFPN: Ultra thin Fine pitch
Dual Flat Package, No lead) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 36
SO8N – 8-lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 37
SO8N – 8-lead plastic small outline, 150 mils body width,
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package outline . . . . . . . . . . . . . . . . . . . 39
Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Maximum Rbus value versus bus parasitic capacitance (Cbus) for
an I2C bus at maximum frequency fC = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DocID4578 Rev 26
5/47
5
Description
1
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Description
The M24C32 is a 32-Kbit I2C-compatible EEPROM (Electrically Erasable PROgrammable
Memory) organized as 4 K × 8 bits.
The M24C32-W can operate with a supply voltage from 2.5 V to 5.5 V, the M24C32-R can
operate with a supply voltage from 1.8 V to 5.5 V, and the M24C32-F and M24C32-DF can
operate with a supply voltage from 1.7 V to 5.5 V, over an ambient temperature range of
-40 °C / +85 °C; while the M24C32-X can operate with a supply voltage from 1.6 V to 5.5 V
over an ambient temperature range of -20 °C / +85 °C.
The M24C32-D offers an additional page, named the Identification Page (32 byte). The
Identification Page can be used to store sensitive application parameters which can be
(later) permanently locked in Read-only mode.
Figure 1. Logic diagram
9&&
((
6'$
0[[[
6&/
:&
966
$,I
Table 1. Signal names
Signal name
6/47
Function
Direction
E2, E1, E0
Chip Enable
Input
SDA
Serial Data
I/O
SCL
Serial Clock
Input
WC
Write Control
Input
VCC
Supply voltage
-
VSS
Ground
-
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Description
Figure 2. 8-pin package connections, top view
(
9&&
(
:&
(
6&/
966
6'$
$,I
Figure 3. UFDFPN5 package connections
6 ## 6 33 3$! !"#$
89:7
7#
6 33
3#,
4OPVIEW
MARKINGSIDE
"OTTOMVIEW
PADSSIDE
-36
1. Inputs E2, E1, E0 are not connected, therefore read as (000). Please refer to Section 2.3 for further
explanations.
Figure 4. WLCSP 4 bump Ultra thin package connections
$
9&&
966
966
9&&
$
%
6&/
6'$
6'$
6&/
%
0DUNLQJVLGH
WRSYLHZ
%XPSVLGH
ERWWRPYLHZ
06Y9
1. Inputs E2, E1, E0 are read as (000). Please refer to Section 2.3 for further explanations.
DocID4578 Rev 26
7/47
46
Signal description
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
2
Signal description
2.1
Serial Clock (SCL)
The signal applied on the SCL input is used to strobe the data available on SDA(in) and to
output the data on SDA(out).
2.2
Serial Data (SDA)
SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an
open drain output that may be wire-OR’ed with other open drain or open collector signals on
the bus. A pull-up resistor must be connected from Serial Data (SDA) to VCC (Figure 13
indicates how to calculate the value of the pull-up resistor).
2.3
Chip Enable (E2, E1, E0)
(E2,E1,E0) input signals are used to set the value that is to be looked for on the three least
significant bits (b3, b2, b1) of the 7-bit device select code (see Table 2). These inputs must
be tied to VCC or VSS, as shown in Figure 5. When not connected (left floating), these inputs
are read as low (0).
For the UFDFPN5 package, the (E2,E1,E0) inputs are not connected, therefore read as
(0,0,0).
For the 4-balls WLCSP package (see Figure 4), the (E2,E1,E0) inputs are internally
connected to (0, 0, 0).
Figure 5. Chip enable inputs connection
9&&
9&&
0[[[
0[[[
(L
(L
966
2.4
966
$L
Write Control (WC)
This input signal is useful for protecting the entire contents of the memory from inadvertent
write operations. Write operations are disabled to the entire memory array when Write
Control (WC) is driven high. Write operations are enabled when Write Control (WC) is either
driven low or left floating.
When Write Control (WC) is driven high, device select and address bytes are
acknowledged, Data bytes are not acknowledged.
8/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
2.5
Signal description
VSS (ground)
VSS is the reference for the VCC supply voltage.
2.6
Supply voltage (VCC)
2.6.1
Operating supply voltage (VCC)
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage
within the specified [VCC(min), VCC(max)] range must be applied (see Operating conditions
in Section 8: DC and AC parameters). In order to secure a stable DC supply voltage, it is
recommended to decouple the VCC line with a suitable capacitor (usually of the order of
10 nF to 100 nF) close to the VCC/VSS package pins.
This voltage must remain stable and valid until the end of the transmission of the instruction
and, for a write instruction, until the completion of the internal write cycle (tW).
2.6.2
Power-up conditions
The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage
(see Operating conditions in Section 8: DC and AC parameters).
2.6.3
Device reset
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)
circuit is included.
At power-up, the device does not respond to any instruction until VCC has reached the
internal reset threshold voltage. This threshold is lower than the minimum VCC operating
voltage (see Operating conditions in Section 8: DC and AC parameters). When VCC passes
over the POR threshold, the device is reset and enters the Standby Power mode; however,
the device must not be accessed until VCC reaches a valid and stable DC voltage within the
specified [VCC(min), VCC(max)] range (see Operating conditions in Section 8: DC and AC
parameters).
In a similar way, during power-down (continuous decrease in VCC), the device must not be
accessed when VCC drops below VCC(min). When VCC drops below the internal reset
threshold voltage, the device stops responding to any instruction sent to it.
2.6.4
Power-down conditions
During power-down (continuous decrease in VCC), the device must be in the Standby Power
mode (mode reached after decoding a Stop condition, assuming that there is no internal
write cycle in progress).
DocID4578 Rev 26
9/47
46
Memory organization
3
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Memory organization
The memory is organized as shown below.
Figure 6. Block diagram
7#
%
%
%
(IGHVOLTAGE
GENERATOR
#ONTROLLOGIC
3#,
3$!
)/SHIFTREGISTER
$ATA
REGISTER
9DECODER
!DDRESSREGISTER
ANDCOUNTER
PAGE
)DENTIFICATIONPAGE
8DECODER
-36
10/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
4
Device operation
Device operation
The device supports the I2C protocol. This is summarized in Figure 7. Any device that sends
data on to the bus is defined to be a transmitter, and any device that reads the data to be a
receiver. The device that controls the data transfer is known as the bus master, and the
other as the slave device. A data transfer can only be initiated by the bus master, which will
also provide the serial clock for synchronization. The device is always a slave in all
communications.
Figure 7. I2C bus protocol
3#,
3$!
3$!
)NPUT
34!24
#ONDITION
3#,
3$!
-3"
3$!
#HANGE
34/0
#ONDITION
!#+
34!24
#ONDITION
3#,
3$!
-3"
!#+
34/0
#ONDITION
!)"
