Technical Data Sheet

VL6180X
Proximity and ambient light sensing (ALS) module
Datasheet - production data
• Two programmable GPIO
– Window and thresholding functions for both
ranging and ALS
Description
Features
• Three-in-one smart optical module
– Proximity sensor
– Ambient Light Sensor
– VCSEL light source
• Fast, accurate distance ranging
– Measures absolute range from 0 to above
10 cm
– Independent of object reflectance
– Ambient rejection
– Crosstalk compensation for cover glass
– Ranging beyond 100mm is possible with
certain target reflectances and ambient
conditions but not guaranteed
• Gesture recognition
– Distance and signal level can be used by
host system to implement gesture
recognition
– Demo systems available.
• Ambient light sensor
– High dynamic range
– Accurate/sensitive in ultra-low light
– Calibrated output value in lux
• Easy integration
– Single reflowable component
– No additional optics or gasket
– Single power supply
– I2C interface for device control and data
August 2014
This is information on a product in full production.
The VL6180X is the latest product based on ST’s
patented FlightSense™ technology. This is a
ground-breaking technology allowing absolute
distance to be measured independent of target
reflectance. Instead of estimating the distance by
measuring the amount of light reflected back from
the object (which is significantly influenced by
color and surface), the VL6180X precisely
measures the time the light takes to travel to the
nearest object and reflect back to the sensor
(Time-of-Flight).
Combining an IR emitter, a range sensor and an
ambient light sensor in a three-in-one ready-touse reflowable package, the VL6180X is easy to
integrate and saves the end-product maker long
and costly optical and mechanical design
optimizations.
The module is designed for ultra low power
operation. Ranging and ALS measurements can
be automatically performed at user defined
intervals. Multiple threshold and interrupt
schemes are supported to minimize host
operations.
Host control and result reading is performed using
an I2C interface. Optional additional functions,
such as measurement ready and threshold
interrupts, are provided by two programmable
GPIO pins.
Applications
• Smartphones/portable touchscreen devices
• Tablet/laptop/gaming devices
• Domestic appliances/industrial devices
DocID026171 Rev 6
1/79
www.st.com
Contents
VL6180X
Contents
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1
Technical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2
System block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3
Device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4
Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5
Recommended solder pad dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.6
Recommended reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1
System state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2
Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3
Software overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1
Single-shot range/ALS operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2
Continuous range/ALS operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3
Interleaved mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4
Continuous mode limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5
Range timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6
Interrupt modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7
Range error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8
Range checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8.1
Early convergence estimate (ECE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8.2
Range ignore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8.3
Signal-to-noise ratio (SNR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.9
Manual/autoVHV calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.10
History buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.11
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.12
2.11.1
Ranging current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.11.2
Current consumption calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.11.3
Current distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Other system considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12.1
2/79
Part-to-part range offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DocID026171 Rev 6
VL6180X
Contents
2.13
3
4
2.12.2
Cross-talk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12.3
Offset calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12.4
Cross-talk calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.12.5
Cross-talk limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.12.6
Cross-talk vs air gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Ambient light sensor (ALS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.13.1
Field of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.13.2
Spectral response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.13.3
ALS dynamic range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.13.4
ALS count to lux conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.13.5
Integration period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.13.6
ALS gain selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2
Normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Performance specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1
Proximity ranging (0 to 100mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.1
4.2
Max range vs. ambient light level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ALS performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5
I2C control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6
Device registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1
Register encoding formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2
Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.1
IDENTIFICATION__MODEL_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.2
IDENTIFICATION__MODEL_REV_MAJOR . . . . . . . . . . . . . . . . . . . . . 43
6.2.3
IDENTIFICATION__MODEL_REV_MINOR . . . . . . . . . . . . . . . . . . . . . 43
6.2.4
IDENTIFICATION__MODULE_REV_MAJOR . . . . . . . . . . . . . . . . . . . . 44
6.2.5
IDENTIFICATION__MODULE_REV_MINOR . . . . . . . . . . . . . . . . . . . . 44
6.2.6
IDENTIFICATION__DATE_HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.7
IDENTIFICATION__DATE_LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DocID026171 Rev 6
3/79
5
Contents
4/79
VL6180X
6.2.8
IDENTIFICATION__TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.9
SYSTEM__MODE_GPIO0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.10
SYSTEM__MODE_GPIO1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.11
SYSTEM__HISTORY_CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.12
SYSTEM__INTERRUPT_CONFIG_GPIO . . . . . . . . . . . . . . . . . . . . . . 49
6.2.13
SYSTEM__INTERRUPT_CLEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.14
SYSTEM__FRESH_OUT_OF_RESET . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.15
SYSTEM__GROUPED_PARAMETER_HOLD . . . . . . . . . . . . . . . . . . . 50
6.2.16
SYSRANGE__START . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.17
SYSRANGE__THRESH_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.18
SYSRANGE__THRESH_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.19
SYSRANGE__INTERMEASUREMENT_PERIOD . . . . . . . . . . . . . . . . 52
6.2.20
SYSRANGE__MAX_CONVERGENCE_TIME . . . . . . . . . . . . . . . . . . . 52
6.2.21
SYSRANGE__CROSSTALK_COMPENSATION_RATE . . . . . . . . . . . . 53
6.2.22
SYSRANGE__CROSSTALK_VALID_HEIGHT . . . . . . . . . . . . . . . . . . . 53
6.2.23
SYSRANGE__EARLY_CONVERGENCE_ESTIMATE . . . . . . . . . . . . . 53
6.2.24
SYSRANGE__PART_TO_PART_RANGE_OFFSET . . . . . . . . . . . . . . 54
6.2.25
SYSRANGE__RANGE_IGNORE_VALID_HEIGHT . . . . . . . . . . . . . . . 54
6.2.26
SYSRANGE__RANGE_IGNORE_THRESHOLD . . . . . . . . . . . . . . . . . 54
6.2.27
SYSRANGE__MAX_AMBIENT_LEVEL_MULT . . . . . . . . . . . . . . . . . . 55
6.2.28
SYSRANGE__RANGE_CHECK_ENABLES . . . . . . . . . . . . . . . . . . . . . 55
6.2.29
SYSRANGE__VHV_RECALIBRATE . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.30
SYSRANGE__VHV_REPEAT_RATE . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.31
SYSALS__START . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.32
SYSALS__THRESH_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.33
SYSALS__THRESH_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.34
SYSALS__INTERMEASUREMENT_PERIOD . . . . . . . . . . . . . . . . . . . 58
6.2.35
SYSALS__ANALOGUE_GAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.36
SYSALS__INTEGRATION_PERIOD . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.37
RESULT__RANGE_STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2.38
RESULT__ALS_STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.39
RESULT__INTERRUPT_STATUS_GPIO . . . . . . . . . . . . . . . . . . . . . . . 62
6.2.40
RESULT__ALS_VAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2.41
RESULT__HISTORY_BUFFER_x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.42
RESULT__RANGE_VAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.43
RESULT__RANGE_RAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.44
RESULT__RANGE_RETURN_RATE . . . . . . . . . . . . . . . . . . . . . . . . . . 64
DocID026171 Rev 6
VL6180X
Contents
6.2.45
RESULT__RANGE_REFERENCE_RATE . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.46
RESULT__RANGE_RETURN_SIGNAL_COUNT . . . . . . . . . . . . . . . . . 65
6.2.47
RESULT__RANGE_REFERENCE_SIGNAL_COUNT . . . . . . . . . . . . . 66
6.2.48
RESULT__RANGE_RETURN_AMB_COUNT . . . . . . . . . . . . . . . . . . . . 66
6.2.49
RESULT__RANGE_REFERENCE_AMB_COUNT . . . . . . . . . . . . . . . . 66
6.2.50
RESULT__RANGE_RETURN_CONV_TIME . . . . . . . . . . . . . . . . . . . . 67
6.2.51
RESULT__RANGE_REFERENCE_CONV_TIME . . . . . . . . . . . . . . . . . 67
6.2.52
READOUT__AVERAGING_SAMPLE_PERIOD . . . . . . . . . . . . . . . . . . 67
6.2.53
FIRMWARE__BOOTUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.54
FIRMWARE__RESULT_SCALER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.55
I2C_SLAVE__DEVICE_ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.56
INTERLEAVED_MODE__ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7
Outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8
Laser safety considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.1
9
Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.1
Traceability and identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.2
Part marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.3
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.3.1
Package labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.4
Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.5
ROHS compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10
ECOPACK®
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DocID026171 Rev 6
5/79
5
List of tables
VL6180X
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
6/79
Technical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VL6180X pin numbers and signal descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Recommended reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Power-up timing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Interleaved mode limits (10 Hz operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Typical range convergence time (ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Range error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
History buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Typical current consumption in different operating states . . . . . . . . . . . . . . . . . . . . . . . . . 24
Breakdown of current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Current consumption on AVDD and AVDD_VCSEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
ALS dynamic range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Actual gain values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Digital I/O electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Ranging specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Worst case max range vs. ambient 0 to 100mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ALS performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Register groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
32-bit register example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.7 and 4.4 register formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Delivery format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Storage conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DocID026171 Rev 6
VL6180X
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
VL6180X block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VL6180X pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Root part number 1 schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Recommended solder pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Recommended reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Typical ranging performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ALS linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
System state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Software overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Interleaved mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Total range execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Early convergence estimate (ECE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Typical ranging current consumption (10 Hz sampling rate). . . . . . . . . . . . . . . . . . . . . . . . 25
VCSEL pulse duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Part-to-part range offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Cross-talk compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Cross-talk vs air gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
ALS angular response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
ALS spectral response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Serial interface data transfer protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
I2C device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Single location, single write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Single location, single read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Multiple location write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Multiple location read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Outline drawing (page 1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Outline drawing (page 2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Class 1 laser product label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Part marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Tape and reel packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Package labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
DocID026171 Rev 6
7/79
7
Overview
1
VL6180X
Overview
This datasheet is applicable to the final VL6180X ROM code revision.
1.1
Technical specification
Table 1. Technical specification
Feature
Detail
Package
Optical LGA12
Size
4.8 x 2.8 x 1.0 mm
Ranging
0 to 100 mm(1)
Ambient light sensor
< 1 Lux up to 100 kLux(2)
16-bit output(3)
8 manual gain settings
Operating voltage:
•
Functional range
•
Optimum range(4)
2.6 to 3.0 V
2.7 to 2.9 V
Operating temperature:
•
•
Functional range
Optimum
-20 to 70°C
-10 to 60°C
range(4)
Typical power consumption
Hardware standby (GPIO0 = 0): < 1 μA
Software standby: < 1 μA
ALS: 300 μA
Ranging: 1.7 mA (typical average)(5)
IR emitter
850 nm
I2C
400 kHz serial bus
Address: 0x29 (7-bit)
1. Ranging beyond 100 mm is possible with certain target reflectances and ambient conditions but not
guaranteed
2. When used under a cover glass with 10% transmission in the visible spectrum
3. Digital output easily converted to Lux
4. Please refer to Table 19.: Ranging specification
5. Assumes 10 Hz sampling rate, 17% reflective target at 50 mm
8/79
DocID026171 Rev 6
VL6180X
1.2
Overview
System block diagram
Figure 1. VL6180X block diagram
VL6180X module
VL6180X silicon
GPIO-0
Ranging
GPIO-1
Microcontroller
SDA
NVM
SCL
AVDD
ALS
AVDD_VCSEL
RAM
IR emitter driver
IR-
AVSS
AVSS_VCSEL
IR+
IR emitter
1.3
Device pinout
Figure 2 shows the pinout of the VL6180X.
Figure 2. VL6180X pinout
VL6180X
1
12
AVSS
NC
2
11
NC
NC
3
10
AVDD
GPIO0
4
9
AVSS_VCSEL
SCL
5
8
AVDD_VCSEL
SDA
6
7
NC
GPIO1
DocID026171 Rev 6
9/79
78
Overview
VL6180X
Table 2. VL6180X pin numbers and signal descriptions
1.4
Pin number
Signal name
Signal type
Signal description
1
GPIO1
Digital I/O
2
NC
No connect or ground
3
NC
No connect or ground
4
GPIO0/CE
Digital I/O
5
SCL
Digital input
I2C serial clock
6
SDA
Digital I/O
I2C serial data
7
NC
8
AVDD_VCSEL
Supply
VCSEL power supply. 2.6 to 3.0 V
9
AVSS_VCSEL
Ground
VCSEL ground
10
AVDD
Supply
Digital/analog power supply. 2.6 to
3.0 V
11
NC
12
AVSS
Interrupt output. Open-drain.
Power-up default is chip enable
(CE). It should be pulled high with a
47 kΩ resistor.
No connect or ground
No connect or ground
Ground
Digital/analog ground
Application schematic
Figure 3 shows the schematic of the VL6180X.
Figure 3. Root part number 1 schematic
1.8V or 2.8V
2.8V
VL6180X
1
GPIO1(1)
2
3
GPIO0(1)
4
SCL(2)
5
SDA(2)
6
GPIO1
NC(3)
NC
AVSS 12
NC 11
AVDD 10
GPIO0
AVSS_VCSEL
SCL
AVDD_VCSEL
SDA
NC
100 nF
9
8
7
4.7 uF
1. Open drain. Recommend 47 kΩ
2. Open drain. Pull up resistors typically fitted once per I2C bus at host
3. No connects can also be grounded if required
Note:
10/79
Capacitors on AVDD and AVDD_VCSEL should be placed as close as possible to the
supply pads.
