VN7040AJ, VN7040AS - STMicroelectronics

VN7040AJ, VN7040AS
High-side driver with MultiSense analog feedback for automotive
applications
Datasheet - production data
−
−
−
Applications
Features
•
Max transient supply voltage
VCC
40 V
Operating voltage range
VCC
4 to 28 V
Typ. on-state resistance (per Ch)
RON
40 mΩ
Current limitation (typ)
ILIMH
34 A
Standby current (max)
ISTBY
0.5 µA
•
•
•
•
Automotive qualified
General
−
Single channel smart high-side driver
with MultiSense analog feedback
−
Very low standby current
−
Compatible with 3 V and 5 V CMOS
outputs
MultiSense diagnostic functions
−
Multiplexed analog feedback of: load
current with high precision proportional
current mirror, VCC supply voltage and
TCHIP device temperature
−
Overload and short to ground (power
limitation) indication
−
Thermal shutdown indication
−
OFF-state open-load detection
−
Output short to VCC detection
−
Sense enable/disable
Protections
−
Undervoltage shutdown
−
Overvoltage clamp
−
Load current limitation
−
Self limiting of fast thermal transients
−
Configurable latch-off on
overtemperature or power limitation
with dedicated fault reset pin
July 2015
Loss of ground and loss of VCC
Reverse battery with external
components
Electrostatic discharge protection
•
All types of Automotive resistive, inductive
and capacitive loads
Specially intended for Automotive Turn
Indicators (up to P27W or SAE1156 and
R5W paralleled or LED Rear Combinations)
Description
The devices are single channel high-side drivers
manufactured using ST proprietary VIPower®
M0-7 technology and housed in PowerSSO-16
and SO-8 packages. The devices are designed to
drive 12 V automotive grounded loads through a
3 V and 5 V CMOS-compatible interface, and to
provide protection and diagnostics.
The devices integrate advanced protective
functions such as load current limitation, overload
active management by power limitation and
overtemperature shutdown with configurable
latch-off.
A FaultRST pin unlatches the output in case of
fault or disables the latch-off functionality.
A dedicated multifunction multiplexed analog
output pin delivers sophisticated diagnostic
functions including high precision proportional
load current sense, supply voltage feedback and
chip temperature sense, in addition to the
detection of overload and short circuit to ground,
short to VCC and OFF-state open-load.
A sense enable pin allows OFF-state diagnosis to
be disabled during the module low-power mode
as well as external sense resistor sharing among
similar devices.
DocID027400 Rev 2
This is information on a product in full production.
1/55
www.st.com
Contents
VN7040AJ, VN7040AS
Contents
1
Block diagram and pin description ................................................ 7
2
Electrical specification.................................................................... 9
3
4
2.1
Absolute maximum ratings ................................................................ 9
2.2
Thermal data ................................................................................... 10
2.3
Main electrical characteristics ......................................................... 10
2.4
Waveforms ...................................................................................... 21
2.5
Electrical characteristics curves ...................................................... 24
Protections..................................................................................... 28
3.1
Power limitation ............................................................................... 28
3.2
Thermal shutdown........................................................................... 28
3.3
Current limitation ............................................................................. 28
3.4
Negative voltage clamp ................................................................... 28
Application information ................................................................ 29
4.1
GND protection network against reverse battery............................. 29
4.1.1
Diode (DGND) in the ground line ..................................................... 30
4.2
Immunity against transient electrical disturbances .......................... 30
4.3
MCU I/Os protection........................................................................ 30
4.4
Multisense - analog current sense .................................................. 31
4.4.1
Principle of Multisense signal generation ......................................... 32
4.4.2
TCASE and VCC monitor ................................................................. 34
4.4.3
Short to VCC and OFF-state open-load detection ........................... 35
5
Maximum demagnetization energy (VCC = 16 V) ........................ 37
6
Package and PCB thermal data .................................................... 38
7
2/55
6.1
PowerSSO-16 thermal data ............................................................ 38
6.2
SO-8 thermal data ........................................................................... 41
Package information ..................................................................... 44
7.1
PowerSSO-16 package information ................................................ 44
7.2
SO-8 package information .............................................................. 46
7.3
PowerSSO-16 packing information ................................................. 47
7.4
SO-8 packing information ................................................................ 49
7.5
PowerSSO-16 marking information ................................................. 51
7.6
SO-8 marking information ............................................................... 52
DocID027400 Rev 2
VN7040AJ, VN7040AS
Contents
8
Order codes ................................................................................... 53
9
Revision history ............................................................................ 54
DocID027400 Rev 2
3/55
List of tables
VN7040AJ, VN7040AS
List of tables
Table 1: Pin functions ................................................................................................................................. 7
Table 2: Suggested connections for unused and not connected pins ........................................................ 8
Table 3: Absolute maximum ratings ........................................................................................................... 9
Table 4: Thermal data ............................................................................................................................... 10
Table 5: Power section ............................................................................................................................. 10
Table 6: Switching..................................................................................................................................... 11
Table 7: Logic inputs ................................................................................................................................. 12
Table 8: Protections .................................................................................................................................. 13
Table 9: MultiSense .................................................................................................................................. 13
Table 10: Truth table ................................................................................................................................. 20
Table 11: MultiSense multiplexer addressing ........................................................................................... 21
Table 12: ISO 7637-2 - electrical transient conduction along supply line................................................. 30
Table 13: MultiSense pin levels in off-state .............................................................................................. 34
Table 14: PCB properties ......................................................................................................................... 38
Table 15: Thermal parameters ................................................................................................................. 40
Table 16: PCB properties ......................................................................................................................... 41
Table 17: Thermal parameters ................................................................................................................. 43
Table 18: PowerSSO-16 mechanical data................................................................................................ 44
Table 19: SO-8 mechanical data .............................................................................................................. 46
Table 20: Reel dimensions ....................................................................................................................... 47
Table 21: PowerSSO-16 carrier tape dimensions .................................................................................... 48
Table 22: Reel dimensions ....................................................................................................................... 49
Table 23: SO-8 carrier tape dimensions ................................................................................................... 50
Table 24: Device summary ....................................................................................................................... 53
Table 25: Document revision history ........................................................................................................ 54
4/55
DocID027400 Rev 2
VN7040AJ, VN7040AS
List of figures
List of figures
Figure 1: Block diagram .............................................................................................................................. 7
Figure 2: Configuration diagram (top view)................................................................................................. 8
Figure 3: Current and voltage conventions ................................................................................................. 9