DocID4578 Rev 26
11/47
46
Device operation
4.1
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Start condition
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in
the high state. A Start condition must precede any data transfer instruction. The device
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock
(SCL) for a Start condition.
4.2
Stop condition
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and
driven high. A Stop condition terminates communication between the device and the bus
master. A Read instruction that is followed by NoAck can be followed by a Stop condition to
force the device into the Standby mode.
A Stop condition at the end of a Write instruction triggers the internal Write cycle.
4.3
Data input
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock
(SCL) is driven low.
4.4
Acknowledge bit (ACK)
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits
of data. During the 9th clock pulse period, the receiver pulls Serial Data (SDA) low to
acknowledge the receipt of the eight data bits.
12/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
4.5
Device operation
Device addressing
To start communication between the bus master and the slave device, the bus master must
initiate a Start condition. Following this, the bus master sends the device select code, shown
in Table 2 (most significant bit first).
Table 2. Device select code
Device type identifier(1)
Chip Enable address(2)
RW
b7
b6
b5
b4
b3
b2
b1
b0
Device select code
when addressing the
memory array
1
0
1
0
E2
E1
E0
RW
Device select code
when accessing the
Identification page
1
0
1
1
E2
E1
E0
RW
1. The most significant bit, b7, is sent first.
2.
E0, E1 and E2 are compared with the value read on input pins E0, E1 and E2.
When the device select code is received, the device only responds if the Chip Enable
address is the same as the value on its Chip Enable E2,E1,E0 inputs.
The 8th bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.
If a match occurs on the device select code, the corresponding device gives an
acknowledgment on Serial Data (SDA) during the 9th bit time. If the device does not match
the device select code, the device deselects itself from the bus, and goes into Standby
mode.
DocID4578 Rev 26
13/47
46
Instructions
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
5
Instructions
5.1
Write operations
Following a Start condition the bus master sends a device select code with the R/W bit (RW)
reset to 0. The device acknowledges this, as shown in Figure 8, and waits for two address
bytes. The device responds to each address byte with an acknowledge bit, and then waits
for the data byte.
Table 3. Most significant address byte
A15
A14
A13
A12
A11
A10
A9
A8
A1
A0
Table 4. Least significant address byte
A7
A6
A5
A4
A3
A2
When the bus master generates a Stop condition immediately after a data byte Ack bit (in
the “10th bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write
cycle tW is triggered. A Stop condition at any other time slot does not trigger the internal
Write cycle.
After the Stop condition and the successful completion of an internal Write cycle (tW), the
device internal address counter is automatically incremented to point to the next byte after
the last modified byte.
During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does
not respond to any requests.
If the Write Control input (WC) is driven High, the Write instruction is not executed and the
accompanying data bytes are not acknowledged, as shown in Figure 9.
14/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Byte Write
After the device select code and the address bytes, the bus master sends one data byte. If
the addressed location is Write-protected, by Write Control (WC) being driven high, the
device replies with NoAck, and the location is not modified. If, instead, the addressed
location is not Write-protected, the device replies with Ack. The bus master terminates the
transfer by generating a Stop condition, as shown in Figure 8.
Figure 8. Write mode sequences with WC = 0 (data write enabled)
7#
!#+
!#+
!#+
"YTEADDR
"YTEADDR
!#+
$ATAIN
3TOP
$EVSEL
3TART
"YTE7RITE
27
7#
!#+
0AGE7RITE
!#+
"YTEADDR
$EVSEL
3TART
!#+
"YTEADDR
!#+
$ATAIN
$ATAIN
27
7#CONTgD
!#+
0AGE7RITECONTgD
!#+
$ATAIN.
3TOP
5.1.1
Instructions
DocID4578 Rev 26
!)D
15/47
46
Instructions
5.1.2
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Page Write
The Page Write mode allows up to 32 byte to be written in a single Write cycle, provided that
they are all located in the same page in the memory: that is, the most significant memory
address bits, b16-b5, are the same. If more bytes are sent than will fit up to the end of the
page, a “roll-over” occurs, i.e. the bytes exceeding the page end are written on the same
page, from location 0.
The bus master sends from 1 to 32 byte of data, each of which is acknowledged by the
device if Write Control (WC) is low. If Write Control (WC) is high, the contents of the
addressed memory location are not modified, and each data byte is followed by a NoAck, as
shown in Figure 9. After each transferred byte, the internal page address counter is
incremented.
The transfer is terminated by the bus master generating a Stop condition.
Figure 9. Write mode sequences with WC = 1 (data write inhibited)
7#
!#+
"YTEADDR
!#+
"YTEADDR
./!#+
$ATAIN
3TOP
$EVSEL
3TART
"YTE7RITE
!#+
27
7#
!#+
"YTEADDR
$EVSEL
3TART
0AGE7RITE
!#+
!#+
"YTEADDR
./!#+
$ATAIN
$ATAIN
27
7#CONTgD
./!#+
$ATAIN.
3TOP
0AGE7RITECONTgD
./!#+
16/47
DocID4578 Rev 26
!)D
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
5.1.3
Instructions
Write Identification Page (M24C32-D only)
The Identification Page (32 byte) is an additional page which can be written and (later)
permanently locked in Read-only mode. It is written by issuing the Write Identification Page
instruction. This instruction uses the same protocol and format as Page Write (into memory
array), except for the following differences:
•
Device type identifier = 1011b
•
MSB address bits A15/A5 are don't care except for address bit A10 which must be ‘0’.
LSB address bits A4/A0 define the byte address inside the Identification page.
If the Identification page is locked, the data bytes transferred during the Write Identification
Page instruction are not acknowledged (NoAck).
5.1.4
Lock Identification Page (M24C32-D only)
The Lock Identification Page instruction (Lock ID) permanently locks the Identification page
in Read-only mode. The Lock ID instruction is similar to Byte Write (into memory array) with
the following specific conditions:
5.1.5
•
Device type identifier = 1011b
•
Address bit A10 must be ‘1’; all other address bits are don't care
•
The data byte must be equal to the binary value xxxx xx1x, where x is don't care
ECC (Error Correction Code) and Write cycling
The ECC is offered only in devices identified with process letter K, all other devices
(identified with a different process letter) do not embed the ECC logic.
The Error Correction Code (ECC) is an internal logic function which is transparent for the
I2C communication protocol.
The ECC logic is implemented on each group of four EEPROM bytes(1). Inside a group, if a
single bit out of the four bytes happens to be erroneous during a Read operation, the ECC
detects this bit and replaces it with the correct value. The read reliability is therefore much
improved.
Even if the ECC function is performed on groups of four bytes, a single byte can be
written/cycled independently. In this case, the ECC function also writes/cycles the three
other bytes located in the same group(1). As a consequence, the maximum cycling budget is
defined at group level and the cycling can be distributed over the 4 bytes of the group: the
sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain
below the maximum value defined Table 12: Cycling performance.