DocID026171 Rev 6
VL6180X
1.5
Overview
Recommended solder pad dimensions
Figure 4. Recommended solder pattern
Pad pitch 0.75 mm
1.40 mm
0.60 mm
0.55 mm
1.6
Same as device pad dimensions
Recommended reflow profile
The recommend reflow profile is shown in Figure 5 and Table 3.
Figure 5. Recommended reflow profile
Table 3. Recommended reflow profile
Profile
Note:
Ramp to strike
Temperature gradient in preheat
(T= 70 - 180°C):
0.9 +/- 0.1°C/s
Temperature gradient
(T= 200 - 225°C):
1.1 - 3.0°C/s
Peak temperature in reflow
237°C - 245°C
Time above 220°C
50 +/- 10 seconds
Temperature gradient in cooling
-1 to -4 °C/s (-6°C/s maximum)
Time from 50 to 220°C
160 to 220 seconds
As the VL6180X package is not sealed, only a dry re-flow process should be used (such as
convection re-flow). Vapor phase re-flow is not suitable for this type of optical component.
The VL6180X is an optical component and as such, it should be treated carefully. This
would typically include using a ‘no-wash’ assembly process.
DocID026171 Rev 6
11/79
78
Functional description
2
VL6180X
Functional description
This section gives an overview of the key features of the VL6180X and describes the
different modes of operation of the ALS and proximity sensors.
Typical ranging performance of the VL6180X is shown in Figure 6. This demonstrates the
reflectance independence and range accuracy of the VL6180X from 0 to 100 mm for 3%,
5%, 17% and 88% reflective targets. The example shown here is with ST cover glass and a
1.0 mm air gap.
Figure 7 shows typical ALS linearity vs gain over a wide dynamic range. More details about
the ambient light sensor can be found in Section 2.13.
Figure 6. Typical ranging performance
Figure 7. ALS linearity
ϭϬϬϬϬϬ
'ĂŝŶϭ
ϭϬϬϬϬ
Z^h>dͺͺ>^ͺs>
'ĂŝŶϭ͘Ϯϱ
'ĂŝŶϭ͘ϲϳ
'ĂŝŶϮ͘ϱ
ϭϬϬϬ
'ĂŝŶϱ
'ĂŝŶϭϬ
'ĂŝŶϮϬ
ϭϬϬ
'ĂŝŶϰϬ
^ĂƚƵƌĂƚŝŽŶ>ŝŵŝƚ
YƵĂŶƚŝƐĂƚŝŽŶ>ŝŵŝƚ
ϭϬ
ϭ
ϭϬ
ϭϬϬ
>ŝŐŚƚůĞǀĞů;>ƵdžͿ
12/79
DocID026171 Rev 6
ϭϬϬϬ
ϭϬϬϬϬ
VL6180X
2.1
Functional description
System state diagram
Figure 8 describes the main operating states of the VL6180X. Hardware standby is the reset
state (GPIO0=0)(a). The device is held in reset until GPIO0 is de-asserted. Note that the
device will not respond to I2C communication in this mode. When GPIO0=1, the device
enters software standby after the internal MCU boot sequence has completed. Once in
software standby, ST recommended register initialization settings(b) can be applied along
with any required application specific register settings. Thereafter, the host can command
single-shot range or ALS measurements or alternatively program one of the continuous
operating modes where the device uses an internal timer to schedule measurements at
specified intervals. See Section 2.4.3: Interleaved mode.
Figure 8. System state diagram
Power off
AVDD on
GPIO0=0
AVDD off
AVDD on
GPIO0=1
Hardware
standby
AVDD off
GPIO0=1
GPIO0=0
MCU boot
Software
standby
range_start
Range
measurement
als_start
done
done
mode=
continuous
stop
ALS
measurement
start
auto
auto
Continuous
modes(*)
(*) Device is placed in a low power state between measurements
a. Use of GPIO0 is optional
b. Please contact STMicroelectronics for the latest settings
DocID026171 Rev 6
13/79
78
Functional description
2.2
VL6180X
Timing diagram
Figure 9 and Table 4.show the Root part number 1 power-up timing constraints.
Note:
•
AVDD_VCSEL must be applied before or at the same time as AVDD.
•
GPIO0 defaults to an active low shutdown input. When GPIO0 = 0, the device is in
hardware standby. If GPIO0 is not used it should be connected to AVDD.
•
The internal microprocessor (MCU) boot sequence commences when AVDD is up and
GPIO0 is high whichever is the later.
•
GPIO1 power-up default is output low. It is tri-stated during the MCU boot sequence.
In hardware standby, GPIO1 is output low and will sink current through any pull-up resistor.
This leakage can be minimized by increasing the value of the pull-up resistor.
•
After the MCU boot sequence the device enters software standby. The software
standby state can be determined by polling
SYSTEM__FRESH_OUT_OF_RESET{0x16}. Host initialization can commence
immediately after entering software standby.
Figure 9. Power-up timing
AVDD
t1
AVDD_VCSEL
t2
GPIO0 (optional)
t3
t3
GPIO1
t4
System state
hardware
standby
software
standby
mcu boot
hardware
standby
mcu boot
software
standby
I2C Comms
t5
fresh_out_of_reset
Table 4. Power-up timing constraints
Symbol
14/79
Parameter
Min
Max
Unit
-
0
ms
100
-
ns
t1
AVDD_VCSEL power applied after AVDD
t2
Minimum reset on GPIO0
t3
GPIO1 output low after hardware standby
-
400
μs
t4
MCU boot
-
1
ms
t5
Software standby to host initialization
-
0
ms
DocID026171 Rev 6
VL6180X
2.3
Functional description
Software overview
Figure 10 shows a simple start-up routine from initialization to completing a range or ALS
measurement.
Figure 10. Software overview
Power-up
Fresh out of
reset?
Software standby
Load initialization
settings
Load application
settings
ALS or range start
If polling
Interrupt
status?
Read result and
status
Clear interrupts
DocID026171 Rev 6
15/79
78
Functional description
2.4
VL6180X
Operating modes
Table 5. describes the operating modes of this device.
Note:
•
Modes 1 and 2 are single-shot range and ALS measurements.
•
Modes 3 and 4 are stand-alone, continuous operation for either range or ALS.
•
Modes 5 and 6 are for mixed continuous and single-shot mode operations where
regular measurements are required from one of the sensors and only occasional
measurements are required from the other.
In modes 5 and 6, single-shot operation takes the priority i.e. if a scheduled measurement is
in progress when the host requests a single-shot measurement, the scheduled
measurement will be aborted and will resume on the next available time slot.
•
Mode 7 allows both ALS and range measurements to be scheduled at regular intervals.
The ALS measurement is completed first immediately followed by a range
measurement. Interleaved mode is described in more detail in Section 2.4.3.
Table 5. Operating modes
Range
Mode
Priority
Single
16/79
ALS
Function
1
Range single-shot
2
ALS single-shot
3
Range continuous
4
ALS continuous
5
Range continuous and
ALS single-shot
6
Range single-shot and
ALS continuous
7
Interleaved mode:
Range Continuous and
ALS Continuous
Continuous
Single
Continuous
•
Range
•
ALS
•
Range
•
•
•
•
ALS
•
•
DocID026171 Rev 6
ALS
•
Range
-
VL6180X
2.4.1
Functional description
Single-shot range/ALS operation
A single-shot range or ALS measurement is performed as follows:
•
Write 0x01 to the SYSRANGE__START register{0x18}.
•
When the measurement is completed, bit 2 of
RESULT__INTERRUPT_STATUS_GPIO{0x4F} will be set.
•
Similarly, a single-shot ALS measurement is initiated by writing 0x01 to the
SYSALS__START register{0x38}.
•
When the measurement is completed, bit 5 of
RESULT__INTERRUPT_STATUS_GPIO{0x4F} will be set.
Note that in both cases the start bit, (bit 0) auto-clears.
•
The range result is read from RESULT__RANGE_VAL{0x62}.
•
The ALS result is read from RESULT__ALS_VAL{0x50}.
•
Interrupt status flags are cleared by writing a ‘1’ to the appropriate bit of
SYSTEM__INTERRUPT_CLEAR{0x15}.
•
Bit 0 of RESULT__RANGE_STATUS{0x4D} and RESULT__ALS_STATUS{0x4E}
indicate when either sensor is ready for the next operation.
•
Error codes are indicated in bits [7:4] of the status registers
A detailed description of all the user accessible registers is given in Section 6: Device
registers.
Note:
Single-shot ALS and range operations cannot be performed simultaneously. Only one of
these operations should be performed at any one time and once started must be allowed to
complete before another measurement is started. This is because any current operation will
be aborted if another is started.
2.4.2
Continuous range/ALS operation
A continuous range or ALS measurement is performed as follows:
Note:
•
Write 0x03 to the SYSRANGE__START or SYSALS__START registers.
In both cases, bit 1 of the register sets the mode to continuous
•
When a measurement is completed either bit 2 or bit 5 of
RESULT__INTERRUPT_STATUS_GPIO{0x4F} will be set.
•
Results are read from RESULT__RANGE_VAL{0x62} or
RESULT__ALS_VAL{0x50}.
•
Interrupt status flags are cleared by writing a ‘1’ to the appropriate bit of
SYSTEM__INTERRUPT_CLEAR{0x15}.
•
Thereafter, measurements will be scheduled according to the relevant intermeasurement period (see SYSRANGE__INTERMEASUREMENT_PERIOD{0x1B} or
SYSALS__INTERMEASUREMENT_PERIOD{0X3E}).
•
Continuous mode operation can be stopped by writing 0 to either START register.
Continuous operation will be halted immediately and any pending measurement will be
aborted.
It is not recommended to run range and ALS continuous modes simultaneously (i.e.
asynchronously). Instead, mode 7 ‘interleaved mode’ in Table 5. should be used. In
‘interleaved mode’, scheduled range and ALS measurements operate off a single timer with
a range measurement proceeding immediately after every ALS measurement.
DocID026171 Rev 6
17/79
78
Functional description
2.4.3
VL6180X
Interleaved mode
Figure 11. describes the continuous interleaved mode of operation where an ALS
measurement is immediately followed by a range measurement and repeated after an
interval specified by the ALS inter-measurement period.
To enable interleaved mode, set INTERLEAVED_MODE_ENABLE{0x2A3} = 1. Use
SYSALS__START and SYSALS__INTERMEASUREMENT_PERIOD to control interleaved
operation.
Note:
Continuous range settings have no effect in this mode.
Figure 11. Interleaved mode
ALS inter-measurement period
ALS inter-measurement period
ALS
ALS
ALS
Range
Range
Range
Interrupt
flags
Note:
To ensure correct operation in any of the continuous modes, the user must ensure that the
inter-measurement period is sufficient for the operation to be completed within the intermeasurement period. Failure to do so could result in unpredictable behavior.
2.4.4
Continuous mode limits
To take account of oscillator tolerances and internal processing overheads it is necessary to
place the following constraints on continuous mode operations. The following equations
define the minimum inter-measurement period to ensure correct operation:
Continuous range:
SYSRANGE__MAX_CONVERGENCE_TIME + 5 ≤
SYSRANGE__INTERMEASUREMENT_PERIOD * 0.9
Continuous ALS:
SYSALS__INTEGRATION_TIME * 1.1 ≤ SYSALS__INTERMEASUREMENT_PERIOD *
0.9
Interleaved mode:
(SYSRANGE__MAX_CONVERGENCE _TIME + 5) + (SYSALS__INTEGRATION_TIME *
1.1) ≤ SYSALS__INTERMEASUREMENT_PERIOD * 0.9
Table 6. gives an example how to apply these limits in continuous interleaved mode
operating at a sampling rate of 10 Hz.
18/79
DocID026171 Rev 6
VL6180X
Functional description
Table 6. Interleaved mode limits (10 Hz operation)
Parameter
2.5
Period (ms)
SYSALS__INTERMEASUREMENT_PERIOD
100
Effective ALS INTERMEASUREMENT PERIOD
90
SYSRANGE__MAX_CONVERGENCE_TIME
30
Total RANGE EXECUTION TIME
35
SYSALS__INTEGRATION_TIME
50
Total ALS INTEGRATION TIME
55
TOTAL EXECUTION TIME
90
Range timing
Figure 12 gives a breakdown of total execution time for a single range measurement.
Note:
•
The pre-calibration phase is fixed (3.2 ms).
•
The range convergence time is variable and depends on target distance/reflectance
(see Table 7).
•
The recommended readout averaging period is 4.3 ms. Readout averaging helps to
reduce measurement noise. The recommended setting for
READOUT__AVERAGING_SAMPLE_PERIOD{0x10A} is 48(c) but is programmable in
the range 0-255. Note however that lower settings will result in increased noise.
When a target is detected, register RESULT__RANGE_RETURN_CONV_TIME{0x80} returns
the actual convergence time before readout averaging. Range convergence and readout
averaging must be completed within the specified max convergence time.