Figure 4: IOUT/ISENSE versus IOUT....................................................................................................... 17
Figure 5: Current sense accuracy versus IOUT ....................................................................................... 18
Figure 6: Switching time and Pulse skew ................................................................................................. 18
Figure 7: MultiSense timings (current sense mode) ................................................................................. 19
Figure 8: Multisense timings (chip temperature and VCC sense mode) (VN7040AJ only) ...................... 19
Figure 9: TDSTKON.................................................................................................................................. 20
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD) ...................... 21
Figure 11: Latch functionality - behavior in hard short circuit condition.................................................... 22
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off) .... 22
Figure 13: Standby mode activation ......................................................................................................... 23
Figure 14: Standby state diagram ............................................................................................................. 23
Figure 15: OFF-state output current ......................................................................................................... 24
Figure 16: Standby current ....................................................................................................................... 24
Figure 17: IGND(ON) vs. Tcase ............................................................................................................... 24
Figure 18: Logic Input high level voltage .................................................................................................. 24
Figure 19: Logic Input low level voltage.................................................................................................... 24
Figure 20: High level logic input current ................................................................................................... 24
Figure 21: Low level logic input current .................................................................................................... 25
Figure 22: Logic Input hysteresis voltage ................................................................................................. 25
Figure 23: FaultRST Input clamp voltage ................................................................................................. 25
Figure 24: Undervoltage shutdown ........................................................................................................... 25
Figure 25: On-state resistance vs. Tcase ................................................................................................. 25
Figure 26: On-state resistance vs. VCC ................................................................................................... 25
Figure 27: Turn-on voltage slope .............................................................................................................. 26
Figure 28: Turn-off voltage slope .............................................................................................................. 26
Figure 29: Won vs. Tcase ......................................................................................................................... 26
Figure 30: Woff vs. Tcase ......................................................................................................................... 26
Figure 31: ILIMH vs. Tcase ....................................................................................................................... 26
Figure 32: OFF-state open-load voltage detection threshold ................................................................... 26
Figure 33: Vsense clamp vs. Tcase.......................................................................................................... 27
Figure 34: Vsenseh vs. Tcase .................................................................................................................. 27
Figure 35: Application diagram ................................................................................................................. 29
Figure 36: Simplified internal structure ..................................................................................................... 29
Figure 37: MultiSense and diagnostic – block diagram ............................................................................ 31
Figure 38: MultiSense block diagram ....................................................................................................... 32
Figure 39: Analogue HSD – open-load detection in off-state ................................................................... 33
Figure 40: Open-load / short to VCC condition ......................................................................................... 34
Figure 41: GND voltage shift .................................................................................................................... 35
Figure 42: Maximum turn off current versus inductance .......................................................................... 37
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5) ............................................ 38
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7) ........................................... 38
Figure 45: PowerSSO-16 Rthj-amb vs PCB copper area in open box free air condition (one channel on)
.................................................................................................................................................................. 39
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on) .............. 39
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16.......................................... 40
Figure 48: S0-8 on two-layers PCB (2s0p to JEDEC JESD 51-5) ........................................................... 41
Figure 49: SO-8 on four-layers PCB (2s2p to JEDEC JESD 51-7) .......................................................... 41
Figure 50: SO-8 Rthj-amb vs PCB copper area in open box free air condition (one channel on) ........... 42
Figure 51: SO-8 thermal impedance junction ambient single pulse (one channel on) ............................. 42
Figure 52: Thermal fitting model of a double-channel HSD in SO-8 ........................................................ 43
DocID027400 Rev 2
5/55
List of figures
VN7040AJ, VN7040AS
Figure 53: PowerSSO-16 package outline ............................................................................................... 44
Figure 54: SO-8 package outline .............................................................................................................. 46
Figure 55: PowerSSO-16 reel 13" ............................................................................................................ 47
Figure 56: PowerSSO-16 carrier tape ...................................................................................................... 48
Figure 57: PowerSSO-16 schematic drawing of leader and trailer tape .................................................. 48
Figure 58: Reel for SO-8 ........................................................................................................................... 49
Figure 59: SO-8 carrier tape ..................................................................................................................... 50
Figure 60: SO-8 schematic drawing of leader and trailer tape ................................................................. 51
Figure 61: PowerSSO-16 marking information ......................................................................................... 51
Figure 62: SO-8 marking information........................................................................................................ 52
6/55
DocID027400 Rev 2
VN7040AJ, VN7040AS
Block diagram and pin description
Figure 1: Block diagram
VCC
Internal supply
VCC – GND
Clamp
Undervoltage
shut-down
Con trol & Diagnostic
VCC – OUT
Clamp
FaultRST
INPUT
Gate Driver
SEL1
T
VCC
VON
Limitation
SEL0
Current
Limitation
SEn
MultiSense
MUX
1
Block diagram and pin description
Power Limitation
Overtemperature
T
Short to VCC
Open-Load in OFF
Current
Sense
Fault
VSENSEH
GND
OUTPUT
GAPGCFT00328
Table 1: Pin functions
Name
VCC
OUTPUT
GND
INPUT
Function
Battery connection.
Power outputs.
Ground connection. Must be reverse battery protected by an external diode / resistor
network.
Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs.
It controls output switch state.
MultiSense
Multiplexed analog sense output pin; it delivers a current proportional to the selected
diagnostic: load current, supply voltage or chip temperature.
SEn
Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense
diagnostic pin.
SEL0,1
FaultRST
Active high compatible with 3 V and 5 V CMOS outputs pin; they address the
MultiSense multiplexer.
Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in
case of fault; If kept low, sets the outputs in auto-restart mode.
DocID027400 Rev 2
7/55
Block diagram and pin description
VN7040AJ, VN7040AS
Figure 2: Configuration diagram (top view)
PowerSSO-16
1
2
3
4
5
6
7
8
INPU T
FaultRS T
SEn
GND
SEL0
SEL1
MultiSense
N.C.
16
15
14
13
12
11
10
9
OUTPU T
OUTPU T
OUTPU T
OUTPU T
N.C.
N.C.
N.C.
N.C.
TAB = V CC
SO-8
1
2
3
4
INPU T
SEn
GND
MultiSense
8
7
6
5
VCC
OUTPU T
OUTPU T
VCC
GAPG2601151129CFT
Table 2: Suggested connections for unused and not connected pins
SEn, SELx,
Connection /
pin
MultiSense
N.C.
Output
Input
Floating
Not allowed
X (1)
X
X
X
To ground
Through 1 kΩ
resistor
X
Not
allowed
Through 15 kΩ
resistor
Through 15 kΩ
resistor
Notes:
(1)X:
8/55
do not care.
DocID027400 Rev 2
FaultRST
VN7040AJ, VN7040AS
2
Electrical specification
Electrical specification
Figure 3: Current and voltage conventions
IS
VCC
FaultRST
I SEn
I OUT
OUTPUT
VSEn
I SEL
MultiSense
SEL 0,1
VSEL
VOUT
I SENSE
SE n
VFR
VCC
VFn
I FR
VSENSE
I IN
VIN
INPUT
I GND
GAPGCFT00330
VF = VOUT - VCC during reverse battery condition.