1. A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer.
DocID4578 Rev 26
17/47
46
Instructions
5.1.6
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Minimizing Write delays by polling on ACK
The maximum Write time (tw) is shown in AC characteristics tables in Section 8: DC and AC
parameters, but the typical time is shorter. To make use of this, a polling sequence can be
used by the bus master.
The sequence, as shown in Figure 10, is:
•
Initial condition: a Write cycle is in progress.
•
Step 1: the bus master issues a Start condition followed by a device select code (the
first byte of the new instruction).
•
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and
the bus master goes back to Step 1. If the device has terminated the internal Write
cycle, it responds with an Ack, indicating that the device is ready to receive the second
part of the instruction (the first byte of this instruction having been sent during Step 1).
Figure 10. Write cycle polling flowchart using ACK
:ULWHF\FOH
LQSURJUHVV
6WDUWFRQGLWLRQ
'HYLFHVHOHFW
ZLWK5: 12
)LUVWE\WHRILQVWUXFWLRQ
ZLWK5: DOUHDG\
GHFRGHGE\WKHGHYLFH
$&.
UHWXUQHG
<(6
12
1H[W
2SHUDWLRQLV
DGGUHVVLQJWKH
PHPRU\
<(6
6HQG$GGUHVV
DQG5HFHLYH$&.
5H6WDUW
6WRS
12
'DWDIRUWKH
:ULWHFSHUDWLRQ
&RQWLQXHWKH
:ULWHRSHUDWLRQ
6WDUW&RQGLWLRQ
<(6
'HYLFHVHOHFW
ZLWK5: &RQWLQXHWKH
5DQGRP5HDGRSHUDWLRQ
$,H
1. The seven most significant bits of the Device Select code of a Random Read (bottom right box in the
figure) must be identical to the seven most significant bits of the Device Select code of the Write (polling
instruction in the figure).
18/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Read operations
Read operations are performed independently of the state of the Write Control (WC) signal.
After the successful completion of a Read operation, the device internal address counter is
incremented by one, to point to the next byte address.
For the Read instructions, after each byte read (data out), the device waits for an
acknowledgment (data in) during the 9th bit time. If the bus master does not acknowledge
during this 9th time, the device terminates the data transfer and switches to its Standby
mode.
Figure 11. Read mode sequences
!#+
$ATAOUT
3TOP
3TART
$EVSEL
./!#+
27
!#+
2ANDOM
!DDRESS
2EAD
"YTEADDR
$EVSEL
!#+
!#+
$ATAOUT
$ATAOUT
27
./!#+
$ATAOUT.
27
!#+
!#+
"YTEADDR
!#+
"YTEADDR
27
!#+
$EVSEL
3TART
$EVSEL
!#+
$ATAOUT
27
./!#+
$ATAOUT.
3TOP
!#+
./!#+
3TOP
3TART
$EVSEL
3EQUENTION
2ANDOM
2EAD
!#+
"YTEADDR
27
!#+
3EQUENTIAL
#URRENT
2EAD
!#+
3TART
3TART
$EVSEL
!#+
3TOP
#URRENT
!DDRESS
2EAD
3TART
5.2
Instructions
DocID4578 Rev 26
!)D
19/47
46
Instructions
5.2.1
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Random Address Read
A dummy Write is first performed to load the address into this address counter (as shown in
Figure 11) but without sending a Stop condition. Then, the bus master sends another Start
condition, and repeats the device select code, with the RW bit set to 1. The device
acknowledges this, and outputs the contents of the addressed byte. The bus master must
not acknowledge the byte, and terminates the transfer with a Stop condition.
5.2.2
Current Address Read
For the Current Address Read operation, following a Start condition, the bus master only
sends a device select code with the R/W bit set to 1. The device acknowledges this, and
outputs the byte addressed by the internal address counter. The counter is then
incremented. The bus master terminates the transfer with a Stop condition, as shown in
Figure 11, without acknowledging the byte.
Note that the address counter value is defined by instructions accessing either the memory
or the Identification page. When accessing the Identification page, the address counter
value is loaded with the byte location in the Identification page, therefore the next Current
Address Read in the memory uses this new address counter value. When accessing the
memory, it is safer to always use the Random Address Read instruction (this instruction
loads the address counter with the byte location to read in the memory, see Section 5.2.1)
instead of the Current Address Read instruction.
5.2.3
Sequential Read
This operation can be used after a Current Address Read or a Random Address Read. The
bus master does acknowledge the data byte output, and sends additional clock pulses so
that the device continues to output the next byte in sequence. To terminate the stream of
bytes, the bus master must not acknowledge the last byte, and must generate a Stop
condition, as shown in Figure 11.
The output data comes from consecutive addresses, with the internal address counter
automatically incremented after each byte output. After the last memory address, the
address counter “rolls-over”, and the device continues to output data from memory address
00h.
5.2.4
Read Identification Page (M24C32-D only)
The Identification Page (32 byte) is an additional page which can be written and (later)
permanently locked in Read-only mode.
The Identification Page can be read by issuing an Read Identification Page instruction. This
instruction uses the same protocol and format as the Random Address Read (from memory
array) with device type identifier defined as 1011b. The MSB address bits A15/A5 are don't
care, the LSB address bits A4/A0 define the byte address inside the Identification Page. The
number of bytes to read in the ID page must not exceed the page boundary (e.g.: when
reading the Identification Page from location 10d, the number of bytes should be less than
or equal to 22, as the ID page boundary is 32 byte).
20/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
5.2.5
Instructions
Read the lock status (M24C32-D only)
The locked/unlocked status of the Identification page can be checked by transmitting a
specific truncated command [Identification Page Write instruction + one data byte] to the
device. The device returns an acknowledge bit if the Identification page is unlocked,
otherwise a NoAck bit if the Identification page is locked.
Right after this, it is recommended to transmit to the device a Start condition followed by a
Stop condition, so that:
•
Start: the truncated command is not executed because the Start condition resets the
device internal logic,
•
Stop: the device is then set back into Standby mode by the Stop condition.
DocID4578 Rev 26
21/47
46
Initial delivery state
6
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Initial delivery state
The device is delivered with all the memory array bits set to 1 (each byte contains FFh).
When delivered in unsawn wafer, all memory bits are set to 1 (each memory byte contains
FFh) except the last byte located at address FFFh which is written with the value 22h.
22/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
7
Maximum rating
Maximum rating
Stressing the device outside the ratings listed in Table 5 may cause permanent damage to
the device. These are stress ratings only, and operation of the device at these, or any other
conditions outside those indicated in the operating sections of this specification, is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 5. Absolute maximum ratings
Symbol
TSTG
TLEAD
Parameter
Min.
Max.