Figure 12. Total range execution time
Pre-cal
Range convergence
Readout
averaging
Convergence time
(variable)
4.3 ms
c. Default readout averaging period is calculated as follows: 1300 µs + (48 x 64.5 µs) = 4.3 ms
DocID026171 Rev 6
19/79
78
Functional description
VL6180X
Table 7. Typical range convergence time (ms)
Target reflectance
Range (mm)
2.6
3%
5%
17%
88%
10
0.43
0.33
0.18
0.18
20
0.94
0.73
0.28
0.18
30
1.89
1.40
0.51
0.18
40
3.07
2.25
0.81
0.18
50
4.35
3.24
1.18
0.24
60
5.70
4.22
1.60
0.32
70
7.07
5.35
2.07
0.49
80
8.41
6.45
2.58
0.50
90
9.58
7.56
3.14
0.61
100
10.73
8.65
3.69
0.73
Interrupt modes
The VL6180X can be configured to generate an ALS or range interrupt flag under any of the
following conditions:
•
New sample ready
•
Level low (RESULT__RANGE_VAL < SYSRANGE__THRESH_LOW)
•
Level high (RESULT__RANGE_VAL > SYSRANGE__THRESH_HIGH)
•
Out of window (RESULT__RANGE_VAL < SYSRANGE__THRESH_LOW) OR
(RESULT__RANGE_VAL > SYSRANGE__THRESH_HIGH)
In new sample ready mode, an interrupt flag will be raised at the end of every measurement
irrespective of whether the measurement is valid or if an error has occurred. This mode is
particularly useful during development and debug. In level interrupt mode the system will
raise an interrupt flag if either a low or high programmable threshold has been crossed. Out
of window interrupt mode activates both high and low level thresholds allowing a window of
operation to be specified. Interrupt modes for Range and ALS are configured via register
SYSTEM__INTERRUPT_CONFIG_GPIO{0x14}.
Note:
In level or window interrupt modes range errors will only trigger an interrupt if the logical
conditions described above are met.
2.7
Range error codes
The system carries out a number of range checks during every range measurement to
ensure the validity of each range result. Register RESULT__RANGE_STATUS{0x4D}
returns an error code if one of the checks fails. Table 8 gives a summary of the possible
error codes.
20/79
DocID026171 Rev 6
VL6180X
Functional description
Table 8. Range error codes
Bits [7:4]
0
Error code
Description
Range
(mm)
0 - 200(1)
No error
Valid measurement
System error
System error detected. No
measurement possible.
255
6
Early convergence estimate
ECE check failed
255
7
Max convergence
System did not converge before the
specified max. convergence time limit
255
8
Range ignore
Ignore threshold check failed
255
Not used
-
11
SNR
Ambient conditions too high.
Measurement invalidated
12
Raw range underflow
RESULT__RANGE_RAW < 0
(because offset is programmable a
negative range result is possible)
13
Raw range overflow
RESULT__RANGE_RAW is out of range.
This occurs typically around 200 mm
14
Range underflow
RESULT__RANGE_VAL < 0
(because offset is programmable a
negative range result is possible)
15
Range overflow
RESULT__RANGE_VAL is out of range.
This occurs typically around 200 mm
1-5
9-10
255
0
255
0
255
1. Range overflow occurs typically around 200 mm.
2.8
Range checks
Error codes 6, 8 and 11 in Table 8 are configurable by the user. They can be
enabled/disabled via register SYSRANGE__RANGE_CHECK_ENABLES{0x2D} by setting or
clearing the appropriate bit. The register default is 0x11 i,e, ECE and SNR enabled.
2.8.1
Early convergence estimate (ECE)
Early convergence estimate (ECE) is a programmable feature designed to minimize power
consumption when there is no target in the field-of-view (FOV).
The system is said to have ‘converged’ (i.e. range acquired), when the convergence
threshold(d) is reached before the max. convergence time limit (see Figure 13). This ratio
specifies the minimum return signal rate required for convergence. If there is no target in the
FOV, the system will continue to operate until the max. convergence time limit is reached
before switching off thereby consuming power. With ECE enabled, the system estimates the
d. For standard ranging, the convergence threshold is set to 15360. The convergence threshold register is not
accessible by the user.
DocID026171 Rev 6
21/79
78
Functional description
VL6180X
return signal rate 0.5 ms after the start of every measurement. If it is below the ECE
threshold, the measurement is aborted and an ECE error is flagged.
Figure 13. Early convergence estimate (ECE)
Return
count
convergence threshold
converged
m
in
n
ur
et
.r
si
g
l
na
ra
ECE
threshold
te
measurement
aborted
ECE (0.5 ms)
time
max.
convergence
ECE is enabled by setting bit 0 of SYSRANGE__RANGE_CHECK_ENABLES{0x02D}. If
enabled, the ECE threshold must be specified. To set the ECE threshold 20% below the
minimum convergence rate, the ECE threshold is calculated as follows:
80% × 0,5 × 15360
ECE threshold = ---------------------------------------------------------------------------------------------------------------------------------------SYSRANGE__MAX_CONVERGENCE_TIME (in ms)
The 16-bit ECE threshold should be written to
SYSRANGE__EARLY_CONVERGENCE_ESTIMATE{0x22}. For example, if
SYSRANGE__MAX_CONVERGENCE_TIME{0x1c} is set to 30 ms, the ECE threshold is 204.
If the return count is less than 204 after 0.5 ms, the measurement will be aborted.
Note:
The optimum value for the ECE threshold should be determined in the final application.
2.8.2
Range ignore
In a system with cover glass, the return signal from the glass (cross-talk) may be sufficient
to cause the system to converge and return a valid range measurement even when there is
no target present. The range ignore feature is designed to ensure that the system does not
range on the glass. (Cross-talk is described in more detail in Section 2.12.2).
The ignore threshold is enabled by setting bit 1 of
SYSRANGE__RANGE_CHECK_ENABLES{0x02D}. If enabled, the ignore threshold must be
specified. In the follow example, the ignore threshold is set 20% above the system crosstalk:
SYSRANGE__RANGE_IGNORE_THRESHOLD{0x26} = cross-talk (Mcps) × 120%
A range ignore error will be flagged if the return signal rate is less than the ignore threshold.
SYSRANGE__RANGE_IGNORE_VALID_HEIGHT should be set to 255.
Note:
22/79
The optimum value for the ignore threshold should be determined in the final application.
DocID026171 Rev 6
VL6180X
2.8.3
Functional description
Signal-to-noise ratio (SNR)
In high ambient conditions range accuracy can be impaired so the SNR threshold is used as
a safety limit to invalidate range measurements where the ambient/signal ratio is considered
too high.The default ambient/signal ratio limit is 10 (i.e. an SNR of 0.1) which is then
encoded in 4.4 format as follows:
SYSRANGE__MAX_AMBIENT_LEVEL_MULT{0x2C}= 10 x 16 = 160
To enable the SNR check, set bit 4 in SYSRANGE__RANGE_CHECK_ENABLES (0x02D). A
lower setting results in a more aggressive filter which will result in a lower effective range but
greater accuracy. A higher setting results in a less aggressive filter which will result in a
greater effective range but lower accuracy.
The SNR value can be calculated as follows:
RESULT__RANGE_RETURN_SIGNAL_COUNT{0x6C}
SNR = -------------------------------------------------------------------------------RESULT__RANGE_RETURN_AMB_COUNT{0x74} * 6
Note:
The SNR value is the inverse of the ambient/signal ratio limit {0x2C}.
Note:
The optimum value for SNR threshold should be determined in the final application.
2.9
Manual/autoVHV calibration
SPAD(e) sensitivity is temperature dependent so VHV(f) calibration is used to regulate SPAD
sensitivity over temperature in order to minimize signal rate variation. VHV calibration is
performed either manually by the host processor or automatically by internal firmware.
Execution time is typically 200 μs so has no impact on normal operation.
A VHV calibration is run once at power-up and then automatically after every N range
measurements defined by the SYSRANGE__VHV_REPEAT_RATE{0x31} register.
AutoVHV calibration is disabled by setting this register to 0. Default is 255. If autoVHV is
disabled it is recommended to run a manual VHV calibration periodically to recalibrate for
any significant temperature variation. A manual VHV calibration is performed by setting
SYSRANGE__VHV_RECALBRATE{0x2E} to 1. This register auto-clears. This operation
should only be performed in software standby.
2.10
History buffer
The history buffer is a 8 x 16-bit memory which can be used to store the last 16 range
measurements (8-bit) or 8 ALS samples (16-bit). Use of the history buffer is controlled via
register SYSTEM__HISTORY_CTRL{0x12}. There are 3 basic functions:
•
enable
•
range or ALS selection
•
clear buffer
e. Photon detectors - Single Photon Avalanche Diodes
f.
VHV is an adjustable SPAD bias voltage and stands for Very High Voltage (typically around 14 V). Also
sometimes referred to as CP (Charge Pump).
DocID026171 Rev 6
23/79
78
Functional description
VL6180X
The buffer is read via eight 16-bit registers (RESULT__HISTORY_BUFFER_0{0x52} to
RESULT__HISTORY_BUFFER_7{0x60}). The buffer holds the last 16 x 8-bit range or 8 x
16-bit ALS results as shown in Table 9.
Table 9. History buffer
Range
ALS
History buffer
(High byte)
Note:
(Low byte)
(Word)
0
Range [15] (newest)
Range [14]
ALS [7] (newest)
1
Range [13]
Range [12]
ALS [6]
2
Range [11]
Range [10]
ALS [5]
3
Range [9]
Range [8]
ALS [4]
4
Range [7]
Range [6]
ALS [3]
5
Range [5]
Range [4]
ALS [2]
6
Range [3]
Range [2
ALS [1]
7
Range [1]
Range [0] (oldest)
ALS [0] (oldest)
Only one data stream (ALS or range) can be buffered at one time. There is no associated
time stamp information.
The clear buffer command is not immediate; it takes effect on the next range or ALS start
command.
The history buffer works independently of interrupt control i.e. the history buffer records all
new samples; its operation is unchanged in threshold and window modes.
2.11
Current consumption
Table 10. gives an overview of current consumption in different operating states.
Table 10. Typical current consumption in different operating states
Mode
Current
Conditions
Hardware standby
< 1 μA
Shutdown (GPIO0 = 0). No I2C comms
Software standby
< 1 μA
After MCU boot. Device ready
ALS
300 μA
During integration
Ranging
1.7 mA
Average consumption during ranging(1)
1. 10 Hz sampling rate, 17% reflective target at 50 mm.
2.11.1
Ranging current consumption
Figure 14. shows typical ranging current consumption of the VL6180X. Current consumption
depends on target distance, target reflectance and sampling rate. The example shown here
is based on default settings and a sampling rate of 10 Hz. The average current consumption
for a 17% reflective target at 50 mm operating at 10 Hz is 1.7 mA. At different sampling rates
24/79
DocID026171 Rev 6
VL6180X
Functional description
the current consumption scales accordingly i.e. the average current consumption at 1 Hz
under the same conditions would be 0.17 mA.
Figure 14. Typical ranging current consumption (10 Hz sampling rate)
ƵƌƌĞŶƚĐŽŶƐƵŵƉƚŝŽŶ;ŵͿ
ϰ͘ϱϬ
ϰ͘ϬϬ
ϯ͘ϱϬ
ϯ͘ϬϬ
Ϯ͘ϱϬ
ϯй
Ϯ͘ϬϬ
ϱй
ϭ͘ϱϬ
ϭϳй
ϭ͘ϬϬ
ϴϴй
Ϭ͘ϱϬ
Ϭ͘ϬϬ
Ϭ
ϭϬ
ϮϬ
ϯϬ
ϰϬ
ϱϬ
ϲϬ
ϳϬ
ϴϬ
ϵϬ
ϭϬϬ
ZĂŶŐĞ;ŵŵͿ
The minimum average current consumption in Figure 14. is 1.5 mA, 0.5 mA of which comes
from pre-calibration before each measurement and 1.0 mA from post-processing (readout
averaging). Pre-calibration is a fixed overhead but readout averaging can be reduced or
effectively disabled by setting the READOUT__AVERAGING_SAMPLE_PERIOD{0x10A} to
zero (default setting is 48).
Note:
Decreasing the READOUT__AVERAGING_SAMPLE_PERIOD will increase sampling
noise. It is recommended that any change in setting be properly
evaluated in the end application.
Minimum current consumption scales with sampling rate i.e. at a sampling rate of 1 Hz the
current consumption associated with pre- and post-processing will be 0.15 μA.
2.11.2
Current consumption calculator
Table 11. gives a breakdown of typical current consumption for pre-calibration, ranging and
readout averaging.
Table 11. Breakdown of current consumption
Label
Phase
I (mA)
t (ms)
Q (μC) = I x t
Q1
Pre-calibration
13.0
3.2
41.6
Q2
Ranging
22.0
per ms
22.0 per ms
Q3
Readout averaging
25.0
per ms
25.0 per ms
Current consumption can then be calculated as follows:
I (μA) = sampling_rate * [Q1 + (Q2 * RESULT__RANGE_RETURN_CONV_TIME in ms) +
Q3 * (1.3 + (READOUT__AVERAGING_SAMPLE_PERIOD * 0.0645 ms))]
Table 7. gives typical convergence times for different target reflectance.
So, for example, RESULT__RANGE_RETURN_CONV_TIME for a 3% target at 50 mm
is 4.35 ms. At 10 Hz sampling rate this gives:
I (μA) = 10 * [41.6 + (22 * 4.35) + 25 * (1.3 + (48 * 0.0645))] = 2472 μA
DocID026171 Rev 6
25/79
78
Functional description
2.11.3
VL6180X
Current distribution
Table 12. shows how current consumption is distributed between the two supplies in ranging
mode. AVDD_VCSEL supplies the VCSEL current and AVDD supplies all other functions.
Note:
The VCSEL driver is pulsed at 100 MHz with a 33% duty cycle (see Figure 15.) so average
current consumption on AVDD_VCSEL is one third of the peak.