2.1
Absolute maximum ratings
Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to the conditions in table below for extended
periods may affect device reliability.
Table 3: Absolute maximum ratings
Symbol
Parameter
Value
Unit
VCC
DC supply voltage
38
-VCC
Reverse DC supply voltage
0.3
VCCPK
Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped
to 40 V; RL = 4 Ω)
40
V
VCCJS
Maximum jump start voltage for single pulse short circuit protection
28
V
-IGND
DC reverse ground pin current
200
mA
A
IOUT
OUTPUT DC output current
Internally
limited
-IOUT
Reverse DC output current
11
IIN
INPUT DC input current
ISEn
SEn DC input current
ISEL
SEL0,1 DC input current
IFR
FaultRST DC input current
VFR
FaultRST DC input voltage
DocID027400 Rev 2
V
-1 to 10
mA
7.5
V
9/55
Electrical specification
VN7040AJ, VN7040AS
Symbol
Parameter
Unit
MultiSense pin DC output current (VGND = VCC and VSENSE < 0 V)
10
MultiSense pin DC output current in reverse (VCC < 0 V)
-20
EMAX
Maximum switching energy (single pulse) (TDEMAG = 0.4 ms;
Tjstart = 150 °C)
36
mJ
VESD
Electrostatic discharge (JEDEC 22A-114F)
•
INPUT
•
MultiSense
•
SEn, SEL0,1, FaultRST
•
OUTPUT
•
VCC
4000
2000
4000
4000
4000
V
V
V
V
V
VESD
Charge device model (CDM-AEC-Q100-011)
750
V
ISENSE
Tj
Tstg
2.2
Value
mA
Junction operating temperature
-40 to 150
Storage temperature
-55 to 150
°C
Thermal data
Table 4: Thermal data
Typ. value
Symbol
Parameter
Unit
SO-8 PowerSSO-16
Rthj-board Thermal resistance junction-board (JEDEC JESD 51-8) (1)
29
6.2
Rthj-amb Thermal resistance junction-ambient (JEDEC JESD 51-2)
(2)
67
57
Rthj-amb Thermal resistance junction-ambient (JEDEC JESD 51-2)
(1)
45
23.5
°C/W
Notes:
2.3
(1)Device
mounted on four-layers 2s2p PCB
(2)Device
mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace
Main electrical characteristics
7 V < VCC < 28 V; -40°C < Tj < 150°C, unless otherwise specified.
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
Table 5: Power section
Symbol
Parameter
Test conditions
VCC
Operating supply voltage
VUSD
4
28
V
Undervoltage shutdown
4
V
VUSDReset
Undervoltage shutdown
reset
5
V
VUSDhyst
Undervoltage shutdown
hysteresis
RON
On-state resistance
13
0.3
IOUT = 2.5 A; Tj = 25°C
10/55
Min. Typ. Max. Unit
V
40
IOUT = 2.5 A; Tj = 150°C
80
IOUT = 2.5 A; VCC = 4 V; Tj = 25°C
60
DocID027400 Rev 2
mΩ
VN7040AJ, VN7040AS
Electrical specification
Symbol
Vclamp
ISTBY
tD_STBY
IS(ON)
Parameter
Test conditions
Clamp voltage
Supply current in standby
at VCC = 13 V (1)
IL(off)
VF
IS = 20 mA; 25°C < Tj < 150°C
41
IS = 20 mA; Tj = -40°C
38
52
VCC = 13 V;
VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 85°C (2)
0.5
VCC = 13 V;
VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 125°C
3
Supply current
VCC = 13 V; VSEn = 0 V;
VSEL0,1 = VFR = 0 V; VIN = 5 V; IOUT = 0 A
60
VCC = 13 V; VSEn = 5 V;
VFR = VSEL0,1 = 0 V; VIN = 5 V; IOUT = 2 A
0
VIN = VOUT = 0 V; VCC = 13 V;
Tj = 125°C
0
µA
300 550
3
VIN = VOUT = 0 V; VCC = 13 V; Tj = 25°C
V
V
0.5
VCC = 13 V; VIN = VOUT
= VFR = VSEL0,1 = 0 V; VSEn = 5 V to 5 V
Off-state output current at
VCC = 13 V
46
VCC = 13 V;
VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 25°C
Standby mode blanking
time
Control stage current
IGND(ON) consumption in ON-state.
All channels active.
Min. Typ. Max. Unit
µs
5
mA
6
mA
0.01 0.5
3
Output - VCC diode voltage IOUT = -2.5 A; Tj = 150°C
0.7
µA
V
Notes:
(1)PowerMOS
(2)Parameter
leakage included.
specified by design; not subjected to production test.
Table 6: Switching
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified
Symbol
Parameter
td(on)(1)
Turn-on delay time at Tj = 25 °C
td(off)(1)
Turn-off delay time at Tj = 25 °C
(dVOUT/dt)on(1) Turn-on voltage slope at Tj = 25 °C
(dVOUT/dt)off
(1)
Turn-off voltage slope at Tj = 25 °C
Test conditions Min. Typ. Max. Unit
RL = 5.2 Ω
RL = 5.2 Ω
10
40
120
10
35
100
0.1 0.24
0.7
0.1 0.28
0.7
µs
V/µs
WON
Switching energy losses at turn-on (twon)
RL = 5.2 Ω
—
0.32 0.4(2) mJ
WOFF
Switching energy losses at turn-off (twoff)
RL = 5.2 Ω
—
0.33 0.4(2) mJ
Differential Pulse skew (tPHL - tPLH)
RL = 5.2 Ω
-40
tSKEW (1)
10
60
µs
Notes:
(1)See
Figure 6: "Switching time and Pulse skew".
(2)Parameter
guaranteed by design and characterization; not subjected to production test.