Unit
Ambient operating temperature
–40
130
°C
Storage temperature
–65
150
°C
Lead temperature during soldering
see
note(1)
°C
(2)
°C
PDIP-specific lead temperature during soldering
-
260
IOL
DC output current (SDA = 0)
-
5
mA
VIO
Input or output range
–0.50
6.5
V
VCC
Supply voltage
–0.50
6.5
V
-
2000(4)
V
VESD
Electrostatic pulse (Human Body
model)(3)
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions of Hazardous Substances (RoHS
directive 2011/65/EU of July 2011).
2. TLEAD max must not be applied for more than 10 s.
3. Positive and negative pulses applied on different combinations of pin connections, according to AECQ100-002 (compliant with ANSI/ESDA/JEDEC JS-001-2012 standard, C1=100 pF, R1=1500 Ω).
4. 4000 V for devices identified with process letter K and P.
DocID4578 Rev 26
23/47
46
DC and AC parameters
8
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device.
Table 6. Operating conditions (voltage range W)
Symbol
VCC
TA
fC
Parameter
Min.
Max.
Unit
Supply voltage
2.5
5.5
V
Ambient operating temperature
–40
85
°C
(1)
1
MHz
Min.
Max.
Unit
Supply voltage
1.8
5.5
V
Ambient operating temperature
–40
85
°C
-
1(1)
MHz
Max.
Unit
V
Operating clock frequency
-
1. 400 kHz for devices identified by process letter P.
Table 7. Operating conditions (voltage range R)
Symbol
VCC
TA
fC
Parameter
Operating clock frequency
1. 400 kHz for devices by process letter P.
Table 8. Operating conditions (voltage range F)
Symbol
VCC
TA
fC
Parameter
Min.
1.6(1)
1.7
5.5
Ambient operating temperature: READ
-40
-40
85
Ambient operating temperature: WRITE
0
-40
85
Supply voltage
Operating clock frequency, VCC ≥ 1.6 V(1)
-
400
Operating clock frequency, VCC ≥ 1.7 V
-
1000
°C
kHz
1. Only for devices identified with process letter T
Table 9. Operating conditions (voltage range X)
Symbol
Min.
Max.
Unit
Supply voltage
1.6
5.5
V
TA
Ambient operating temperature
–20
85
°C
fC
Operating clock frequency
-
1
MHz
VCC
24/47
Parameter
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
DC and AC parameters
Table 10. Input parameters
Parameter(1)
Symbol
Test condition
Min.
Max.
Unit
CIN
Input capacitance (SDA)
-
-
8
pF
CIN
Input capacitance (other pins)
-
-
6
pF
VIN < 0.3 VCC
30
-
kΩ
VIN > 0.7 VCC
500
-
kΩ
ZL
ZH
Input impedance (E2, E1, E0, WC)(2)
1. Characterized only, not tested in production.
2. E2, E1, E0 input impedance when the memory is selected (after a Start condition).
Table 11. AC measurement conditions
Symbol
Cbus
Parameter
Min.
Load capacitance
Max.
100
-
Unit
pF
-
SCL input rise/fall time, SDA input fall time
50
ns
-
Input levels
0.2 VCC to 0.8 VCC
V
-
Input and output timing reference levels
0.3 VCC to 0.7 VCC
V
Figure 12. AC measurement I/O waveform
)NPUTVOLTAGELEVELS
)NPUTANDOUTPUT
4IMINGREFERENCELEVELS
6##
6##
6##
6##
-36
Table 12. Cycling performance
Symbol
Ncycle
Parameter
Write cycle
endurance(2)
Test condition
Max.(1)
TA ≤ 25 °C, VCC(min) < VCC < VCC(max)
4,000,000
TA = 85 °C, VCC(min) < VCC < VCC(max)
1,200,000
Unit
Write cycle(3)
1. Cycling performance for products identified by process letter K or T (previous products were specified with
1 million cycles at 25 °C & 300 K cycles at 85 °C)
2. The Write cycle endurance is defined by characterization and qualification. For devices embedding the
ECC functionality (see Chapter 5.1.5), the write cycle endurance is defined for group of four bytes located
at addresses [4*N, 4*N+1, 4*N+2, 4*N+3] where N is an integer.
3. A Write cycle is executed when either a Page Write, a Byte write, a Write Identification Page or a Lock
Identification Page instruction is decoded. When using the Byte Write, the Page Write or the Write
Identification Page, refer also to Section 5.1.5: ECC (Error Correction Code) and Write cycling
Table 13. Memory cell data retention
Parameter
Data retention(1)
Test condition
TA = 55 °C
Min.
Unit
200(2)
Year
1. The data retention behavior is checked in production, while the data retention limit defined in this table is
extracted from characterization and qualification results.
2. For products identified by process letter K or T (previous products were specified with a data retention of 40
years at 55°C).
DocID4578 Rev 26
25/47
46
DC and AC parameters
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Table 14. DC characteristics (M24C32-W, device grade 6)
Symbol
Parameter
ILI
Input leakage current
(SCL, SDA, E2, E1,
E0)
ILO
Output leakage
current
ICC
ICC0
ICC1
VIL
VIH
VOL
Supply current (Read)
Supply current (Write)
Standby supply
current
Test conditions (in addition to those
in Table 6)
Min.
Max.
Unit
VIN = VSS or VCC, device in Standby
mode
-
±2
µA
SDA in Hi-Z, external voltage applied
on SDA: VSS or VCC
-
±2
µA
2.5 V < VCC < 5.5 V, fc = 400 kHz
(rise/fall time < 50 ns)
-
2
mA
2.5 V < VCC < 5.5 V, fc = 1 MHz(1)
(rise/fall time < 50 ns)
-
2.5
mA
During tW,
2.5 V ≤ VCC ≤ 5.5 V
-
5(2)
mA
Device not selected(3),
VIN = VSS or VCC, VCC = 2.5 V
-
2
µA
Device not selected(3),
VIN = VSS or VCC, VCC = 5.5 V
-
(4)
µA
Input low voltage
(SCL, SDA, WC, E2,
E1, E0)(5)
-
–0.45
0.3 VCC
V
Input high voltage
(SCL, SDA)
-
0.7 VCC
6.5
V
Input high voltage
(WC, E2, E1, E0)(6)
-
0.7 VCC
VCC+1
V
Output low voltage
IOL = 2.1 mA, VCC = 2.5 V or
IOL = 3 mA, VCC = 5.5 V
-
0.4
V
1. Only for devices identified with process letter K or T.
2. Characterized value, not tested in production.
3. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).
4. 5 µA for previous devices identified by process letter P.
5. Ei inputs should be tied to Vss (see Section 2.3).
6. Ei inputs should be tied to Vcc (see Section 2.3).
26/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
DC and AC parameters
Table 15. DC characteristics (M24C32-R device grade 6)
Symbol
Test conditions(1) (in addition to
those in Table 7)
Parameter
Min.
Max.