Table 12. Current consumption on AVDD and AVDD_VCSEL
Power supply(1)
Current
AVDD
14 mA
AVDD_VCSEL
(2)
8 mA
Note
Average during active ranging
Average during active ranging (33% duty cycle).
1. Normally, both supplies will be driven from a common source giving a peak instantaneous current demand
of 38 mA.
2. Peak emitter current during ranging is 24 mA.
Figure 15. VCSEL pulse duty cycle
10 ns
24 mA peak current
8 mA average current
33% duty cycle
26/79
DocID026171 Rev 6
VL6180X
2.12
Functional description
Other system considerations
This section describes part-to-part range offset and system cross-talk. In addition, a
procedure for cross-talk calibration is given.
2.12.1
Part-to-part range offset
The VL6180X is factory calibrated to produce an absolute linear range output as shown in
Figure 16. The part-to-part range offset is calibrated during manufacture and stored in
SYSRANGE__PART_TO_PART_RANGE_OFFSET{0x24} (two’s complement).
RESULT__RANGE_RAW{0x64} reports the range with the part-to-part offset already applied.
Measured range
Figure 16. Part-to-part range offset
p2p_offset
calibration
Actual Range
2.12.2
Cross-talk
Cross-talk is defined as the signal return from the cover glass. The magnitude of the crosstalk depends on the type of glass, air gap and filter material. Cross-talk results in a range
error (see Figure 17) which is proportional to the ratio of the cross-talk to the signal return
from the target. The true range is recovered by applying automatic cross-talk compensation.
Measured range
Figure 17. Cross-talk compensation
cross-talk
compensation
Actual Range
To enable cross-talk compensation it is necessary to write the calibrated cross-talk value to
SYSRANGE__CROSSTALK_COMPENSATION_RATE{0x1E}in 9.7 format. A cross-talk
calibration procedure is described in Section 2.12.4.
2.12.3
Offset calibration procedure
Complete steps 1-3 to see if part-to-part offset calibration is required.
DocID026171 Rev 6
27/79
78
Functional description
VL6180X
1.
Position a white target (88% reflectance(g)) at a distance of 50 mm from the top of the
cover glass.
2.
Perform a minimum of 10 range measurements and compute the average range (from
RESULT__RANGE_VAL{0x62}).
3.
If the average range is within the 50 ± 3 mm, offset calibration is not required.
Otherwise, complete this calibration procedure.
4.
Set SYSRANGE__PART_TO_PART_RANGE_OFFSET{0x24} = 0.
5.
Perform a minimum of 10 range measurements and compute the average range (from
RESULT__RANGE_VAL{0x62}).
6.
Calculate the part-to-part offset as follows:
part-to-part offset = 50 mm – average range
7.
2.12.4
Write the part-to-part offset result (in two’s complement notation) to
SYSRANGE__PART_TO_PART_RANGE_OFFSET.
Cross-talk calibration procedure
This section describes a procedure for calibrating system cross-talk.
1.
Note:
Perform offset calibration if required (see Section 2.12.3).
If the offset is incorrectly calibrated, cross-talk calibration will be inaccurate.
2.
Position a black target (3% reflectance(h)) at a distance of 100 mm from the top of the
cover glass.
3.
Ensure SYSRANGE__CROSSTALK_COMPENSATION_RATE{0x1E} = 0.
4.
Perform a minimum of 10 range measurements and compute the average return rate
(from RESULT__RANGE_RETURN_RATE{0x66}) and the average range (from
RESULT__RANGE_VAL{0x62}).
5.
Calculate the cross-talk factor as follows:
average range
cross-talk (in Mcps) = average return rate ×  1 – --------------------------------------

100 mm 
6.
Write the cross-talk result in 9.7 format to
SYSRANGE__CROSSTALK_COMPENSATION_RATE.
For example, cross-talk = 0.4 Mcps => 0.4 x 128 = 51.2. Write 51 to
SYSRANGE__CROSSTALK_COMPENSATION_RATE.
Note:
Cross-talk compensation is only applied to targets above 20 mm. This is to ensure that
cross-talk correction is not applied to near targets where the signal rate is decreasing. The
cross-talk height qualifier is defined in register
SYSRANGE__CROSSTALK_VALID_HEIGHT{0x21}. The default is 20 mm.
g. Target reflectance should be high but absolute value is not critical.
h. Target reflectance should be low but absolute value is not critical.
28/79
DocID026171 Rev 6
VL6180X
2.12.5
Functional description
Cross-talk limit
A practical limit for cross-talk is < 3.0 Mcps. This is based on two factors:
The return rate for a 3% reflective target at 100 mm without glass is typically around 1.5
Mcps. If glass is added with a cross-talk of 3.0 Mcps, the resultant return rate will be 4.5
Mcps. This results in a cross-talk correction factor of x3 so for a 100 mm target the raw
range will be in the region of 30 mm. To ensure the
SYSRANGE__CROSSTALK_VALID_HEIGHT restriction is not breached, the minimum
raw range allowing for noise margin is around 30 mm.
2.
A cross-talk correction factor of x3 also means that any range noise will be multiplied
by 3 so noise also becomes a limiting factor.
Cross-talk vs air gap
Figure 18 shows the typical cross-talk vs air gap using ST cover glass with oval aperture.
Above 2.5 mm, the cross-talk rises rapidly.
Figure 18. Cross-talk vs air gap
ϭ͘ϲ
ϭ͘ϰ
ƌŽƐƐƚĂůŬ;DĐƉƐͿ
2.12.6
1.
ϭ͘Ϯ
ϭ
Ϭ͘ϴ
Ϭ͘ϲ
Ϭ͘ϰ
Ϭ͘Ϯ
Ϭ
Ϭ
Ϭ͘ϱ
ϭ
ϭ͘ϱ
Ϯ
Ϯ͘ϱ
ŝƌŐĂƉ;ŵŵͿ
DocID026171 Rev 6
29/79
78
Functional description
2.13
VL6180X
Ambient light sensor (ALS)
The VL6180X contains an ambient light sensor capable of measuring the ambient light level
over a wide dynamic range. This section describes the main features of the ALS. The ALS
performance specification can be found in Section 4.2.
2.13.1
Field of view
Figure 19 shows the ALS field of view which is typically 42 degrees (half angle, 40% of
peak) in both X and Y.
Figure 19. ALS angular response
ϭ͘Ϯ
ϭ
Ϭ͘ϴ
Ϭ͘ϲ
Ϭ͘ϰ
Ϭ͘Ϯ
Ϭ
ͲϲϬ
ͲϱϬ
ͲϰϬ
ͲϯϬ
ͲϮϬ
ͲϭϬ
Ϭ
ϭϬ
ϮϬ
ϯϬ
ϰϬ
ϱϬ
ϲϬ
ŶŐůĞ;ΣͿ
2.13.2
Spectral response
The spectral response of the ALS compared to photopic response is shown in Figure 20.
Figure 20. ALS spectral response
120%
100%
80%
60%
Photopic
VL6180X
40%
20%
0%
350
400
450
500
550
600
650
700
750
800
Wavelength (nm)
30/79
DocID026171 Rev 6
850
900
950
1000
1050
1100
VL6180X
2.13.3
Functional description
ALS dynamic range
Table 13 shows the range of measurable light at all gains both with and without glass. In
most applications operating at a single gain setting should be possible.
Table 13. ALS dynamic range(1)
Analogue
gain setting
Dynamic range (no glass)
Dynamic range (10%
transmissive glass)
Min. (Lux)(2)
Max. (Lux)
1
3.20
20800
32.0
>100,000
1.25
2.56
16640
25.6
>100,000
1.67
1.93
12530
19.3
>100,000
2.5
1.28
8320
12.8
83,200
5
0.64
4160
6.4
41,600
10
0.32
2080
3.2
20,800
20
0.16
1040
1.6
10,400
40
0.08
520
0.8
5,200
Minimum (Lux) Maximum (Lux)
1. ALS lux resolution = 0.32 lux/count
2. Minimum of 10 counts
2.13.4
ALS count to lux conversion
The output from the ambient light sensor is a 16-bit register, RESULT__ALS_VAL{0x50}.
The count output is proportional to the light level and can be converted into lux using the
following equation:
RESULT__ALS_VAL
100 ms
Light level (in lux) = ALS lux resolution × -------------------------------------------------------- × -----------------------------------------------------Analog gain
ALS integration time
The factory calibrated ALS lux resolution is 0.32 lux/count for an analog gain of 1 (calibrated
without glass). The ALS lux resolution will require re-calibration in the final system where
cover glass is used. This can be done by recording the count output with and without glass
under the same conditions and multiplying the ALS lux resolution by the ratio of the two
counts as follows:
RESULT__ALS_VAL (without glass)
ALS lux resolution (with glass) = ------------------------------------------------------------------------------------------------ × ALS lux resolution (without glass)
RESULT__ALS_VAL (with glass)
DocID026171 Rev 6
31/79
78
Functional description
2.13.5
VL6180X
Integration period
The integration period is the time over which a single ALS measurement is made. The
default integration period is 100ms. Integration times in the range 50-100 ms are
recommended to reduce impact of light flicker from artificial lighting.
2.13.6
ALS gain selection
Eight analog gain settings are available which can be selected manually depending on the
range and resolution required. Table 14.shows the actual characterized gains versus the
design targets. If a gain setting other than gain 20 is used, marginally greater accuracy can
be achieved by using the actual gain values in the light level equation in Section 2.13.4
when calculating the lux light level.
Table 14. Actual gain values
Note:
32/79
Register setting {0x3F}
Analog gain setting
Actual gain values
0x46
1
1.01
0x45
1.25
1.28
0x44
1.67
1.72
0x43
2.5
2.60
0x42
5
5.21
0x41
10
10.32
0x40
20
20
0x47
40
40
The upper nibble of SYSALS__ANALOGUE_GAIN should always be set to 0x4.
DocID026171 Rev 6
VL6180X
Electrical characteristics
3
Electrical characteristics
3.1
Absolute maximum ratings
Table 15. Absolute maximum ratings
Parameter
Min.
Typ.
Max.
Unit
AVDD
-0.5
-
3.6
V
AVDD_VCSEL
-0.5
-
3.6
V
SCL, SDA, GPIO0 and GPIO1
-0.5
-
3.6
V
Note:
Stresses above those listed in Table 15. may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at these or any other conditions
above those indicated in the operational sections of the specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
3.2
Normal operating conditions
Table 16. Normal operating conditions
Parameter
Min.
Typ.
Max.
Unit
Voltage (optimum operating)
2.7
2.8
2.9
V
Voltage (functional operating)
2.6
2.8
3.0
V
+60
°C
Voltage (AVDD and AVDD_VCSEL)
Temperature
3.3
Temperature (optimum operating)
-10
Temperature (functional operating)
-20
-
+70
°C
Temperature (test)
+21
-
+25
°C
Temperature (storage)
-40
-
+85
°C
Current consumption
Table 17. Current consumption(1)
Parameter
Min.
Typ.
Max.
Unit
Hardware Standby
-
-
1
µA
Software Standby
-
-
1
µA
ALS operation
-
300
350
µA
1. Measured at room temperature (23°C)
DocID026171 Rev 6
33/79
78
Electrical characteristics
3.4
VL6180X
Electrical characteristics
Table 18. Digital I/O electrical characteristics
Symbol
Parameter
Minimum
Typical
Maximum
Unit
CMOS digital I/O (SDA, SCL, GPIO0 and GPIO1)
34/79
VIL
Low level input voltage
-0.5
-
0.6
V
VIH
High level input voltage
1.12
-
AVDD+0.5
V
VOL
Low level output voltage (8mA load)
-
-
0.4
V
VOH
High level output voltage (8mA load)
AVDD-0.4
-
-
V
IIL
Low level input current
-
-
-10
µA
IIH
High level input current
-
-
10
µA
DocID026171 Rev 6
VL6180X
Performance specification
4
Performance specification
4.1
Proximity ranging (0 to 100mm)
The following table specifies ranging performance up to 100mm. Ranging beyond 100mm is
possible with certain target reflectances and ambient conditions but not guaranteed. These
results are derived from characterization of both typical and corner samples (representative
of worst case process conditions).
Unless specified otherwise, all results were performed at room temperature (23°C), nominal
voltage (2.8V) and in the dark. Results are based on the average of 100 measurements for
a 17% reflective target @ 50mm.
Table 19. Ranging specification
Parameter
Noise(1)
Range offset
error(2)
Temperature dependent drift
Voltage dependent drift
(3)
(4)
Convergence time (5)
Min.
Typ.
Max.
Unit
-
-
2.0
mm
-
-
13
mm
-
9
15
mm
-
3
5
mm
-
-
15
ms
1. Maximum standard deviation of 100 measurements
2. Maximum offset drift after 3 reflow cycles. This error can be removed by re-calibration in the final system
3. Tested over optimum operating temperature range (see Table 16.: Normal operating conditions)
4. Tested over optimum operating voltage range (see Table 16.: Normal operating conditions)
5. Based on a 3% reflective target @ 100 mm
4.1.1
Max range vs. ambient light level
The data shown in this section is worst case data for reference only.
Table 20 shows the worst case maximum range achievable under different ambient light
conditions
.
Table 20. Worst case max range vs. ambient 0 to 100mm(1)(2)
Target
reflectance
In the dark(3)
Worst case indoor light
High ambient light
(1 kLux diffuse halogen) (5 kLux diffuse halogen)
3%
> 100
> 80
> 40
mm
5%
> 100
> 90
> 45
mm
17%
> 100
> 100
> 60
mm
88%
> 100
> 100
> 70
mm
Unit
1. Tested in an integrating sphere (repeatable lab test, not representative of real world ambient light) at 1
kLux and 5 kLux (halogen light source) using 80 x 80 mm targets. Due to high IR content, 5 kLux halogen
light approximates to 10 kLux to 15 kLux natural sunlight.