DocID027400 Rev 2
11/55
Electrical specification
VN7040AJ, VN7040AS
Table 7: Logic inputs
7 V < VCC < 28 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
0.9
V
INPUT characteristics
VIL
Input low level voltage
IIL
Low level input current
VIH
Input high level voltage
IIH
High level input current
VI(hyst)
Input hysteresis voltage
VICL
VIN = 0.9 V
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
Input clamp voltage
1
V
5.3
IIN = -1 mA
µA
7.2
-0.7
V
FaultRST characteristics (VN7040AJ only)
VFRL
Input low level voltage
IFRL
Low level input current
VFRH
Input high level voltage
IFRH
High level input current
VFR(hyst)
Input hysteresis voltage
VFRCL
0.9
VIN = 0.9 V
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
Input clamp voltage
1
µA
V
5.3
IIN = -1 mA
V
7.5
-0.7
V
SEL0,1 characteristics (7 V < VCC < 18 V) (VN7040AJ only)
VSELL
Input low level voltage
ISELL
Low level input current
VSELH
Input high level voltage
ISELH
High level input current
VSEL(hyst)
Input hysteresis voltage
VSELCL
0.9
VIN = 0.9 V
1
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
Input clamp voltage
V
V
5.3
IIN = -1 mA
µA
7.2
-0.7
V
SEn characteristics (7 V < VCC < 18 V)
VSEnL
Input low level voltage
ISEnL
Low level input current
VSEnH
Input high level voltage
ISEnH
High level input current
VSEn(hyst)
Input hysteresis voltage
VSEnCL
12/55
Input clamp voltage
0.9
VIN = 0.9 V
1
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
IIN = -1 mA
DocID027400 Rev 2
V
µA
V
5.3
7.2
-0.7
V
VN7040AJ, VN7040AS
Electrical specification
Table 8: Protections
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
ILIMH
DC short circuit current
ILIML
Short circuit current
during thermal cycling
TTSD
Shutdown temperature
Reset temperature
TRS
Thermal reset of fault
diagnostic indication
Thermal hysteresis(TTSD TR)(1)
ΔTJ_SD
Dynamic temperature
24
34
Turn-off output voltage
clamp
Output voltage drop
limitation
Unit
48
13
150
175
TRS + 1
TRS + 7
200
°C
135
7
Tj = -40°C; VCC = 13 V
Fault reset time for output
tLATCH_RST unlatch(1) (only for
VN7040AJ)
Max.
A
VCC = 13 V;
TR < Tj < TTSD
VFR = 0 V; VSEn = 5 V
THYST
VON
4 V < VCC < 18 V
Typ.
(1)
(1)
TR
VDEMAG
VCC = 13 V
Min.
60
VFR = 5 V to 0 V;
VSEn = 5 V; VIN = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V
3
K
10
20
µs
IOUT = 2 A; L = 6 mH;
Tj = -40°C
VCC - 38
V
IOUT = 2 A; L = 6 mH;
Tj = 25°C to 150°C
VCC - 41 VCC - 46 VCC - 52
V
20
mV
IOUT = 0.25 A
Notes:
(1)Parameter
guaranteed by design and characterization; not subjected to production test.
Table 9: MultiSense
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
VSENSE_CL
Parameter
MultiSense clamp
voltage
Test conditions
VSEn = 0 V; ISENSE = 1 mA
Min. Typ. Max. Unit
-17
-12
V
VSEn = 0 V; ISENSE = -1 mA
7
CurrentSense characteristics
KOL
dKcal/Kcal(1)(2)
KLED
dKLED/KLED(1)(2)
K0
IOUT/ISENSE
IOUT = 0.01 A; VSENSE = 0.5 V;
VSEn = 5 V
530
Current sense ratio
drift at calibration
point
IOUT = 0.01 A to 0.03 A;
Ical = 30 mA; VSENSE = 0.5 V;
VSEn = 5 V
-30
IOUT/ISENSE
IOUT = 0.05 A; VSENSE = 0.5 V;
VSEn = 5 V
900 1800 2650
Current sense ratio
drift
IOUT = 0.05 A; VSENSE = 0.5 V;
VSEn = 5 V
-25
IOUT/ISENSE
IOUT = 0.25 A; VSENSE = 0.5 V;
VSEn = 5 V
940 1550 2200
DocID027400 Rev 2
30
25
%
%
13/55
Electrical specification
VN7040AJ, VN7040AS
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
dK0/K0(1)(2)
K1
dK1/K1(1)(2)
K2
dK2/K2(1)(2)
K3
dK3/K3(1)(2)
Parameter
Test conditions
Current sense ratio
drift
IOUT = 0.25 A; VSENSE = 0.5 V;
VSEn = 5 V
IOUT/ISENSE
IOUT = 0.5 A; VSENSE = 4 V;
VSEn = 5 V
Current sense ratio
drift
IOUT = 0.5 A; VSENSE = 4 V;
VSEn = 5 V
IOUT/ISENSE
IOUT = 1.5 A; VSENSE = 4 V;
VSEn = 5 V
Current sense ratio
drift
IOUT = 1.5 A; VSENSE = 4 V;
VSEn = 5 V
IOUT/ISENSE
IOUT = 4.5 A; VSENSE = 4 V;
VSEn = 5 V
Current sense ratio
drift
IOUT = 4.5 A; VSENSE = 4 V;
VSEn = 5 V
-5
5
MultiSense disabled: VSEn = 0 V
0
0.5
-0.5
0.5
MultiSense enabled: VSEn = 5 V;
Channel ON; IOUT = 0 A; Diagnostic
selected; VIN = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; IOUT = 0 A
0
2
MultiSense enabled: VSEn = 5 V;
Channel OFF; Diagnostic selected:
VIN = 0 V; VSEL0 = 0 V; VSEL1 = 0 V
0
2
MultiSense disabled:
-1 V < VSENSE < 5 V(1)
ISENSE0
Min. Typ. Max. Unit
MultiSense leakage
current
20
-20
%
1000 1400 1920
-15
15
%
1140 1350 1710
-10
10
%
1200 1340 1470
%
µA
VOUT_MSD(1)
Output voltage for
MultiSense
shutdown
VIN = 5 V; VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; RSENSE = 2.7 kΩ;
IOUT = 2.5 A
VSENSE_SAT
Multisense
saturation voltage
VCC = 7 V; RSENSE = 2.7 kΩ;
VSEn = 5 V; VIN = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; IOUT = 4.5 A; Tj = 150°C
5
V
ISENSE_SAT(1)
CS saturation
current
VCC = 7 V; VSENSE = 4 V; VIN = 5 V;
VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 0 V;
Tj = 150°C
4
mA
Output saturation
current
VCC = 7 V; VSENSE = 4 V; VIN = 5 V;
VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 0 V;
Tj = 150°C
6
A
IOUT_SAT(1)
5
V
OFF-state diagnostic
VOL
IL(off2)
14/55
OFF-state open-load
VIN = 0 V; VSEn = 5 V; VSEL0 = 0 V;
voltage detection
VSEL1 = 0 V
threshold
OFF-state output
sink current
VIN = 0 V; VOUT = VOL