Unit
ILI
Input leakage current
(E0, E1, E2, SCL, SDA)
VIN = VSS or VCC, device in
Standby mode
-
±2
µA
ILO
Output leakage current
SDA in Hi-Z, external voltage
applied on SDA: VSS or VCC
-
±2
µA
VCC = 1.8 V, fc= 400 kHz
-
0.8
mA
fc= 1 MHz(2)
-
2.5
mA
ICC
Supply current (Read)
ICC0
Supply current (Write)(3)
During tW,
1.8 V ≤ VCC ≤ 2.5 V
-
3(4)
mA
ICC1
Standby supply current
Device not selected(5),
VIN = VSS or VCC, VCC = 1.8 V
-
1
µA
VIL
Input low voltage
(SCL, SDA)(6)
1.8 V ≤ VCC < 2.5 V
–0.45
0.25 VCC
V
Input high voltage
(SCL, SDA)
1.8 V ≤ VCC < 2.5 V
0.75 VCC
6.5
V
Input high voltage
(WC, E2, E1, E0)(7)
1.8 V ≤ VCC < 2.5 V
0.75 VCC
VCC+1
V
Output low voltage
IOL = 1 mA, VCC = 1.8 V
-
0.2
V
VIH
VOL
1. If the application uses the voltage range R device with 2.5 V < Vcc < 5.5 V and -40 °C < TA < +85 °C,
please refer to Table 14 instead of this table.
2. Only for devices operating at fC max = 1 MHz (see note (1) in Table 19).
3. For devices identified with process letter K or T
4. Characterized value, not tested in production.
5. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).
6. Ei inputs should be tied to Vss (see Section 2.3).
7. Ei inputs should be tied to Vcc (see Section 2.3).
DocID4578 Rev 26
27/47
46
DC and AC parameters
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Table 16. DC characteristics (M24C32-F, device grade 6)
Symbol
Parameter
Test conditions(1) (in addition to
those in Table 8)
Min.
Max.
Unit
ILI
Input leakage current
(E1, E2, SCL, SDA)
VIN = VSS or VCC
device in Standby mode
-
±2
µA
ILO
Output leakage current
SDA in Hi-Z, external voltage applied
on SDA: VSS or VCC
-
±2
µA
VCC = 1.6 V or 1.7 V, fC = 400 kHz
-
0.8
fC = 1 MHz(2)
-
2.5
During tW VCC < 2.5 V
-
3(3)
mA
-
1
µA
V
ICC
ICC0
mA
Supply current (Read)
Supply current (Write)
selected(4),
ICC1
Device not
Standby supply current VIN = VSS or VCC, VCC = 1.6 V or
1.7 V
VIL
Input low voltage
(SCL, SDA, WC, Ei)(5)
VCC < 2.5 V
–0.45
0.25 VCC
Input high voltage
(SCL, SDA)
VCC < 2.5 V
0.75 VCC
6.5
Input high voltage
(WC, E2, E1, E0)(6)
VCC < 2.5 V
0.75 VCC
VCC+ 1
Output low voltage
IOL =1mA, VCC = 1.6 V or 1.7 V
-
0.2
VIH
VOL
V
1. If the application uses the voltage range F device with 2.5 V < VCC < 5.5 V and -40 °C < TA < +85 °C,
please refer to Table 14 instead of this table.
2.
Only for devices operating at fC max = 1 MHz (see note(1) in Table 19).
3. Characterized value, not tested in production.
4. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).
5. Ei inputs should be tied to VSS(see Section 2.3).
6. Ei inputs should be tied to VCC (see Section 2.3).
28/47
DocID4578 Rev 26
V
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
DC and AC parameters
Table 17. DC characteristics (M24C32-X, device grade 5)
Symbol
Test conditions(1) (in addition
to those in Table 9)
Parameter
Min.
Max.
Unit
ILI
Input leakage current
(E1, E2, SCL, SDA)
VIN = VSS or VCC
device in Standby mode
-
±2
µA
ILO
Output leakage current
SDA in Hi-Z, external voltage
applied on SDA: VSS or VCC
-
±2
µA
ICC
Supply current (Read)
VCC = 1.6 V, fc= 400 kHz
-
0.8
-
2.5
ICC0
Supply current (Write)
-
3(3)
mA
-
1
µA
fc= 1 MHz
(2)
During tW, 1.6 V < VCC < 2.5 V
selected(4),
mA
ICC1
Standby supply current
Device not
VIN = VSS or VCC, VCC = 1.6 V
VIL
Input low voltage
(SCL, SDA, WC, Ei)(5)
1.6 V ≤ VCC < 2.5 V
–0.45
0.25 VCC
V
Input high voltage
(SCL, SDA)
1.6 V ≤ VCC < 2.5 V
0.75 VCC
6.5
V
Input high voltage
(WC, E2, E1, E0)(6)
1.6 V ≤ VCC < 2.5 V
0.75 VCC VCC+0.6
Output low voltage
IOL = 1 mA, VCC = 1.6 V
VIH
VOL
-
0.2
V
V
1. If the application uses the device with 2.5 V < VCC < 5.5 V and -20 °C < TA < +85 °C, please refer to
Table 14 instead of this table.
2. Only for devices operating at fC max = 1 MHz (see note(1) in Table 19)
3. Characterized value, not tested in production.
4. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).
5. Ei inputs should be tied to VSS (see Section 2.3).
6. Ei inputs should be tied to VCC (see Section 2.3).
DocID4578 Rev 26
29/47
46
DC and AC parameters
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Table 18. 400 kHz AC characteristics
Symbol
Alt.
fC
fSCL
Clock frequency
tCHCL
tHIGH
tCLCH
tLOW
tQL1QL2(1)
tF
tXH1XH2
tR
Parameter
Min.
Max.
Unit
-
400
kHz
Clock pulse width high
600
-
ns
Clock pulse width low
1300
-
ns
SDA (out) fall time
20(2)
300
ns
Input signal rise time
(3)
(3)
ns
(3)
(3)
ns
100
-
ns
0
-
ns
100(5)
-
ns
-
900
ns
tXL1XL2
tF
Input signal fall time
tDXCH
tSU:DAT
Data in set up time
tCLDX
tHD:DAT
Data in hold time
tCLQX
(4)
tDH
Data out hold time
tCLQV
(6)
tAA
Clock low to next data valid (access time)
tCHDL
tSU:STA
Start condition setup time
600
-
ns
tDLCL
tHD:STA
Start condition hold time
600
-
ns
tCHDH
tSU:STO
Stop condition set up time
600
-
ns
tDHDL
tBUF
Time between Stop condition and next Start
condition
1300
-
ns
tWLDL(7)(1)
tSU:WC
WC set up time (before the Start condition)
0
-
µs
tDHWH(8)(1)
tHD:WC
WC hold time (after the Stop condition)
1
-
µs
tW
tWR
Internal Write cycle duration
-
5(9)
ms
tNS(1)
-
Pulse width ignored (input filter on SCL and
SDA) - single glitch
-
80(10)
ns
1. Characterized only, not tested in production.
2. With CL = 10 pF.
3. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the
I²C specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when
fC < 400 kHz.