2. SNR limit of 0.1 applied. Note: maximum range could be increased by reducing the SNR limit to 0.06
3. Also applicable to lighting conditions with low IR content e.g typical office fluorescent lighting
DocID026171 Rev 6
35/79
78
Performance specification
4.2
VL6180X
ALS performance
The following table specifies ALS performance. These results are derived from
characterization of typical samples (without cover glass). Unless specified otherwise, all
tests were performed at room temperature (23°C), nominal voltage (2.8V) and using a
halogen light source.
Table 21. ALS performance
Parameter
Min.
Typ.
Max.
Unit
0.28
0.32
0.36
Lux/count
-
42
-
degrees
-
photopic
-
-
0.002
-
20971
Lux
-
-
5
%
-
-
10
%
Gain error (@ gain 20)
-
-
1
%
Gain error (gains 1 to 10)
-
-
7
%
ALS sensitivity(1)
Angular
response(2)
Spectral response
(3)
Dynamic Range
Linearity error (1 to 300
lux)(4)
Linearity error (300 to 7500 lux)
(4)
1. 535nm LED @ 1 kLux. Measured @ gain 20.
2. Half angle. 40% transmission.
3. Minimum of one count at gain 40 and 400 ms ALS integration time.
4. Test conditions: -10°C to +60°C; analog gains 1 to 20
36/79
DocID026171 Rev 6
I2C control interface
VL6180X
5
I2C control interface
The VL6180X is controlled over an I2C interface. The default I2C address is 0x29 (7-bit).
This section describes the I2C protocol.
Figure 21. Serial interface data transfer protocol
Acknowledge
Start condition
SDA
MSB
SCL
S
LSB
1
2
3
4
5
P
8
7
6
As/Am
Address or data byte
Stop condition
Information is packed in 8-bit packets (bytes) always followed by an acknowledge bit, As for
sensor acknowledge and Am for master acknowledge. The internal data is produced by
sampling SDA at a rising edge of SCL. The external data must be stable during the high
period of SCL. The exceptions to this are start (S) or stop (P) conditions when SDA falls or
rises respectively, while SCL is high.
A message contains a series of bytes preceded by a start condition and followed by either a
stop or repeated start (another start condition but without a preceding stop condition)
followed by another message. The first byte contains the device address (0x52) and also
specifies the data direction. If the least significant bit is low (0x52) the message is a master
write to the slave. If the lsb is set (0x53) then the message is a master read from the slave.
Figure 22. I2C device address
LSBit
MSBit
0
1
0
1
0
0
1
R/W
All serial interface communications with the sensor must begin with a start condition. The
sensor acknowledges the receipt of a valid address by driving the SDA wire low. The state
of the read/write bit (lsb of the address byte) is stored and the next byte of data, sampled
from SDA, can be interpreted. During a write sequence the second and third bytes received
provide a 16-bit index which points to one of the internal 8-bit registers.
Figure 23. Single location, single write)
Start
S
Acknowledge from sensor
Sensor acknowledges
valid address
ADDRESS[7:0]
As
INDEX[15:8]
As
0x52 (write)
INDEX[7:0]
As
DATA[7:0]
As P
Stop
DocID026171 Rev 6
37/79
78
I2C control interface
VL6180X
As data is received by the slave it is written bit by bit to a serial/parallel register. After each
data byte has been received by the slave, an acknowledge is generated, the data is then
stored in the internal register addressed by the current index.
During a read message, the contents of the register addressed by the current index is read
out in the byte following the device address byte. The contents of this register are parallel
loaded into the serial/parallel register and clocked out of the device by the falling edge of
SCL.
Figure 24. Single location, single read
0x52 (write)
ADDRESS[7:0]
S
INDEX[15:8]
As
INDEX[7:0]
As
As P
0x53 (read)
ADDRESS[7:0]
S
As
DATA[7:0]
Am P
At the end of each byte, in both read and write message sequences, an acknowledge is
issued by the receiving device (that is, the sensor for a write and the master for a read).
A message can only be terminated by the bus master, either by issuing a stop condition or
by a negative acknowledge (that is, not pulling the SDA line low) after reading a complete
byte during a read operation.
The interface also supports auto-increment indexing. After the first data byte has been
transferred, the index is automatically incremented by 1. The master can therefore send
data bytes continuously to the slave until the slave fails to provide an acknowledge or the
master terminates the write communication with a stop condition. If the auto-increment
feature is used the master does not have to send address indexes to accompany the data
bytes.
Figure 25. Multiple location write
0x52 (write)
S
ADDRESS[7:0]
DATA[7:0]
38/79
As
As
INDEX[15:8]
DATA[7:0]
DocID026171 Rev 6
As
As
INDEX[7:0]
DATA[7:0]
As
As P
I2C control interface
VL6180X
Figure 26. Multiple location read
0x52 (write)
ADDRESS[7:0]
S
INDEX[15:8]
As
INDEX[7:0]
As
As P
0x53 (read)
S
ADDRESS[7:0]
DATA[7:0]
As
Am
DATA[7:0]
DATA[7:0]
DocID026171 Rev 6
Am
Am
DATA[7:0]
DATA[7:0]
Am
Am P
39/79
78
Device registers
6
VL6180X
Device registers
This section describes in detail all user accessible device registers. Registers are grouped
by function as shown in Table 22. to make them easier to read but also to simplify multi-byte
read/write I2C accesses (burst mode). More details in Section 5. Reset values are given for
each register which denotes the register value in software standby.
Table 22. Register groups
Register group
Address range
IDENTIFICATION
0x00 - 0x0F
SYSTEM SETUP
0x10 - 0x17
RANGE SETUP
0x18 - 0x37
ALS SETUP
0x38 - 0x40
RESULTS
0x4D - 0x80
Note that registers can be 8-,16- or 32-bit. Multi-byte registers are always addressed in
ascending order with MSB first as shown in Table 23.
Table 23. 32-bit register example
Register address
Byte
Address
6.1
MSB
Address + 1
..
Address + 2
..
Address + 3
LSB
Register encoding formats
Some registers are encoded to allow rational numbers to be expressed efficiently. Table 24
gives an explanation of 9.7 and 4.4 encoding formats.
Table 24. 9.7 and 4.4 register formats
Format
40/79
Description
4.4
8 bits = 4 integer bits + 4 fractional bits (stored as 1 byte)
Encoding example: the value 4.2 is multiplied by 16 (24) rounded
and stored as 67 decimal.
Decoding example: 67 is divided by 16 = 4.19.
9.7
16 bits = 9 integer bits + 7 fractional bits (stored over 2 bytes)
Encoding example: the value 4.2 is multiplied by 128 (27) rounded
and stored as 537 decimal.
Decoding example: 537 is divided by 128 = 4.19.
DocID026171 Rev 6
VL6180X
Device registers
Table 25. Register summary
Offset
Register name
Reference
0x000
IDENTIFICATION__MODEL_ID
Section 6.2.1 on page 43
0x001
IDENTIFICATION__MODEL_REV_MAJOR
Section 6.2.2 on page 43
0x002
IDENTIFICATION__MODEL_REV_MINOR
Section 6.2.3 on page 43
0x003
IDENTIFICATION__MODULE_REV_MAJOR
Section 6.2.4 on page 44
0x004
IDENTIFICATION__MODULE_REV_MINOR
Section 6.2.5 on page 44
0x006
IDENTIFICATION__DATE_HI
Section 6.2.6 on page 44
0x007
IDENTIFICATION__DATE_LO
Section 6.2.7 on page 45
0x008:0x009 IDENTIFICATION__TIME
Section 6.2.8 on page 45
0x010
SYSTEM__MODE_GPIO0
Section 6.2.9 on page 46
0x011
SYSTEM__MODE_GPIO1
Section 6.2.10 on page 47
0x012
SYSTEM__HISTORY_CTRL
Section 6.2.11 on page 48
0x014
SYSTEM__INTERRUPT_CONFIG_GPIO
Section 6.2.12 on page 49
0x015
SYSTEM__INTERRUPT_CLEAR
Section 6.2.13 on page 49
0x016
SYSTEM__FRESH_OUT_OF_RESET
Section 6.2.14 on page 50
0x017
SYSTEM__GROUPED_PARAMETER_HOLD
Section 6.2.15 on page 50
0x018
SYSRANGE__START
Section 6.2.16 on page 51
0x019
SYSRANGE__THRESH_HIGH
Section 6.2.17 on page 51
0x01A
SYSRANGE__THRESH_LOW
Section 6.2.18 on page 52
0x01B
SYSRANGE__INTERMEASUREMENT_PERIOD
Section 6.2.19 on page 52
0x01C
SYSRANGE__MAX_CONVERGENCE_TIME
Section 6.2.20 on page 52
0x01E
SYSRANGE__CROSSTALK_COMPENSATION_RATE
Section 6.2.21 on page 53
0x021
SYSRANGE__CROSSTALK_VALID_HEIGHT
Section 6.2.22 on page 53
0x022
SYSRANGE__EARLY_CONVERGENCE_ESTIMATE
Section 6.2.23 on page 53
0x024
SYSRANGE__PART_TO_PART_RANGE_OFFSET
Section 6.2.24 on page 54
0x025
SYSRANGE__RANGE_IGNORE_VALID_HEIGHT
Section 6.2.25 on page 54
0x026
SYSRANGE__RANGE_IGNORE_THRESHOLD
Section 6.2.26 on page 54
0x02C
SYSRANGE__MAX_AMBIENT_LEVEL_MULT
Section 6.2.27 on page 55
0x02D
SYSRANGE__RANGE_CHECK_ENABLES
Section 6.2.27 on page 55
0x02E
SYSRANGE__VHV_RECALIBRATE
Section 6.2.29 on page 56
0x031
SYSRANGE__VHV_REPEAT_RATE
Section 6.2.30 on page 56
0x038
SYSALS__START
Section 6.2.31 on page 57
0x03A
SYSALS__THRESH_HIGH
Section 6.2.32 on page 57
0x03C
SYSALS__THRESH_LOW
Section 6.2.33 on page 58
DocID026171 Rev 6
41/79
78
Device registers
VL6180X
Table 25. Register summary (continued)
Offset
Register name
0x03E
SYSALS__INTERMEASUREMENT_PERIOD
Section 6.2.34 on page 58
0x03F
SYSALS__ANALOGUE_GAIN
Section 6.2.35 on page 59
0x040
SYSALS__INTEGRATION_PERIOD
Section 6.2.36 on page 59
0x04D
RESULT__RANGE_STATUS
Section 6.2.37 on page 60
0x04E
RESULT__ALS_STATUS
Section 6.2.38 on page 61
0x04F
RESULT__INTERRUPT_STATUS_GPIO
Section 6.2.39 on page 62
0x050
RESULT__ALS_VAL
Section 6.2.40 on page 62
0x052:0x060
RESULT__HISTORY_BUFFER_x
(0x2)
42/79
Reference
Section 6.2.41 on page 63
0x062
RESULT__RANGE_VAL
Section 6.2.42 on page 64
0x064
RESULT__RANGE_RAW
Section 6.2.43 on page 64
0x066
RESULT__RANGE_RETURN_RATE
Section 6.2.44 on page 64
0x068
RESULT__RANGE_REFERENCE_RATE
Section 6.2.45 on page 65
0x06C
RESULT__RANGE_RETURN_SIGNAL_COUNT
Section 6.2.46 on page 65
0x070
RESULT__RANGE_REFERENCE_SIGNAL_COUNT
Section 6.2.47 on page 66
0x074
RESULT__RANGE_RETURN_AMB_COUNT
Section 6.2.48 on page 66
0x078
RESULT__RANGE_REFERENCE_AMB_COUNT
Section 6.2.49 on page 66
0x07C
RESULT__RANGE_RETURN_CONV_TIME
Section 6.2.50 on page 67
0x080
RESULT__RANGE_REFERENCE_CONV_TIME
Section 6.2.51 on page 67
0x10A
READOUT__AVERAGING_SAMPLE_PERIOD
Section 6.2.52 on page 67
0x119
FIRMWARE__BOOTUP
Section 6.2.52 on page 67
0x120
FIRMWARE__RESULT_SCALER
Section 6.2.53 on page 68
0x212
I2C_SLAVE__DEVICE_ADDRESS
Section 6.2.55 on page 68
0x2A3
INTERLEAVED_MODE__ENABLE
Section 6.2.56 on page 69
DocID026171 Rev 6
VL6180X
Device registers
6.2
Register descriptions
6.2.1
IDENTIFICATION__MODEL_ID
7
6
5
4
3
2
1
0
identification__model_id
R/W
Address:
0x000
Type:
R/W
Reset:
0xB4
Description:
[7:0]
6.2.2
identification__model_id: Device model identification number. 0xB4 = VL6180X
IDENTIFICATION__MODEL_REV_MAJOR
7
6
5
4
3
2
1
RESERVED
identification__model_rev_major
R
R/W
Address:
0x001
Type:
R/W
Reset:
0x1, register default overwritten at boot-up by NVM contents.
0
Description:
[2:0]
6.2.3
identification__model_rev_major: Revision identifier of the Device for major change.
IDENTIFICATION__MODEL_REV_MINOR
7
6
5
4
3
2
1
RESERVED
identification__model_rev_minor
R
R/W
Address:
0x002
Type:
R/W
Reset:
0x3, register default overwritten at boot-up by NVM contents.