DocID027400 Rev 2
2
-100
3
4
V
-15
µA
VN7040AJ, VN7040AS
Electrical specification
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
tDSTKON
OFF-state diagnostic
delay time from
VIN = 5 V to 0 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V; IOUT = 0 A;
falling edge of
VOUT = 4 V
INPUT (see Figure
9: "TDSTKON")
tD_OL_V
Settling time for valid
OFF-state open load VIN = 0 V; VFR = 0 V; VSEL0 = 0 V;
diagnostic indication VSEL1 = 0 V; VOUT = 4 V;
VSEn = 0 V to 5 V
from rising edge of
SEn
tD_VOL
OFF-state diagnostic
VIN = 0 V; VSEn = 5 V; VSEL0 = 0 V;
delay time from
VSEL1 = 0 V; VOUT = 0 V to 4 V
rising edge of VOUT
Min. Typ. Max. Unit
100
350
5
700
µs
60
µs
30
µs
Chip temperature analog feedback (VN7040AJ only)
VSENSE_TC
dVSENSE_TC/dT(1)
MultiSense output
voltage proportional
to chip temperature
Temperature
coefficient
VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 5 V;
2.325 2.41 2.495
VIN = 0 V; RSENSE = 1 kΩ; Tj = -40°C
V
VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 5 V;
1.985 2.07 2.155
VIN = 0 V; RSENSE = 1 kΩ; Tj = 25°C
V
VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 5 V;
VIN = 0 V; RSENSE = 1 kΩ;
1.435 1.52 1.605
Tj = 125°C
V
Tj = -40°C to 150°C
Transfer function
-5.5
mV/K
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)
VCC supply voltage analog feedback (VN7040AJ only)
VSENSE_VCC
MultiSense output
voltage proportional
to VCC supply
voltage
Transfer function (3)
VCC = 13 V; VSEn = 5 V; VSEL0 = 5 V;
VSEL1 = 5 V; VIN = 0 V;
3.16 3.23
RSENSE = 1 kΩ
3.3
V
6.6
V
30
mA
VSENSE_VCC = VCC / 4
Fault diagnostic feedback (see Table 10: "Truth table")
VSENSEH
MultiSense output
voltage in fault
condition
VCC = 13 V; VIN = 0 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V; IOUT = 0 A;
VOUT = 4 V; RSENSE = 1 kΩ;
5
ISENSEH
MultiSense output
current in fault
condition
VCC = 13 V; VSENSE = 5 V
7
20
MultiSense timings (current sense mode - see Figure 7: "MultiSense timings (current sense
mode)")(4)
tDSENSE1H
Current sense
settling time from
rising edge of SEn
VIN = 5 V; VSEn = 0 V to 5 V;
RSENSE = 1 kΩ; RL = 5.2 Ω
tDSENSE1L
Current sense
disable delay time
from falling edge of
SEn
VIN = 5 V; VSEn = 5 V to 0 V;
RSENSE = 1 kΩ; RL = 5.2 Ω
DocID027400 Rev 2
5
60
µs
20
µs
15/55
Electrical specification
VN7040AJ, VN7040AS
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
tDSENSE2H
Parameter
Test conditions
Current sense
VIN = 0 V to 5 V; VSEn = 5 V;
settling time from
RSENSE = 1 kΩ; RL = 5.2 Ω
rising edge of INPUT
ΔtDSENSE2H
Current sense
settling time from
rising edge of IOUT
(dynamic response
to a step change of
IOUT)
VIN = 5 V; VSEn = 5 V;
RSENSE = 1 kΩ; ISENSE = 90 % of
ISENSEMAX; RL = 5.2 Ω
tDSENSE2L
Current sense turnoff delay time from
falling edge of
INPUT
VIN = 5 V to 0 V; VSEn = 5 V;
RSENSE = 1 kΩ; RL = 5.2 Ω
Min. Typ. Max. Unit
100
50
250
µs
100
µs
250
µs
MultiSense timings (chip temperature sense mode - see Figure 8: "Multisense timings (chip
temperature and VCC sense mode) (VN7040AJ only)") (VN7040AJ only)(4)
tDSENSE3H
VSENSE_TC settling
VSEn = 0 V to 5 V; VSEL0 = 0 V;
time from rising edge
VSEL1 = 5 V; RSENSE = 1 kΩ
of SEn
60
µs
tDSENSE3L
VSENSE_TC disable
delay time from
falling edge of SEn
20
µs
VSEn = 5 V to 0 V; VSEL0 = 0 V;
VSEL1 = 5 V; RSENSE = 1 kΩ
MultiSense timings (VCC voltage sense mode - see Figure 8: "Multisense timings (chip
temperature and VCC sense mode) (VN7040AJ only)") (VN7040AJ only)(4)
tDSENSE4H
VSENSE_VCC settling
VSEn = 0 V to 5 V; VSEL0 = 5 V;
time from rising edge
VSEL1 = 5 V; RSENSE = 1 kΩ
of SEn
60
µs
tDSENSE4L
VSENSE_VCC disable
delay time from
falling edge of SEn
20
µs
VSEn = 5 V to 0 V; VSEL0 = 5 V;
VSEL1 = 5 V; RSENSE = 1 kΩ
MultiSense timings (Multiplexer transition times) (VN7040AJ only)(4)
16/55
tD_CStoTC
MultiSense transition VIN = 5 V; VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V to 5 V; IOUT = 1.25 A;
delay from current
sense to TC sense
RSENSE = 1 kΩ
60
µs
tD_TCtoCS
MultiSense transition VIN = 5 V; VSEn = 5 V; VSEL0 = 0 V;
delay from TC sense VSEL1 = 5 V to 0 V; IOUT = 1.25 A;
to current sense
RSENSE = 1 kΩ
20
µs
tD_CStoVCC
MultiSense transition VIN = 5 V; VSEn = 5 V; VSEL0 = 5 V;
VSEL1 = 0 V to 5 V; IOUT = 1.25 A;
delay from current
sense to VCC sense RSENSE = 1 kΩ
60
µs
tD_VCCtoCS
MultiSense transition
VIN = 5 V; VSEn = 5 V; VSEL0 = 5 V;
delay from VCC
VSEL1 = 5 V to 0 V; IOUT = 1.25 A;
sense to current
RSENSE = 1 kΩ
sense
20
µs
tD_TCtoVCC
MultiSense transition VCC = 13 V; Tj = 125°C; VSEn = 5 V;
delay from TC sense VSEL0 = 0 V to 5 V; VSEL1 = 5 V;
to VCC sense
RSENSE = 1 kΩ
20
µs
DocID027400 Rev 2
VN7040AJ, VN7040AS
Electrical specification
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min. Typ. Max. Unit
MultiSense transition VCC = 13 V; Tj = 125°C; VSEn = 5 V;
VSEL0 = 5 V to 0 V; VSEL1 = 5 V;
delay from VCC
sense to TC sense
RSENSE = 1 kΩ
tD_VCCtoTC
20
µs
Notes:
(1)Parameter
(2)All
(3)V
specified by design; not subjected to production test.
values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
CC
sensing and TC are referred to GND potential.
(4)Transition
delays are measured up to +/- 10% of final conditions.