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or
rising edge of SDA.
5. The previous products were specified with tCLQX longer than 50 ns. it should be noted that any tCLQX value
longer than 50ns offers a safe margin when compared to the I2C-bus specification recommendations.
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3VCC or
0.7VCC, assuming that Rbus × Cbus time constant is within the values specified in Figure 13.
7. WC=0 set up time condition to enable the execution of a WRITE command.
8. WC=0 hold time condition to enable the execution of a WRITE command.
9. 10 ms for the M24C32-X.
10. The previous products were specified with tNS longer than 50ns. it should be noted that the tNS (max) =
50ns is the value defined by the I2C-bus specification.
30/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
DC and AC parameters
Table 19. 1 MHz AC characteristics
Parameter(1)
Symbol
Alt.
fC
fSCL
Clock frequency
tCHCL
tHIGH
tCLCH
tXH1XH2
tXL1XL2
Min.
Max.
Unit
0
1
MHz
Clock pulse width high
260
-
ns
tLOW
Clock pulse width low
500
-
ns
tR
Input signal rise time
(2)
(2)
ns
Input signal fall time
(2)
(2)
ns
120
ns
50
-
ns
0
-
ns
100
-
ns
-
450
ns
tF
tQL1QL2(3)
tF
SDA (out) fall time
tDXCH
tSU:DAT
Data in setup time
tCLDX
tHD:DAT Data in hold time
20
(4)
tCLQX(5)
tDH
Data out hold time
tCLQV(6)
tAA
Clock low to next data valid (access time)
tCHDL
tSU:STA
Start condition setup time
250
-
ns
tDLCL
tHD:STA
Start condition hold time
250
-
ns
tCHDH
tSU:STO Stop condition setup time
250
-
ns
tDHDL
tBUF
Time between Stop condition and next Start
condition
500
-
ns
tWLDL(7)(3)
tSU:WC
WC set up time (before the Start condition)
0
-
µs
tDHWH(8)(3)
tHD:WC
WC hold time (after the Stop condition)
1
-
µs
tW
tWR
Write time
-
5(9)
ms
tNS(3)
-
Pulse width ignored (input filter on SCL and
SDA)
-
80
ns
1. Only for devices identified by the process letter K or T (devices qualified at 1 MHz).
2. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the
I²C specification that the input signal rise and fall times be less than 120 ns when fC < 1 MHz.
3. Characterized only, not tested in production.
4. With CL = 10 pF.
5. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or
rising edge of SDA.
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or
0.7 VCC, assuming that the Rbus × Cbus time constant is within the values specified in Figure 14.
7. WC=0 set up time condition to enable the execution of a WRITE command.
8. WC=0 hold time condition to enable the execution of a WRITE command.
9. 10 ms for the M24C32-X.
DocID4578 Rev 26
31/47
46
DC and AC parameters
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
"USLINEPULLUPRESISTOR
K Figure 13. Maximum Rbus value versus bus parasitic capacitance (Cbus) for
an I2C bus at maximum frequency fC = 400 kHz
2
BU
S §
(ERE2BUS §#BUSNS
4HE2X#TIMECONSTANT
BUS
BUS
MUSTBEBELOWTHENS
TIMECONSTANTLINEREPRESENTED
ONTHELEFT
6##
#
BU
S 2BUS
N
K½
S
)£#BUS
MASTER
3#,
-XXX
3$!
P&
"USLINECAPACITORP&
#BUS
AIB
Figure 14. Maximum Rbus value versus bus parasitic capacitance Cbus) for
an I2C bus at maximum frequency fC = 1MHz
"USLINEPULLUPRESISTORK 6##
4HE2BUS§#BUSTIMECONSTANT
MUSTBEBELOWTHENS
TIMECONSTANTLINEREPRESENTED
ONTHELEFT
2
BUS §
#
BUS NS
2BUS
)£#BUS
MASTER
3#,
-XXX
3$!
(ERE
2 BUS § #BUSNS
#BUS
"USLINECAPACITORP&
-36
32/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
DC and AC parameters
Figure 15. AC waveforms
^ƚĂƌƚ
ĐŽŶĚŝƚŝŽŶ
^ƚĂƌƚ
^ƚŽƉ
ĐŽŶĚŝƚŝŽŶ ĐŽŶĚŝƚŝŽŶ
ƚy>ϭy>Ϯ
ƚy,ϭy,Ϯ
ƚ,>
ƚ>,
^>
ƚ>>
ƚy>ϭy>Ϯ
^/Ŷ
ƚ,>
ƚy,ϭy,Ϯ
^
/ŶƉƵƚ
^ ƚy,
ŚĂŶŐĞ
ƚ>y
ƚ,,
ƚ,>
t
ƚ,t,
ƚt>>
^ƚŽƉ
ĐŽŶĚŝƚŝŽŶ
^ƚĂƌƚ
ĐŽŶĚŝƚŝŽŶ
^>
^/Ŷ
ƚt
ƚ,,
ƚ,>
tƌŝƚĞĐLJĐůĞ
ƚ,>
^>
ƚ>Ys
^KƵƚ
ƚ>Yy
ĂƚĂǀĂůŝĚ
ƚY>ϭY>Ϯ
ĂƚĂǀĂůŝĚ
/ϬϬϳϵϱŝ
DocID4578 Rev 26
33/47
46
Package mechanical data
9
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
For die information concerning the M24C32 delivered in unsawn wafer, please contact your
nearest ST Sales Office.
9.1
UFDFPN5 package information
Figure 16. UFDFPN5 (MLP5) – package outline (UFDFPN: Ultra thin Fine pitch
Dual Flat Package, No lead)
'
N
/
3LQ
3LQ
E
(
(
H
$
$
'
7RSYLHZ
PDUNLQJVLGH
%RWWRPYLHZ
SDGVVLGH
6LGHYLHZ
$8.B0(B9
1. On the bottom side, pin 1 is identified by the specific pad shape and, on the top side, pin 1 is defined from
the orientation of the marking: when reading the marking, pin 1 is below the upper left package corner.