0
Description:
[2:0]
identification__model_rev_minor: Revision identifier of the Device for minor change.
IDENTIFICATION__MODEL_REV_MINOR = 3 for latest ROM revision
DocID026171 Rev 6
43/79
78
Device registers
6.2.4
VL6180X
IDENTIFICATION__MODULE_REV_MAJOR
7
6
5
4
3
2
1
RESERVED
identification__module_rev_major
R
R/W
Address:
0x003
Type:
R/W
Reset:
0x1, register default overwritten at boot-up by NVM contents.
0
Description:
[2:0]
6.2.5
identification__module_rev_major: Revision identifier of the Module Package for major change.
Used to store NVM content version. Contact ST for current information.
IDENTIFICATION__MODULE_REV_MINOR
7
6
5
4
3
2
1
RESERVED
identification__module_rev_minor
R
R/W
Address:
0x004
Type:
R/W
Reset:
0x2, register default overwritten at boot-up by NVM contents.
0
Description:
[2:0]
6.2.6
identification__module_rev_minor: Revision identifier of the Module Package for minor change.
Used to store NVM content version. Contact ST for current information.
IDENTIFICATION__DATE_HI
7
6
5
4
3
2
1
identification__year
identification__month
R/W
R/W
Address:
0x006
Type:
R/W
Reset:
0xYY, register default overwritten at boot-up by NVM contents.
Description:
Part of the register set that can be used to uniquely identify a module.
44/79
[7:4]
identification__year: Last digit of manufacturing year (bits[3:0]).
[3:0]
identification__month: Manufacturing month (bits[3:0]).
DocID026171 Rev 6
0
VL6180X
6.2.7
Device registers
IDENTIFICATION__DATE_LO
7
6
5
4
3
2
1
0
identification__day
identification__phase
R/W
R/W
Address:
0x007
Type:
R/W
Reset:
0xYY, register default overwritten at boot-up by NVM contents.
Description:
Part of the register set that can be used to uniquely identify a module.
[7:3]
identification__day: Manufacturing day (bits[4:0]).
[2:0]
identification__phase: Manufacturing phase identification (bits[2:0]).
6.2.8
IDENTIFICATION__TIME
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
identification__time
R/W
Address:
0x008:0x009
Type:
R/W
Reset:
0xYYYY, register default overwritten at boot-up by NVM contents.
Description:
Part of the register set that can be used to uniquely identify a module.
[15:0]
identification__time: Time since midnight (in seconds) = register_value * 2
DocID026171 Rev 6
45/79
78
Device registers
6.2.9
VL6180X
SYSTEM__MODE_GPIO0
2
1
0
RESERVED
3
system__gpio0_select
4
system__gpio0_polarity
5
system__gpio0_is_xshutdown
6
RESERVED
7
R
R/W
R/W
R/W
R/W
Address:
0x010
Type:
R/W
Reset:
0x60
Description:
[6]
system__gpio0_is_xshutdown: Priority mode - when enabled, other bits of the register are
ignored. GPIO0 is main XSHUTDOWN input.
0: Disabled
1: Enabled - GPIO0 is main XSHUTDOWN input.
[5]
system__gpio0_polarity: Signal Polarity Selection.
0: Active-low
1: Active-high
[4:1]
[0]
46/79
system__gpio0_select: Functional configuration options.
0000: OFF (Hi-Z)
1000: GPIO Interrupt output
Reserved. Write 0.
DocID026171 Rev 6
VL6180X
6.2.10
Device registers
SYSTEM__MODE_GPIO1
3
2
1
0
RESERVED
4
system__gpio1_select
5
system__gpio1_polarity
6
RESERVED
7
R
R/W
R/W
R/W
Address:
0x011
Type:
R/W
Reset:
0x20
Description:
[5]
[4:1]
[0]
system__gpio1_polarity: Signal Polarity Selection.
0: Active-low
1: Active-high
system__gpio1_select: Functional configuration options.
0000: OFF (Hi-Z)
1000: GPIO Interrupt output
Reserved. Write 0.
DocID026171 Rev 6
47/79
78
Device registers
SYSTEM__HISTORY_CTRL
Address:
0x012
Type:
R/W
Reset:
0x0
4
3
2
1
0
system__history_buffer_enable
5
system__history_buffer_mode
6
system__history_buffer_clear
7
RESERVED
6.2.11
VL6180X
R
R/W
R/W
R/W
Description:
48/79
[2]
system__history_buffer_clear: User-command to clear history (FW will auto-clear this bit when
clear has completed).
0: Disabled
1: Clear all history buffers
[1]
system__history_buffer_mode: Select mode buffer results for:
0: Ranging (stores the last 8 ranging values (8-bit)
1: ALS (stores the last 8 ALS values (16-bit)
[0]
system__history_buffer_enable: Enable History buffering.
0: Disabled
1: Enabled
DocID026171 Rev 6
VL6180X
6.2.12
Device registers
SYSTEM__INTERRUPT_CONFIG_GPIO
7
6
5
4
3
2
1
RESERVED
als_int_mode
range_int_mode
R
R/W
R/W
Address:
0x014
Type:
R/W
Reset:
0x0
0
Description:
[5:3]
als_int_mode: Interrupt mode source for ALS readings:
0: Disabled
1: Level Low (value < thresh_low)
2: Level High (value > thresh_high)
3: Out Of Window (value < thresh_low OR value > thresh_high)
4: New sample ready
[2:0]
range_int_mode: Interrupt mode source for Range readings:
0: Disabled
1: Level Low (value < thresh_low)
2: Level High (value > thresh_high)
3: Out Of Window (value < thresh_low OR value > thresh_high)
4: New sample ready
6.2.13
SYSTEM__INTERRUPT_CLEAR
7
6
Address:
0x015
Type:
R/W
Reset:
0x0
5
4
3
2
1
RESERVED
int_clear_sig
R
R/W
0
Description:
[2:0]
int_clear_sig: Interrupt clear bits. Writing a 1 to each bit will clear the intended interrupt.
Bit [0] - Clear Range Int
Bit [1] - Clear ALS Int
Bit [2] - Clear Error Int.
DocID026171 Rev 6
49/79
78
Device registers
SYSTEM__FRESH_OUT_OF_RESET
6
Address:
0x016
Type:
R/W
Reset:
0x1
5
4
3
2
1
0
fresh_out_of_reset
7
RESERVED
6.2.14
VL6180X
R
R/W
Description:
[0]
SYSTEM__GROUPED_PARAMETER_HOLD
6
Address:
0x017
Type:
R/W
Reset:
0x0
5
4
3
2
1
0
grouped_parameter_hold
7
RESERVED
6.2.15
fresh_out_of_reset: Fresh out of reset bit, default of 1, user can set this to 0 after initial boot and
can therefore use this to check for a reset condition
R
R/W
Description:
[0]
50/79
grouped_parameter_hold: Flag set over I2C to indicate that data is being updated
0: Data is stable - FW is safe to copy
1: Data being updated - FW not safe to copy
Usage: set to 0x01 first, write any of the registers listed below, then set to 0x00 so that the
settings are used by the firmware at the start of the next measurement.
SYSTEM__INTERRUPT_CONFIG_GPIO
SYSRANGE__THRESH_HIGH
SYSRANGE__THRESH_LOW
SYSALS__INTEGRATION_PERIOD
SYSALS__ANALOGUE_GAIN
SYSALS__THRESH_HIGH
SYSALS__THRESH_LOW
DocID026171 Rev 6
VL6180X
SYSRANGE__START
Address:
0x018
Type:
R/W
Reset:
0x0
5
4
3
2
1
0
sysrange__startstop
6
sysrange__mode_select
7
RESERVED
6.2.16
Device registers
R
R/W
R/W
Description:
[1]
sysrange__mode_select: Device Mode select
0: Ranging Mode Single-Shot
1: Ranging Mode Continuous
[0]
sysrange__startstop: StartStop trigger based on current mode and system configuration of
device_ready. FW clears register automatically.
Setting this bit to 1 in single-shot mode starts a single measurement.
Setting this bit to 1 in continuous mode will either start continuous operation (if stopped) or halt
continuous operation (if started).
This bit is auto-cleared in both modes of operation.
6.2.17
SYSRANGE__THRESH_HIGH
7
6
5
4
3
2
1
0
sysrange__thresh_high
R/W
Address:
0x019
Type:
R/W
Reset:
0xFF
Description:
[7:0]
sysrange__thresh_high: High Threshold value for ranging comparison. Range 0-255mm.
DocID026171 Rev 6
51/79
78
Device registers
6.2.18
VL6180X
SYSRANGE__THRESH_LOW
7
6
5
4
3
2
1
0
sysrange__thresh_low
R/W
Address:
0x01A
Type:
R/W
Reset:
0x0
Description:
[7:0]
6.2.19
sysrange__thresh_low: Low Threshold value for ranging comparison. Range 0-255mm.
SYSRANGE__INTERMEASUREMENT_PERIOD
7
6
5
4
3
2
1
0
sysrange__intermeasurement_period
R/W
Address:
0x01B
Type:
R/W
Reset:
0xFF
Description:
[7:0]
6.2.20
sysrange__intermeasurement_period: Time delay between measurements in Ranging
continuous mode. Range 0-254 (0 = 10ms). Step size = 10ms.
SYSRANGE__MAX_CONVERGENCE_TIME
7
6
5
4
3
2
RESERVED
sysrange__max_convergence_time
R
R/W
Address:
0x01C
Type:
R/W
Reset:
0x31
1
0
Description:
[5:0]
52/79
sysrange__max_convergence_time: Maximum time to run measurement in Ranging modes.
Range 1 - 63 ms (1 code = 1 ms); Measurement aborted when limit reached to aid power
reduction. For example, 0x01 = 1ms, 0x0a = 10ms.
Note: Effective max_convergence_time depends on readout_averaging_sample_period
setting.
DocID026171 Rev 6
VL6180X
6.2.21
15
Device registers
SYSRANGE__CROSSTALK_COMPENSATION_RATE
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
sysrange__crosstalk_compensation_rate
R/W
Address:
0x01E
Type:
R/W
Reset:
0x0
Description:
[15:0]
6.2.22
sysrange__crosstalk_compensation_rate: User-controlled crosstalk compensation in Mcps (9.7
format).
SYSRANGE__CROSSTALK_VALID_HEIGHT
7
6
5
4
3
2
1
0
sysrange__crosstalk_valid_height
R/W
Address:
0x021
Type:
R/W
Reset:
0x14
Description:
[7:0]
6.2.23
15
sysrange__crosstalk_valid_height: Minimum range value in mm to qualify for crosstalk
compensation.
SYSRANGE__EARLY_CONVERGENCE_ESTIMATE
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
sysrange__early_convergence_estimate
R/W
Address:
0x022
Type:
R/W
Reset:
0x0
Description:
[15:0]
FW carries out an estimate of convergence rate 0.5ms into each new range measurement. If
convergence rate is below user input value, the operation aborts to save power.
Note: This register must be configured otherwise ECE should be disabled via
SYSRANGE__RANGE_CHECK_ENABLES.
DocID026171 Rev 6
53/79
78
Device registers
6.2.24
VL6180X
SYSRANGE__PART_TO_PART_RANGE_OFFSET
7
6
5
4
3
2
1
0
1
0
sysrange__part_to_part_range_offset
R/W
Address:
0x024
Type:
R/W
Reset:
0xYY, register default overwritten at boot-up by NVM contents.
Description:
[7:0]
6.2.25
sysrange__part_to_part_range_offset: 2s complement format.
SYSRANGE__RANGE_IGNORE_VALID_HEIGHT
7
6
5
4
3
2
sysrange__range_ignore_valid_height
R/W
Address:
0x025
Type:
R/W
Reset:
0x0, register default overwritten at boot-up by NVM contents.
Description:
[7:0]
6.2.26
15
sysrange__range_ignore_valid_height: Range below which ignore threshold is applied. Aim is
to ignore the cover glass i.e. low signal rate at near distance. Should not be applied to low
reflectance target at far distance. Range in mm.
Note: It is recommended to set this register to 255 if the range ignore feature is used.
SYSRANGE__RANGE_IGNORE_THRESHOLD
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
sysrange__range_ignore_threshold
R/W
Address:
0x026
Type:
R/W
Reset:
0xYY
Description:
[15:0]
54/79
sysrange__range_ignore_threshold: User configurable min threshold signal return rate. Used
to filter out ranging due to cover glass when there is no target above the device. Mcps 9.7
format.
Note: Register must be initialized if this feature is used.
DocID026171 Rev 6
VL6180X
6.2.27
Device registers
SYSRANGE__MAX_AMBIENT_LEVEL_MULT
7
6
5
4
3
2
1
0
sysrange__max_ambient_level_mult
R/W
Address:
0x02C
Type:
R/W
Reset:
0xA0, register default overwritten at boot-up by NVM contents.
Description:
[7:0]
6.2.28
sysrange__max_ambient_level_mult: User input value to multiply return_signal_count for
AMB:signal ratio check. If (amb counts * 6) > return_signal_count * mult then abandon
measurement due to high ambient (4.4 format).
SYSRANGE__RANGE_CHECK_ENABLES
1
0
sysrange__early_convergence_enable
2
sysrange__range_ignore_enable
3
0
4
0
5
sysrange__signal_to_noise_enable
6
RESERVED
7
R
R/W
R/W
R
R/W
R/W
Address:
0x02D
Type:
R/W
Reset:
0x11, register default overwritten at boot-up by NVM contents.