Figure 4: IOUT/ISENSE versus IOUT
3000
2500
Max
Min
K-factor
2000
Typ
1500
1000
500
0
0
1
2
3
4
5
IOUT [A]
GAPGCFT01210
DocID027400 Rev 2
17/55
Electrical specification
VN7040AJ, VN7040AS
Figure 5: Current sense accuracy versus IOUT
65
60
55
50
45
40
35
%
30
25
20
15
10
5
0
Current sense uncalibrated precision
Current sense calibrated precision
0
2
1
3
4
5
IOUT [A]
GAPGCFT01211
Figure 6: Switching time and Pulse skew
twon
VOUT
twoff
Vcc
80% Vcc
ON
OFF
dVOUT/dt
dVOUT/dt
20% Vcc
t
INPUT
td(off)
td(on)
tpLH
tpHL
t
GAPG2609141134CFT
18/55
DocID027400 Rev 2
VN7040AJ, VN7040AS
Electrical specification
Figure 7: MultiSense timings (current sense mode)
IN1
High
SEn
Low
High
SEL0
Low
High
SEL1
Low
IOUT1
CURRENT SENSE
tDSENSE2H
tDSENSE1L
tDSENSE1H
tDSENSE2L
GAPGCFT00318
Figure 8: Multisense timings (chip temperature and VCC sense mode) (VN7040AJ only)
High
SEn
Low
High
SEL0
Low
High
SEL1
Low
VCC
VSENSE = VSENSE_VCC
VSENSE = VSENSE_TC
SENSE
tDSENSE4H
tDSENSE4L
VCC VOLTAGE SENSE MODE
tDSENSE3H
tDSENSE3L
CHIP TEMPERATURE SENSE MODE
GAPGCFT00319
DocID027400 Rev 2
19/55
Electrical specification
VN7040AJ, VN7040AS
Figure 9: TDSTKON
VINPU T
VOU T
VOU T > VOL
MultiSense
TDSTKON
GAPG2609141140CFT
Table 10: Truth table
Mode
INX FR(1) SEn SELX(1) OUTX MultiSense
Conditions
All logic inputs
low
Standby
Nominal load
connected;
Tj < 150 °C
Normal
Overload
Undervoltage
OFF-state
diagnostics
L
L
L
X
H
L
H
Hi-Z
L
See (2)
H
See (2)
Outputs configured
for auto-restart
H
H
See (2)
Outputs configured
for latch-off(1)
L
See (2)
H
See (2)
Output cycles with
temperature
hysteresis
L
See (2)
Output latches-off(1)
L
L
Hi-Z
Hi-Z
Re-start when
VCC > VUSD +
VUSDhyst (rising)
H
See (2)
H
See (2)
<0V
See (2)
L
X
H
L
H
H
VCC < VUSD
(falling)
X
X
Short to VCC
L
X
Open-load
L
X
L
X
Negative output Inductive loads
voltage
turn-off
L
See (2)
See (2)
X
X
See (2)
See (2)
Notes:
(1)VN7040AJ
(2)Refer
20/55
Low quiescent
current consumption
L
Overload or short
to GND causing:
Tj > TTSD or
ΔTj > ΔTj_SD
L
Comments
only
to Table 11: "MultiSense multiplexer addressing"
DocID027400 Rev 2
External pull-up
VN7040AJ, VN7040AS
Electrical specification
Table 11: MultiSense multiplexer addressing
MultiSense output
SEn SEL1 SEL0
MUX channel
Normal mode
Overload
OFF-state
diag. (1)
Negative
output
VSENSE =
VSENSEH
Hi-Z
SO-8
L
N.A. N.A. N.A.
H
N.A. N.A.
Channel
diagnostic
Hi-Z
ISENSE =
1/K * IOUT
VSENSE =
VSENSEH
PowerSSO-16
H
L
L
Channel
diagnostic
ISENSE =
1/K * IOUT
VSENSE =
VSENSEH
VSENSE =
VSENSEH
Hi-Z
H
L
H
Channel
diagnostic
ISENSE =
1/K * IOUT
VSENSE =
VSENSEH
VSENSE =
VSENSEH
Hi-Z
H
H
L
TCHIP Sense
VSENSE = VSENSE_TC
H
H
H
VCC Sense
VSENSE = VSENSE_VCC
Notes:
(1)In
case the output channel corresponding to the selected MUX channel is latched off while the relevant input is
low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN = 0; OUT = L
(latched); MUX channel = channel 0 diagnostic; Mutisense = 0. Example 2: FR = 1; IN = 0; OUT = latched,
VOUT > VOL; MUX channel = channel 0 diagnostic; Mutisense = VSENSEH
2.4
Waveforms
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)
DocID027400 Rev 2
21/55
Electrical specification
VN7040AJ, VN7040AS
Figure 11: Latch functionality - behavior in hard short circuit condition
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode +
latch off)
22/55
DocID027400 Rev 2
VN7040AJ, VN7040AS
Electrical specification
Figure 13: Standby mode activation
Figure 14: Standby state diagram
DocID027400 Rev 2
23/55
Electrical specification
2.5
VN7040AJ, VN7040AS
Electrical characteristics curves
Figure 15: OFF-state output current
Figure 16: Standby current
Iloff [nA]
ISTBY [µA]
600
1
0.9
500
Vcc = 13V
0.8
0.7
400
Off State
Vcc = 13V
Vin = Vout = 0
300
0.6
0.5
0.4
200
0.3
0.2
100
0.1
0
0
-50
0
-25
25
75
50
100
125
150
175
-50
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
GAPGCFT01191
GAPGCFT01190
Figure 17: IGND(ON) vs. Tcase
Figure 18: Logic Input high level voltage
IGND( ON) [mA]
ViH, VFRH, VSE LH, VSE nH [V]
3.5
2
1.8
3.0
1.6
2.5
1.4
Vcc = 13V
Iout0 = Iout1 = 2.5A
2.0
1.2
1
1.5
0.8
0.6
1.0
0.4
0.5
0.2
0
0.0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
75
50
100
125
150
175
T [°C]
T [°C]
GAPGCFT01193
GAPGCFT01192
Figure 19: Logic Input low level voltage
Figure 20: High level logic input current
VilL VFRL, VSE LL, VSE nL [V]
IiH, IFRH, ISELH, ISEnH [µA]
2
4
1.8
3.5
1.6
3
1.4
2.5
1.2
1
2
0.8
1.5
0.6
1
0.4
0.5
0.2
0
0
-50
-25
0
25
50
75
100
125
150
175
GAPGCFT01194
24/55
-50
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
DocID027400 Rev 2
GAPGCFT01195
VN7040AJ, VN7040AS
Electrical specification
Figure 21: Low level logic input current
Figure 22: Logic Input hysteresis voltage
Vi(hyst), VFR(hyst), VSE L(hyst), VSE n(hyst) [V]
IiL, IFRL, ISELL, ISEnL [µA]
1
4
0.9
3.5
0.8
3
0.7
2.5
0.6
2
0.5
0.4
1.5
0.3
1
0.2
0.5
0.1
0
0
-50
-25
0
25
75
50
150
125
100
-50
175
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
GAPGCFT01196
GAPGCFT01197
Figure 23: FaultRST Input clamp voltage
Figure 24: Undervoltage shutdown
VUSD [V]
VFRCL [V]
8
8
7
7
Iin = 1mA
6
6
5
5
4
4
3
3
2
2
1
Iin = -1mA
1
0
0
-1
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
50
25
75
100
125
GAPGCFT01198
175
GAPGCFT01199
Figure 25: On-state resistance vs. Tcase
Figure 26: On-state resistance vs. VCC
Ron [mOhm]
Ron [mOhm]
100
100
90
90
80
80
70
70
Iout = 2.5A
Vcc = 13V
60
150
T [°C]
T [°C]
T = 150 °C
T = 125 °C
60
50
50
40
40
30
30
20
20
10
10
0
T = 25 °C
T = -40 °C
0
-50
-25
0
25
50
75
100