Table 20. UFDFPN5 (MLP5) – package dimensions (UFDFPN: Ultra thin Fine pitch
Dual Flat Package, No lead)
inches(1)
millimeters
Symbol
Typ
Min
Max
Typ
Min
Max
A
0.550
0.500
0.600
0.0217
0.0197
0.0236
A1
-
0
0.050
-
0
0.0020
b
0.220
0.180
0.260
0.0087
0.0071
0.0102
D
1.700
1.600
1.800
0.0669
0.0630
0.0709
D1
1.500
1.400
1.600
0.0591
0.0551
0.0630
E
1.400
1.300
1.500
0.0551
0.0512
0.0591
E1
0.220
0.180
0.260
0.0087
0.0071
0.0102
e
0.400
-
-
0.0157
-
-
L
0.550
0.500
0.600
0.0217
0.0197
0.0236
k
0.400
-
-
0.0157
-
-
1. Values in inches are converted from mm and rounded to four decimal digits.
34/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
9.2
Package mechanical data
UFDFPN8 package information
Figure 17. UFDFPN8 (MLP8) – package outline (UFDFPN: Ultra thin Fine pitch
Dual Flat Package, No lead)
3LQ,'PDUNLQJ
Ğ
ď
>ϭ
>ϯ
WŝŶϭ
Ϯ
<
>
Ϯ
ĞĞĞ
ϭ
=:B0(H9
1. Drawing is not to scale.
2. The central pad (the area E2 by D2 in the above illustration) must be either connected to VSS or left floating
(not connected) in the end application.
Table 21. UFDFPN8 (MLP8) – package dimensions (UFDFPN: Ultra thin Fine pitch
Dual Flat Package, No lead)
inches(1)
millimeters
Symbol
Typ
Min
Max
Typ
Min
Max
A
0.550
0.450
0.600
0.0217
0.0177
0.0236
A1
0.020
0.000
0.050
0.0008
0.0000
0.0020
b
0.250
0.200
0.300
0.0098
0.0079
0.0118
D
2.000
1.900
2.100
0.0787
0.0748
0.0827
D2
–
1.200
1.600
–
0.0472
0.0630
E
3.000
2.900
3.100
0.1181
0.1142
0.1220
E2
–
1.200
1.600
–
0.0472
0.0630
e
0.500
–
–
0.0197
–
–
K
–
0.300
–
–
0.0118
–
L
–
0.300
0.500
–
0.0118
0.0197
L1
–
–
0.150
–
–
0.0059
L3
–
0.300
–
–
0.0118
–
eee(2)
–
0.080
–
–
0.0031
–
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from
measuring.
DocID4578 Rev 26
35/47
46
Package mechanical data
9.3
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
TSSOP8 package information
Figure 18. TSSOP8 – 8-lead thin shrink small outline, package outline
$
C
%
%
A
!
!
,
!
,
#0
B
E
433/0"-
1. Drawing is not to scale.
Table 22. TSSOP8 – 8-lead thin shrink small outline, package
mechanical data
inches(1)
millimeters
Symbol
Typ.
Min.
Max.
Typ.
Min.
Max.
A
-
-
1.200
-
-
0.0472
A1
-
0.050
0.150
-
0.0020
0.0059
A2
1.000
0.800
1.050
0.0394
0.0315
0.0413
b
-
0.190
0.300
-
0.0075
0.0118
c
-
0.090
0.200
-
0.0035
0.0079
CP
-
-
0.100
-
-
0.0039
D
3.000
2.900
3.100
0.1181
0.1142
0.1220
e
0.650
-
-
0.0256
-
-
E
6.400
6.200
6.600
0.2520
0.2441
0.2598
E1
4.400
4.300
4.500
0.1732
0.1693
0.1772
L
0.600
0.450
0.750
0.0236
0.0177
0.0295
L1
1.000
-
-
0.0394
-
-
α
-
0°
8°
-
0°
8°
1. Values in inches are converted from mm and rounded to four decimal digits.
36/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
9.4
Package mechanical data
SO8N package information
Figure 19. SO8N – 8-lead plastic small outline, 150 mils body width, package outline
K[Û
$
$
F
FFF
E
H
PP
*$8*(3/$1(
'
N
(
(
$
/
/
62$B9
1. Drawing is not to scale.
Table 23. SO8N – 8-lead plastic small outline, 150 mils body width,
package mechanical data
Symbol
inches(1)
millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.750
-
-
0.0689
A1
0.100
-
0.250
0.0039
-
0.0098
A2
1.250
-
-
0.0492
-
-
b
0.280
-
0.480
0.0110
-
0.0189
c
0.170
-
0.230
0.0067
-
0.0091
D
4.800
4.900
5.000
0.1890
0.1929
0.1969
E
5.800
6.000
6.200
0.2283
0.2362
0.2441
E1
3.800
3.900
4.000
0.1496
0.1535
0.1575
e
-
1.270
-
-
0.0500
-
h
0.250
-
0.500
0.0098
-
0.0197
k
0°
-
8°
0°
-
8°
L
0.400
-
1.270
0.0157
-
0.0500
L1
-
1.040
-
-
0.0409
-
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
DocID4578 Rev 26
37/47
46
Package mechanical data
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Figure 20. SO8N – 8-lead plastic small outline, 150 mils body width,
package recommended footprint
[
2B621B)3B9
1. Dimensions are expressed in millimeters.
38/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
9.5
Package mechanical data
PDIP8 package information
Figure 21. PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package outline
%
B
!
!
B
!
,
C
E
E!
E"
$
%
0$)0"
1. Drawing is not to scale.
2. Not recommended for new designs.
Table 24. PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package mechanical data
inches(1)
millimeters
Symbol
Typ.
Min.
Max.
Typ.
Min.
Max.
A
-
-
5.33
-
-
0.2098
A1
-
0.38
-
-
0.0150
-
A2
3.30
2.92
4.95
0.1299
0.1150
0.1949
b
0.46
0.36
0.56
0.0181
0.0142
0.0220
b2
1.52
1.14
1.78
0.0598
0.0449
0.0701
c
0.25
0.20
0.36
0.0098
0.0079
0.0142
D
9.27
9.02
10.16
0.3650
0.3551
0.4000
E
7.87
7.62
8.26
0.3098
0.3000
0.3252
E1
6.35
6.10
7.11
0.2500
0.2402
0.2799
e
2.54
-
-
0.1000
-
-
eA
7.62
-
-
0.3000
-
-
eB
-
-
10.92
-
-
0.4299
L
3.30
2.92
3.81
0.1299
0.1150
0.1500
1. Values in inches are converted from mm and rounded to four decimal digits.
DocID4578 Rev 26
39/47
46
Package mechanical data
9.6
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Ultra Thin WLCSP package information
Figure 22. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package outline
%DFNVLGHFRDWLQJ
WKLFNQHVVPP
'
;
EEE =
2ULHQWDWLRQ
UHIHUHQFH
'HWDLO$
<
H
)
(
H
)
2ULHQWDWLRQ
UHIHUHQFH
DDD
;
$
$
*
$
:DIHUEDFNVLGH
6LGHYLHZ
*
%XPS6LGH
%XPS
$
HHH =
=
E;