Description:
[4]
sysrange__signal_to_noise_enable: Measurement enable/disable
[1]
sysrange__range_ignore_enable: Measurement enable/disable
[0]
sysrange__early_convergence_enable: Measurement enable/disable
DocID026171 Rev 6
55/79
78
Device registers
SYSRANGE__VHV_RECALIBRATE
Address:
0x02E
Type:
R/W
Reset:
0x0
5
4
3
2
1
0
sysrange__vhv_recalibrate
6
sysrange__vhv_status
7
RESERVED
6.2.29
VL6180X
R
R/W
R/W
Description:
[1]
sysrange__vhv_status: FW controlled status bit showing when FW has completed auto-vhv
process.
0: FW has finished autoVHV operation
1: During autoVHV operation
[0]
sysrange__vhv_recalibrate: User-Controlled enable bit to force FW to carry out recalibration of
the VHV setting for sensor array. FW clears bit after operation carried out.
0: Disabled
1: Manual trigger for VHV recalibration. Can only be called when ALS and ranging are in STOP
mode
6.2.30
SYSRANGE__VHV_REPEAT_RATE
7
6
5
4
3
2
1
0
sysrange__vhv_repeate_rate
R/W
Address:
0x031
Type:
R/W
Reset:
0x0
Description:
[7:0]
56/79
sysrange__vhv_repeat_rate: User entered repeat rate of auto VHV task (0 = off, 255 = after
every 255 measurements)
DocID026171 Rev 6
VL6180X
SYSALS__START
5
Address:
0x038
Type:
R/W
Reset:
0x0
4
3
2
1
0
sysals__startstop
6
sysals__mode_select
7
RESERVED
6.2.31
Device registers
R
R/W
R/W
Description:
[1]
sysals__mode_select: Device Mode select
0: ALS Mode Single-Shot
1: ALS Mode Continuous
[0]
sysals__startstop: Start/Stop trigger based on current mode and system configuration of
device_ready. FW clears register automatically.
Setting this bit to 1 in single-shot mode starts a single measurement.
Setting this bit to 1 in continuous mode will either start continuous operation (if stopped) or halt
continuous operation (if started).
This bit is auto-cleared in both modes of operation.
See 6.2.56: INTERLEAVED_MODE__ENABLE for combined ALS and Range operation.
6.2.32
15
SYSALS__THRESH_HIGH
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
sysals__thresh_high
R/W
Address:
0x03A
Type:
R/W
Reset:
0xFFFF
Description:
[15:0]
sysals__thresh_high: High Threshold value for ALS comparison. Range 0-65535 codes.
DocID026171 Rev 6
57/79
78
Device registers
6.2.33
15
VL6180X
SYSALS__THRESH_LOW
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
sysals__thresh_low
R/W
Address:
0x03C
Type:
R/W
Reset:
0x0
Description:
[15:0]
6.2.34
sysals__thresh_low: Low Threshold value for ALS comparison. Range 0-65535 codes.
SYSALS__INTERMEASUREMENT_PERIOD
7
6
5
4
3
2
1
0
sysals__intermeasurement_period
R/W
Address:
0x03E
Type:
R/W
Reset:
0xFF
Description:
[7:0]
58/79
sysals__intermeasurement_period: Time delay between measurements in ALS continuous
mode. Range 0-254 (0 = 10ms). Step size = 10ms.
DocID026171 Rev 6
VL6180X
6.2.35
Device registers
SYSALS__ANALOGUE_GAIN
7
6
5
Address:
0x03F
Type:
R/W
Reset:
0x06
4
3
2
1
0
RESERVED
sysals__analogue_gain_light
R
R/W
Description:
[2:0]
6.2.36
15
sysals__analogue_gain_light: ALS analogue gain (light channel)
0: ALS Gain = 20
1: ALS Gain = 10
2: ALS Gain = 5.0
3: ALS Gain = 2.5
4: ALS Gain = 1.67
5: ALS Gain = 1.25
6: ALS Gain = 1.0
7: ALS Gain = 40
Controls the “light” channel gain.
Note: Upper nibble should be set to 0x4 i.e. For ALS gain of 1.0 write 0x46.
SYSALS__INTEGRATION_PERIOD
14
13
12
11
10
9
8
7
6
5
4
3
RESERVED
sysals__integration_period
R
R/W
Address:
0x040
Type:
R/W
Reset:
0x0
2
1
0
Description:
[8:0]
sysals__integration_period: Integration period for ALS mode. 1 code = 1 ms (0 = 1 ms).
Recommended setting is 100 ms (0x63).
DocID026171 Rev 6
59/79
78
Device registers
3
2
1
0
result__range_max_threshold_hit
result__range_measurement_ready
result__range_device_ready
7
result__range_min_threshold_hit
RESULT__RANGE_STATUS
result__range_error_code
6.2.37
VL6180X
6
5
R
R
R
R
R
Address:
0x04D
Type:
R
Reset:
0x1
4
Description:
[7:4]
60/79
result__range_error_code: Specific error codes
0000: No error
0001: VCSEL Continuity Test
0010: VCSEL Watchdog Test
0011: VCSEL Watchdog
0100: PLL1 Lock
0101: PLL2 Lock
0110: Early Convergence Estimate
0111: Max Convergence
1000: No Target Ignore
1001: Not used
1010: Not used
1011: Max Signal To Noise Ratio
1100: Raw Ranging Algo Underflow
1101: Raw Ranging Algo Overflow
1110: Ranging Algo Underflow
1111: Ranging Algo Overflow
[3]
result__range_min_threshold_hit: Legacy register - DO NOT USE
Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO
[2]
result__range_max_threshold_hit: Legacy register - DO NOT USE
Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO
[1]
result__range_measurement_ready: Legacy register - DO NOT USE
Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO
[0]
result__range_device_ready: Device Ready. When set to 1, indicates the device mode and
configuration can be changed and a new start command will be accepted. When 0, indicates
the device is busy.
DocID026171 Rev 6
VL6180X
3
2
1
0
result__als_max_threshold_hit
result__als_measurement_ready
result__als_device_ready
7
result__als_min_threshold_hit
RESULT__ALS_STATUS
result__als_error_code
6.2.38
Device registers
6
5
R
R
R
R
R
Address:
0x04E
Type:
R
Reset:
0x1
4
Description:
[7:4]
result__als_error_code: Specific error and debug codes
0000: No error
0001: Overflow error
0002: Underflow error
[3]
result__als_min_threshold_hit: Legacy register - DO NOT USE
Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO
[2]
result__als_max_threshold_hit: Legacy register - DO NOT USE
Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO
[1]
result__als_measurement_ready: Legacy register - DO NOT USE
Use instead 6.2.39: RESULT__INTERRUPT_STATUS_GPIO
[0]
result__als_device_ready: Device Ready. When set to 1, indicates the device mode and
configuration can be changed and a new start command will be accepted. When 0 indicates the
device is busy.
DocID026171 Rev 6
61/79
78
Device registers
6.2.39
VL6180X
RESULT__INTERRUPT_STATUS_GPIO
7
6
5
4
3
2
1
0
result_int_error_gpio
result_int_als_gpio
result_int_range_gpio
R
R
R
Address:
0x04F
Type:
R
Reset:
0x0
Description:
[7:6]
result_int_error_gpio: Interrupt bits for Error:
0: No error reported
1: Laser Safety Error
2: PLL error (either PLL1 or PLL2)
[5:3]
result_int_als_gpio: Interrupt bits for ALS:
0: No threshold events reported
1: Level Low threshold event
2: Level High threshold event
3: Out Of Window threshold event
4: New Sample Ready threshold event
[2:0]
result_int_range_gpio: Interrupt bits for Range:
0: No threshold events reported
1: Level Low threshold event
2: Level High threshold event
3: Out Of Window threshold event
4: New Sample Ready threshold event
6.2.40
15
RESULT__ALS_VAL
14
13
12
11
10
9
8
7
6
5
4
3
2
1
result__als_ambient_light
R
Address:
0x050
Type:
R
Reset:
0x0
Description:
[15:0]
62/79
result__als_ambient_light: 16 Bit ALS count output value. Lux value depends on Gain and
integration settings and calibrated lux/count setting.
DocID026171 Rev 6
0
VL6180X
6.2.41
Device registers
RESULT__HISTORY_BUFFER_x
15
14
13
12
11
10
9
8
7
6
RESULT__HISTOR
Y_BUFFER_0
result__history_buffer_0
RESULT__HISTOR
Y_BUFFER_1
result__history_buffer_1
RESULT__HISTOR
Y_BUFFER_2
result__history_buffer_2
RESULT__HISTOR
Y_BUFFER_3
result__history_buffer_3
RESULT__HISTOR
Y_BUFFER_4
result__history_buffer_4
RESULT__HISTOR
Y_BUFFER_5
result__history_buffer_5
RESULT__HISTOR
Y_BUFFER_6
result__history_buffer_6
RESULT__HISTOR
Y_BUFFER_7
result__history_buffer_7
5
4
3
2
1
0
R
Address:
0x052 + x * 0x2 (x=0 to 7)
Type:
R
Reset:
0x0
Description:
See also 6.2.11: SYSTEM__HISTORY_CTRL
RESULT__HISTOR result__history_buffer_0: Range/ALS result value.
Y_BUFFER_0:
Range mode; Bits[15:8] range_val_latest; Bits[7:0] range_val_d1;
[15:0]
ALS mode; Bits[15:0] als_val_latest
RESULT__HISTOR result__history_buffer_1: Range/ALS result value.
Y_BUFFER_1:
Range mode; Bits[15:8] range_val_d2; Bits[7:0] range_val_d3;
[15:0]
ALS mode; Bits[15:0] als_val_d1
RESULT__HISTOR result__history_buffer_2: Range/ALS result value.
Y_BUFFER_2:
Range mode; Bits[15:8] range_val_d4; Bits[7:0] range_val_d5;
[15:0]
ALS mode; Bits[15:0] als_val_d2
RESULT__HISTOR result__history_buffer_3: Range/ALS result value.
Y_BUFFER_3:
Range mode; Bits[15:8] range_val_d6; Bits[7:0] range_val_d7;
[15:0]
ALS mode; Bits[15:0] als_val_d3
RESULT__HISTOR result__history_buffer_4: Range/ALS result value.
Y_BUFFER_4:
Range mode; Bits[15:8] range_val_d8; Bits[7:0] range_val_d9;
[15:0]
ALS mode; Bits[15:0] als_val_d4
RESULT__HISTOR result__history_buffer_5: Range/ALS result value.
Y_BUFFER_5:
Range mode; Bits[15:8] range_val_d10; Bits[7:0] range_val_d11;
[15:0]
ALS mode; Bits[15:0] als_val_d5
RESULT__HISTOR result__history_buffer_6: Range/ALS result value.
Y_BUFFER_6:
Range mode; Bits[15:8] range_val_d12; Bits[7:0] range_val_d13;
[15:0]
ALS mode; Bits[15:0] als_val_d6
RESULT__HISTOR result__history_buffer_7: Range/ALS result value.
Y_BUFFER_7:
Range mode; Bits[15:8] range_val_d14; Bits[7:0] range_val_d15;
[15:0]
ALS mode; Bits[15:0] als_val_d7
DocID026171 Rev 6
63/79
78
Device registers
6.2.42
VL6180X
RESULT__RANGE_VAL
7
6
5
4
3
2
1
0
result__range_val
R
Address:
0x062
Type:
R
Reset:
0x0
Description:
[7:0]
6.2.43
result__range_val: Final range result value presented to the user for use. Unit is in mm.
RESULT__RANGE_RAW
7
6
5
4
3
2
1
0
result__range_raw
R
Address:
0x064
Type:
R
Reset:
0x0
Description:
[7:0]
6.2.44
15
result__range_raw: Raw Range result value with offset applied (no cross talk compensation
applied). Unit is in mm.
RESULT__RANGE_RETURN_RATE
14
13
12
11
10
9
8
7
6
5
4
3
2
1
result__range_return_rate
R
Address:
0x066
Type:
R
Reset:
0x0
Description:
[15:0]
64/79
result__range_return_rate: sensor count rate of signal returns correlated to IR emitter.
Computed from RETURN_SIGNAL_COUNT / RETURN_CONV_TIME. Mcps 9.7 format
DocID026171 Rev 6
0
VL6180X
6.2.45
15
Device registers
RESULT__RANGE_REFERENCE_RATE
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
result__range_reference_rate
R
Address:
0x068
Type:
R
Reset:
0x0
Description:
[15:0]
6.2.46
result__range_reference_rate: sensor count rate of reference signal returns. Computed from
REFERENCE_SIGNAL_COUNT / RETURN_CONV_TIME. Mcps 9.7 format
Note: Both arrays converge at the same time, so using the return array convergence time is
correct.
RESULT__RANGE_RETURN_SIGNAL_COUNT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
result__range_return_signal_count
R
Address:
0x06C
Type:
R
Reset:
0x0
Description:
[31:0]
result__range_return_signal_count: sensor count output value attributed to signal correlated to
IR emitter on the Return array.
DocID026171 Rev 6
65/79
78
Device registers
6.2.47
VL6180X
RESULT__RANGE_REFERENCE_SIGNAL_COUNT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
2
1
0
result__range_reference_signal_count
R
Address:
0x070
Type:
R
Reset:
0x0
Description:
[31:0]
6.2.48
result__range_reference_signal_count: sensor count output value attributed to signal
correlated to IR emitter on the Reference array.