125
150
175
T [°C]
0
5
10
15
20
25
30
35
40
Vcc [V]
GAPGCFT01200
DocID027400 Rev 2
GAPGCFT01201
25/55
Electrical specification
VN7040AJ, VN7040AS
Figure 27: Turn-on voltage slope
Figure 28: Turn-off voltage slope
(dVout/dt)On [V/µs]
(dVout/dt)Off [V/µs]
1
1
0.9
0.9
0.8
0.8
Vcc = 13V
Rl = 5.2Ω
0.7
Vcc = 13V
Rl = 5.2Ω
0.7
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0
0
-50
0
-25
25
50
75
100
150
125
0
-25
-50
175
25
50
75
100
125
150
175
T [°C]
T [°C]
GAPGCFT01202
GAPGCFT01203
Figure 29: Won vs. Tcase
Figure 30: Woff vs. Tcase
Woff [mJ]
Won [mJ]
1
1
0.9
0.9
0.8
0.8
0.7
0.7
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
0
-25
25
75
50
T [°C]
100
125
150
175
T [°C]
GAPGCFT01204
GAPGCFT01205
Figure 32: OFF-state open-load voltage
detection threshold
Figure 31: ILIMH vs. Tcase
Ilimh [A]
VOL [V]
40
4
35
3.5
3
30
Vcc = 13V
2.5
25
2
20
1.5
15
1
0.5
10
-50
-25
0
25
50
75
100
125
150
175
0
T [°C]
-50
GAPGCFT01206
-25
0
25
50
75
100
125
150
175
T [°C]
GAPGCFT01207
26/55
DocID027400 Rev 2
VN7040AJ, VN7040AS
Electrical specification
Figure 33: Vsense clamp vs. Tcase
Figure 34: Vsenseh vs. Tcase
VSE NSE_CL [V]
VSE NSEH [V]
10
10
9
9
8
8
7
Iin = 1mA
7
6
6
5
5
4
4
3
3
2
2
1
Iin = -1mA
1
0
0
-1
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
GAPGCFT01208
DocID027400 Rev 2
GAPGCFT01209
27/55
Protections
VN7040AJ, VN7040AS
3
Protections
3.1
Power limitation
The basic working principle of this protection consists of an indirect measurement of the
junction temperature swing ΔTj through the direct measurement of the spatial temperature
gradient on the device surface in order to automatically shut off the output MOSFET as
soon as ΔTj exceeds the safety level of ΔTj_SD. According to the voltage level on the
FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis
according to the maximum instantaneous power which can be handled (FaultRST = Low)
or remains off (FaultRST = High). The protection prevents fast thermal transient effects
and, consequently, reduces thermo-mechanical fatigue.
3.2
Thermal shutdown
In case the junction temperature of the device exceeds the maximum allowed threshold
(typically 175°C), it automatically switches off and the diagnostic indication is triggered.
According to the voltage level on the FaultRST pin, the device switches on again as soon
as its junction temperature drops to TR (FaultRST = Low) or remains off (FaultRST = High).
3.3
Current limitation
The device is equipped with an output current limiter in order to protect the silicon as well
as the other components of the system (e.g. bonding wires, wiring harness, connectors,
loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or
during load power-up, the output current is clamped to a safety level, ILIMH, by operating the
output power MOSFET in the active region.
3.4
Negative voltage clamp
In case the device drives inductive load, the output voltage reaches a negative value during
turn off. A negative voltage clamp structure limits the maximum negative voltage to a
certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the
device.
28/55
DocID027400 Rev 2
VN7040AJ, VN7040AS
4
Application information
Application information
Figure 35: Application diagram
4.1
GND protection network against reverse battery
Figure 36: Simplified internal structure
DocID027400 Rev 2
29/55
Application information
4.1.1
VN7040AJ, VN7040AS
Diode (DGND) in the ground line
A resistor (typ. RGND = 4.7 kΩ) should be inserted in parallel to DGND if the device drives an
inductive load.
This small signal diode can be safely shared amongst several different HSDs. Also in this
case, the presence of the ground network produces a shift (≈600 mV) in the input threshold
and in the status output values if the microprocessor ground is not common to the device
ground. This shift does not vary if more than one HSD shares the same diode/resistor
network.
4.2
Immunity against transient electrical disturbances
The immunity of the device against transient electrical emissions, conducted along the
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)
and ISO 16750-2:2010.
The related function performance status classification is shown in Table 12: "ISO 7637-2 electrical transient conduction along supply line".
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present
device only, without components and accessed through VCC and GND terminals.
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as
follows: “The function does not perform as designed during the test but returns
automatically to normal operation after the test”.
Table 12: ISO 7637-2 - electrical transient conduction along supply line
Test
Pulse
2011(E)
Test pulse severity
level with Status II
functional performance
status
Minimum
number of
pulses or test
time
Burst cycle / pulse
repetition time
Pulse duration and
pulse generator
internal impedance
Level
US(1)
1
III
-112V
500 pulses
0,5 s
2a
III
+55V
500 pulses
0,2 s
5s
50µs, 2Ω
3a
IV
-220V
1h
90 ms
100 ms
0.1µs, 50Ω
3b
IV
+150V
1h
90 ms
100 ms
0.1µs, 50Ω
IV
-7V
1 pulse
4
(2)
min
max
2ms, 10Ω
100ms, 0.01Ω
Load dump according to ISO 16750-2:2010
Test B (3)
40V
5 pulse
1 min
400ms, 2Ω
Notes:
(1)U
S
4.3
is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.
(2)Test
pulse from ISO 7637-2:2004(E).
(3)With
40 V external suppressor referred to ground (-40°C < Tj < 150°C).
MCU I/Os protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to
prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.