T FFF0 = ; <
TGGG0 =
6HDWLQJSODQH
'HWDLO$
5RWDWHGƒ
$=%6&B0(B9
1. Drawing is not to scale.
2. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
3. Preliminary data.
40/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Package mechanical data
Table 25. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package mechanical data (1)
inches(2)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.285
0.315
0.345
0.0112
0.0124
0.0136
A1
-
0.115
-
-
0.0045
-
A2
-
0.175
-
-
0.0069
-
A3 (BSC)
-
0.025
-
-
0.0010
-
-
0.160
-
-
0.0063
-
D
-
0.795
0.815
-
0.0313
0.0321
E
-
0.674
0.694
-
0.0265
0.0273
e
-
0.400
-
-
0.0157
-
F
-
0.137
-
-
0.0054
-
G
-
0.198
-
-
0.0078
-
aaa
-
-
0.110
-
-
0.0043
bbb
-
-
0.110
-
-
0.0043
ccc
-
-
0.110
-
-
0.0043
ddd
-
-
0.060
-
-
0.0024
eee
-
-
0.060
-
-
0.0024
(3) (4)
b
1. Preliminary data.
2. Values in inches are converted from mm and rounded to 4 decimal digits.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
4. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
Figure 23. Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package recommended footprint
H
H
[
E
$=%6&B)3B9
1. Dimensions are expressed in millimeters.
DocID4578 Rev 26
41/47
46
Part numbering
10
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Part numbering
Table 26. Ordering information scheme
Example:
M24C32
-D
W MC 6
T
P /T
Device type
M24 = I2C serial access EEPROM
Device function
C32 = 32 Kbit (4096 x 8 bit)
Device family
Blank = Without Identification page
D = With Identification page
Operating voltage
W = VCC = 2.5 V to 5.5 V
R = VCC = 1.8 V to 5.5 V
F = VCC = 1.7 V to 5.5 V
X = VCC = 1.6 V to 5.5 V
Package
BN = PDIP8(1)
MN = SO8 (150 mil width)(2)
DW = TSSOP8 (169 mil width)(2)
MC = UFDFPN8 (MLP8)(2)
MH = UFDFPN5 (MLP5)(2)
CU = Ultra-thin 4 bump WLCSP(2)
Device grade
5 = Consumer: device tested with standard test flow over –20 to 85°C
6 = Industrial: device tested with standard test flow over –40 to 85 °C
Option
T = Tape and reel packing
blank = tube packing
Plating technology
P or G = ECOPACK2®
Process(3) (4)
/P or /K or /T= Manufacturing technology code
Option
Blank = No Back Side Coating
F = Back Side Coating (WLCSP height = 0.345mm)
1. RoHS-compliant (ECOPACK1®)
2. RoHS compliant and free of brominated, chlorinated and antimony-oxide flame retardants
3. These process letters appear on the device package (marking) and on the shipment box. Please contact
your nearest ST Sales Office for further information.
4. Part numbering for WLCSP
42/47
DocID4578 Rev 26
F
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Part numbering
Table 27. Ordering information scheme (unsawn wafer)(1)
Example:
M24C32
-
F
T
W
20
I /90
Device type
M24 = I2C serial access EEPROM
Device function
C32 = 32 Kbit (4096 x 8 bit)
Operating voltage
F = VCC = 1.7 V to 5.5 V
Process
T = F8H
Delivery form
W = Wafer (bare die)
Wafer thickness
20 = Non-backlapped wafer
Wafer testing
I = Inkless test
Device grade
90 = -40°C to 85°C
1. For all information concerning the M24C32 delivered in unsawn wafer, please contact your nearest ST
Sales Office.
DocID4578 Rev 26
43/47
46
Part numbering
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Engineering samples
Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are
not yet qualified and therefore not yet ready to be used in production and any consequences
deriving from such usage will not be at ST charge. In no event, ST will be liable for any
customer usage of these engineering samples in production. ST Quality has to be contacted
prior to any decision to use these Engineering samples to run qualification activity.
44/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
11
Revision history
Revision history
Table 28. Document revision history
Date
18-Mar-2011
14-Sep-2011
21-May-2012
25-Jul-2012
Revision
Changes
18
Added:
– M24C32-DF and all information concerning the Identification Page:
sections 4.9, 4.10, 4.17, 4.18
– ECC section 4.11
– AC table with clock frequency of 1 MHz (Table 18)
– Table 4: Device select code
Updated:
– Section 1: Description
– Section 4.5: Memory addressing
– Section 4.18: Read the lock status (M24C32-D)
– Table 6: Absolute maximum ratings
– AC/DC tables 13, 17 with values specific to the device identified with
process letter K
Deleted:
– Table 2: Device select code
– Table 23: Available M24C32 products (package, voltage range,
temperature grade)
19
Updated:
– Figure 4: I2C Fast mode (fC = 400 kHz): maximum Rbus value versus
bus parasitic capacitance (Cbus)
– Figure 5: I2C Fast mode Plus (fC = 1 MHz): maximum Rbus value
versus bus parasitic capacitance (Cbus)
Added tWLDL and tDHWH in:
– Table 17: 400 kHz AC characteristics
– Table 18: 1 MHz AC characteristics
– Figure 13: AC waveforms
Minor text changes.
20
Datasheet split into:
– M24C32-DF, M24C32-W, M24C32-R,M24C32-F (this datasheet) for
standard products (range 6),
– M24C32-125 datasheet for automotive products (range 3).
21
Added reference M24C32-X.
Updated:
– AC and DC tables in Section 8: DC and AC parameters.
– Figure 56.: M24C16-FCS5TP/S WLCSP 5 bumps package outline.
DocID4578 Rev 26
45/47
46
Revision history
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
Table 28. Document revision history (continued)
Date
Revision
Changes
19-May-2014
22
Add new package UFDFPN5, description onFigure 16 and Table 20.
Updated:
– Figure 6: Block diagram
– VESD value on Table 5
– Icc1 values on Table 14
– Icc and Icc0 test conditions on Table 16
– VIH(max) values on Table 14, Table 15
– Icc, Icc0 ,Icc1, VIL, VOL and VIH test conditions onTable 16
– Note on Table 12, Table 13, Table 14, Table 16, Table 17 and Table 19
– Table 26
– Section numbering for Section 5.2.4 and Section 5.2.5.
28-Jul-2014
23
Updated Table 8.
24
Updated
– Section 5.1.5.
– Note 1 on Table 12
– Section 9, added reference to unsawn wafer availability.
– note 3 on Table 26.
Added:
– Note 1 on Table 8
– Note 2 on Table 13
– Note 2 on Figure 21
– Table 27.
Removed notes 1 and 2 on Section 5.1.5
25
Updated:
– Section 2.3
– Section 6
– Table 26
– note 2 on Table 26
Added:
– WLCSP package in cover page.
– Section 9.6: Ultra Thin WLCSP package information
26
Updated:
– Table 5
Added:
– Note 3 in Figure 22.
– Note 1 in Table 25.
– Note 2 Table 26
02-Sept-2014
23-Jul-2015
27-Aug-2015
46/47
DocID4578 Rev 26
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID4578 Rev 26
47/47
47