RESULT__RANGE_RETURN_AMB_COUNT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
result__range_return_amb_count
R
Address:
0x074
Type:
R
Reset:
0x0
Description:
[31:0]
6.2.49
result__range_return_amb_count: sensor count output value attributed to uncorrelated ambient
signal on the Return array. Must be multiplied by 6 if used to calculate the ambient to signal
threshold.
RESULT__RANGE_REFERENCE_AMB_COUNT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
result__range_reference_amb_count
R
Address:
0x078
Type:
R
Reset:
0x0
Description:
[31:0]
66/79
result__range_reference_amb_count: sensor count output value attributed to uncorrelated
ambient signal on the Reference array.
DocID026171 Rev 6
0
VL6180X
6.2.50
Device registers
RESULT__RANGE_RETURN_CONV_TIME
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
result__range_return_conv_time
R
Address:
0x07C
Type:
R
Reset:
0x0
Description:
[31:0]
6.2.51
result__range_return_conv_time: sensor count output value attributed to signal on the Return
array.
RESULT__RANGE_REFERENCE_CONV_TIME
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
result__range_reference_conv_time
R
Address:
0x080
Type:
R
Reset:
0x0
Description:
[31:0]
6.2.52
result__range_reference_conv_time: sensor count output value attributed to signal on the
Reference array.
READOUT__AVERAGING_SAMPLE_PERIOD
7
6
5
4
3
2
1
0
readout__averaging_sample_period
R/W
Address:
0x10A
Type:
R/W
Reset:
0x30
Description:
[7:0]
readout__averaging_sample_period: The internal readout averaging sample period can be
adjusted from 0 to 255. Increasing the sampling period decreases noise but also reduces the
effective max convergence time and increases power consumption:
Effective max convergence time = max convergence time - readout averaging period (see
Section 2.5: Range timing). Each unit sample period corresponds to around 64.5 µs additional
processing time. The recommended setting is 48 which equates to around 4.3 ms.
DocID026171 Rev 6
67/79
78
Device registers
FIRMWARE__BOOTUP
6
5
Address:
0x119
Type:
R/W
Reset:
0x1
4
3
2
1
0
firmware__bootup
7
RESERVED
6.2.53
VL6180X
R
R/W
Description:
[0]
6.2.54
firmware__bootup: FW must set bit once initial boot has been completed.
FIRMWARE__RESULT_SCALER
7
6
5
4
3
2
1
RESERVED
firmware__als_result_scaler
R
R/W
Address:
0x120
Type:
R/W
Reset:
0x1
0
Description:
[3:0]
6.2.55
firmware__als_result_scaler: Bits [3:0] analogue gain 1 to 16x
I2C_SLAVE__DEVICE_ADDRESS
7
6
5
4
3
RESERVED
super_i2c_slave__device_address
R
R/W
Address:
0x212
Type:
R/W
Reset:
0x29
2
1
0
Description:
[6:0]
68/79
super_i2c_slave__device_address: User programmable I2C address (7-bit). Device address
can be re-designated after power-up.
DocID026171 Rev 6
VL6180X
6.2.56
Device registers
INTERLEAVED_MODE__ENABLE
7
6
5
4
3
2
1
0
interleaved_mode__enable
R/W
Address:
0x2A3
Type:
R/W
Reset:
0x0
Description:
[7:0]
Interleaved mode enable: Write 0x1 to this register to select ALS+Range interleaved mode.
Use SYSALS__START and SYSALS__INTERMEASUREMENT_PERIOD to control this mode.
A range measurement is automatically performed immediately after each ALS measurement.
DocID026171 Rev 6
69/79
78
70/79
DocID026171 Rev 6
F
E
D
C
B
3267,215(7851
$3(5785(
$/6$3(5785(
VENT ONLY
2
“
1
Linear
0 Place Decimals 0
±0.05
1 Place Decimals 0.0 ±0.05
2 Place Decimals 0.00 ±0.05
Angular
±0.25 degrees
Diameter
+0.05
0.10
Position
Surface Finish 1.6 microns
Tolerances, unless otherwise stated
2
3
Interpret drawing per BS8888,
3RD Angle Projection
-
Finish
-
4
/,*+7(0,66,21
$3(5785(
Material
GATE - COSMETIC
(SUPPLIER DEPENDENT)
3
127(6
',0(16,2160$5.('7+86$5(72%(86('
$6,163(&7,21',0(16,216
“
5
%
6
8432884
Part No.
14 DEC 12
Date
Do Not Scale
7
'$7(
8
2
25:1
Scale
VL6180 BABYBEAR CUT 1.0 Sheet
VL6180X
MODULE
OUTLINE DRAWING 1 OF
Title
STMicroelectronics
Imaging Division
Drawn
All dimensions
DAVID MCARDLE in mm
8
SEE SHEET 2
1(:'5$:,1*)5$0(216+7$7*5,'5()'
',0(16,21'(/(7(',1/+9,(:*$7($''('
'(6&5,37,21
83'$7('287/,1(725(029(*$7(,//8675$7,21
%
5(9,6,216
7
5(9
AREA RESERVED FOR
PART MARKING
“
6
F
E
D
C
B
A
7
“
A
1
Outline drawing
VL6180X
Outline drawing
Figure 27. Outline drawing (page 1/2)
DocID026171 Rev 6
1
Linear
0 Place Decimals 0
±0.05
1 Place Decimals 0.0 ±0.05
2 Place Decimals 0.00 ±0.05
Angular
±0.25 degrees
+0.05
Diameter
Position
0.10
Surface Finish 1.6 microns
Tolerances, unless otherwise stated
3$'1R )81&7,21
*3,2
1&
1&
*3,2
6&/
6'$
E
1&
$9''B9&6(/
$966B9&6(/
$9''
1&
*1'
F
2
3
4
Finish
-
Material
-
&21($3(;
5
PROXIMITY SENSOR
ALS CONE
PROXIMITY SENSOR
VIEW CONE
“
PIN INDICATOR
,1326
“
Interpret drawing per BS8888,
3RD Angle Projection
TOLERANCE 0.03 APPLIES
UNLESS OTHERWISE STATED
D &211(&7,217$%/(
C
B
3
,1326
A
2
1
6
6
&21($3(;
PROXIMITY SENSOR
ILLUMINATION CONE
8432884
Part No.
14 DEC 12
Do Not Scale
7
8
VL6180
BABYBEAR CUT 1.0
VL6180X
MODULE OUTLINE DRAWING
Title
STMicroelectronics
Imaging Division
Drawn
All dimensions
DAVID MCARDLE in mm
Date
8
B1
2 OF 2
Sheet
25:1
Scale
REV
ƒ)8//)29
$0%,(1775$160,66,21
ƒ
,1326
7
F
E
D
C
B
A
VL6180X
Outline drawing
Figure 28. Outline drawing (page 2/2)
71/79
78
Laser safety considerations
8
VL6180X
Laser safety considerations
The VL6180X contains a laser emitter and corresponding drive circuitry. The laser output is
designed to remain within Class 1 laser safety limits under all reasonably foreseeable
conditions including single faults in compliance with IEC 60825-1:2007. The laser output will
remain within Class 1 limits as long as the STMicroelectronics recommended device
settings are used and the operating conditions specified in this datasheet are respected.
The laser output power must not be increased by any means and no optics should be used
with the intention of focusing the laser beam.
Figure 29. Class 1 laser product label
8.1
Compliance
Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice
No.50, dated June 24, 2007.
72/79
DocID026171 Rev 6
VL6180X
9
Ordering information
Ordering information
VL6180X is currently available in the following format. More detailed information is available
on request.
Table 26. Delivery format
Order code
VL6180XV0NR/1
9.1
Description
Tape and reel (5000 units in a reel)
Traceability and identification
Latest ROM revision can be identified as follows:
0x002 IDENTIFICATION__MODEL_REV_MINOR = 3
The minimum information required for traceability is the content of the following registers:
0x006 - IDENTIFICATION__DATE_HI
0x007 - IDENTIFICATION__DATE_LO
0x008 - IDENTIFICATION__TIME (16-bit)
0x00A - IDENTIFICATION__CODE
With this information, the module can be uniquely identified.
Preferably, all the IDENTIFICATION register contents should be provided for traceability.
9.2
Part marking
Devices are marked on the underside as shown below. 1st line is the product ID. 2nd line is
the manufacturing info. (circled in green), where the 1st four letters are the lot ID and the
last 3 digits are the year + week number. Here: 338 is 2013 wk38. The final letter, circled in
red, is the ROM revision (‘D’).
Figure 30. Part marking
D
DocID026171 Rev 6
73/79
78
Ordering information
9.3
VL6180X
Packaging
The Root part number 1 is available in tape and reel packaging as shown in Figure 31.
Figure 31. Tape and reel packaging
4.0 (Po)
1.55+
- 0.1 (Do)
2.0 (P2)
B
1.75 (E)
5.5 +
- 0.05 (F)
5.10 (Bo)
5°
12.0+
- 0.3 (W)
0.30 +
- 0.05 (T)
A
A
B
1.20 (Ko)
8.0 (P1)
1.6 +
- 0.05 (D1)
SECTION B-B
3.10 (Ao)
SECTION A-A
Ao +
- 0.1 Bo +-0.1 Ko +-0.1
3.10
9.3.1
5.10
1.20
E+
- 0.1
1.75
USER FEED
DIRECTION
F+
- 0.05 Po +-0.1 P1 +-0.1 P2 +-0.1 Do +-0.1 T+- 0.05 W+-0.3
5.5
4.0
8.0
2.0
1.55
0.30
12.0
Package labeling
The labeling on the packing carton is shown in Figure 32. The latest ROM revision is
indicated alongside the order code (shaded green) and also after the product marking
(shaded pink).
Figure 32. Package labeling
74/79
DocID026171 Rev 6
VL6180X
9.4
Ordering information
Storage
The Root part number 1 is a MSL 3 package.
Table 27. Storage conditions
Floor Life (out of bag) at Factory
Level
3
Ambient <30oC/60% RH
1 Week
After this limit, dry bake to be done; 3 hours at 125oC.
9.5
ROHS compliance
The Root part number 1 is Ecopack2 compliant as per ST definition.
Devices which are ROHS compliant even with use of ROHS exemption(s) and free of
Halogenated flame retardant are named ECOPACK2 devices with the following definition:
•
ROHS compliant even with use of ROHS exemption(s)
•
500 ppm maximum of Antimony as oxide or organic compound in each organic assy
Materials (glue, substrate, mod compounds, housing...). Antimony in ceramic parts, in
glass and in solder alloy is not restricted.
•
900 ppm maximum Bromine + Chlorine in each organic ass materials (glue, substrate,
mold compounds, housing...)
These values are referring to maximum total content not to extractable ions content.
Purchasing specification of assembly materials can impose lower values for technical
reasons.
ECOPACK2 devices are of course fully compliant to ST banned and declarable substances
specification and for example cannot contain red Phosphorus flame retardant.
DocID026171 Rev 6
75/79
78
ECOPACK®
10
VL6180X
ECOPACK®
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
76/79
DocID026171 Rev 6
VL6180X
11
Revision history
Revision history
Table 28. Document revision history
Date
Revision
23-Sep-2013
1
Changes
Initial release.
1.1
General update for latest ROM revision:
Section 1.1: Technical specification updated
Section 1.4: Application schematic updated
Section 1.5: Recommended solder pad dimensions updated
Notes added to Figure 5.: Recommended reflow profile
Section 2.13: Ambient light sensor (ALS) updated.
Section 3.1: Absolute maximum ratings added
Section 3.2: Normal operating conditions extended
Section 4: Performance specification added
Revised outline drawing added to Section 7: Outline drawing
Class 1 laser product label added to Section 7: Outline drawing
Section 9: Ordering information added information relating to
device marking and package labeling
02-Apr-2014
1.2
Updates to the following sections:
Section 1.5: Recommended solder pad dimensions
Section 3.2: Normal operating conditions
Section 3.4: Electrical characteristics
Section 4.1: Proximity ranging (0 to 100mm)
Added Section 4.2: ALS performance
Corrected error codes in.Section 6.2.38: RESULT__ALS_STATUS
Updated Section 6.2.20:
SYSRANGE__MAX_CONVERGENCE_TIME
Product code changed to VL6180X
09-Apr-14
2
Add documentation reference number (026171)
Update Disclaimer
15-May-14
3
ALS linearity spec updated in Section 4.2: ALS performance
Updated some detail in Table 1.: Technical specification
Added comment to Section 1.3: Device pinout stating that pins
labeled ‘no connect’ can optionally be connected to ground
Added test condition to Section 3.3: Current consumption
Errata corrections in 6.2.8, 6.2.35 and 6.2.54
Section 7: Outline drawing updated (no dimensional changes)
Dry bake conditions updated in Section 9.4: Storage
28-May-14
4
Added Section 8.1: Compliance
30-Jan-2014
DocID026171 Rev 6
77/79
78
Revision history
VL6180X
Table 28. Document revision history (continued)
Date
16-Jun-14
20-Aug-2014
78/79
Revision
Changes
5
Re-write of Section 2: Functional description.
Section 6: Device registers: Added introduction and minor
corrections
Section 7: Outline drawing updated to Rev B1. Supplier dependent
gate mark added.
6
Updates:
Section 2.8.3: Signal-to-noise ratio (SNR): Clarified SNR
calculation.
Section 6: Device registers: Corrected a clarified some register
descriptions.
Typical ranging performance graph updated.
Delivery & manufacturing info updated.
DocID026171 Rev 6
VL6180X
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2014 STMicroelectronics – All rights reserved
DocID026171 Rev 6
79/79
79