30/55
DocID027400 Rev 2
VN7040AJ, VN7040AS
Application information
The value of these resistors is a compromise between the leakage current of
microcontroller and the current required by the HSD I/Os (Input levels compatibility) with
the latch-up limit of microcontroller I/Os.
Equation
VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax
Calculation example:
For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V
7.5 kΩ ≤ Rprot ≤ 140 kΩ.
Recommended values: Rprot = 15 kΩ
4.4
Multisense - analog current sense
Diagnostic information on device and load status are provided by an analog output pin
(MultiSense) delivering the following signals:
•
•
•
Current monitor: current mirror of channel output current
VCC monitor: voltage propotional to VCC
TCASE: voltage propotional to chip temperature
Those signals are routed through an analog multiplexer which is configured and controlled
by means of SELx and SEn pins, according to the address map in MultiSense multiplexer
addressing Table.
Figure 37: MultiSense and diagnostic – block diagram
DocID027400 Rev 2
31/55
Application information
4.4.1
VN7040AJ, VN7040AS
Principle of Multisense signal generation
Figure 38: MultiSense block diagram
Current monitor
When current mode is selected in the MultiSense, this output is capable to provide:
•
•
Current mirror proportional to the load current in normal operation, delivering current
proportional to the load according to known ratio named K
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH
The current delivered by the current sense circuit, ISENSE, can be easily converted to a
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load
monitoring and abnormal condition detection.
Normal operation (channel ON, no fault, SEn active)
While device is operating in normal conditions (no fault intervention), VSENSE calculation can
be done using simple equations
Current provided by MultiSense output: ISENSE = IOUT/K
Voltage on RSENSE: VSENSE = RSENSE · ISENSE = RSENSE · IOUT/K
Where:
•
•
32/55
VSENSE is voltage measurable on RSENSE resistor
ISENSE is current provided from MultiSense pin in current output mode
DocID027400 Rev 2
VN7040AJ, VN7040AS
•
•
Application information
IOUT is current flowing through output
K factor represents the ratio between PowerMOS cells and SenseMOS cells; its
spread includes geometric factor spread, current sense amplifier offset and process
parameters spread of overall circuitry specifying ratio between IOUT and ISENSE.
Failure flag indication
In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin
which is switched to a “current limited” voltage source, VSENSEH.
In any case, the current sourced by the MultiSense in this condition is limited to ISENSEH.
The typical behavior in case of overload or hard short circuit is shown in Waveforms
section.
Figure 39: Analogue HSD – open-load detection in off-state
DocID027400 Rev 2
33/55
Application information
VN7040AJ, VN7040AS
Figure 40: Open-load / short to VCC condition
Table 13: MultiSense pin levels in off-state
Condition
Output
VOUT > VOL
Open-load
VOUT < VOL
4.4.2
Short to VCC
VOUT > VOL
Nominal
VOUT < VOL
MultiSense
SEn
Hi-Z
L
VSENSEH
H
Hi-Z
L
0
H
Hi-Z
L
VSENSEH
H
Hi-Z
L
0
H
TCASE and VCC monitor
In this case, MultiSense output operates in voltage mode and output level is referred to
device GND. Care must be taken in case a GND network protection is used, because a
voltage shift is generated between device GND and the microcontroller input GND
reference.
Figure 41: "GND voltage shift" shows link between VMEASURED and real VSENSE signal.
34/55
DocID027400 Rev 2
VN7040AJ, VN7040AS
Application information
Figure 41: GND voltage shift
VCC monitor
Battery monitoring channel provides VSENSE = VCC / 4.
Case temperature monitor
Case temperature monitor is capable to provide information about the actual device
temperature. Since a diode is used for temperature sensing, the following equation
describes the link between temperature and output VSENSE level:
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)
where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C).
4.4.3
Short to VCC and OFF-state open-load detection
Short to VCC
A short circuit between VCC and output is indicated by the relevant current sense pin set to
VSENSEH during the device off-state. Small or no current is delivered by the current sense
during the on-state depending on the nature of the short circuit.
OFF-state open-load with external circuitry
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting
the output to a positive supply voltage VPU.
It is preferable VPU to be switched off during the module standby mode in order to avoid the
overall standby current consumption to increase in normal conditions, i.e. when load is
connected.
RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following
equation:
DocID027400 Rev 2
35/55
Application information
VN7040AJ, VN7040AS
Equation
RPU <
36/55
VPU - 4
IL(off2)min @ 4V
DocID027400 Rev 2
VN7040AJ, VN7040AS
Maximum demagnetization energy (VCC = 16 V)
Figure 42: Maximum turn off current versus inductance
VN7040Ax - Maximum turn off Current versus inductance
100
10
1
VN7040Ax - Single Pulse
I (A)
5
Maximum demagnetization energy (VCC = 16 V)
Repetitive pulse Tjstart=100°C
Repetitive pulse Tjstart=125°C
0.1
0.1
1 L (mH)
10
100
1000
GAPGCFT01147
Values are generated with RL = 0 Ω.
In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of
every pulse must not exceed the temperature specified above for curves A and B.
DocID027400 Rev 2
37/55
Package and PCB thermal data
VN7040AJ, VN7040AS
6
Package and PCB thermal data
6.1
PowerSSO-16 thermal data
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)
Table 14: PCB properties
Dimension
Board finish thickness
1.6 mm +/- 10%
Board dimension
77 mm x 86 mm
Board Material
FR4
Copper thickness (top and bottom layers)
0.070 mm
Copper thickness (inner layers)
0.035 mm
Thermal vias separation
1.2 mm
Thermal via diameter
0.3 mm +/- 0.08 mm
Copper thickness on vias
0.025 mm
Footprint dimension (top layer)
2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)
38/55
Value
DocID027400 Rev 2
Footprint, 2 cm2 or 8 cm2
VN7040AJ, VN7040AS
Package and PCB thermal data
Figure 45: PowerSSO-16 Rthj-amb vs PCB copper area in open box free air condition (one
channel on)
RTHjamb
90
RTHjamb
80
70
60
50
40
30
0
2
4
6
8
10
RTHj_amb on 4Layer PCB: 23.5°C/W
GAPGCFT01141
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)
ZTH (°C/W)
100
10
1
Cu=foot print
Cu=2 cm2
Cu=8 cm2
4 Layer
0.1
0.0001
0.001
0.01
0.1
1
10
100
1000
Time (s)
GAPGCFT01142
Equation: pulse calculation formula
ZTHδ = RTH · δ + ZTHtp (1 - δ)
where δ = tP/T
DocID027400 Rev 2
39/55
Package and PCB thermal data
VN7040AJ, VN7040AS
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16
The fitting model is a simplified thermal tool and is valid for transient evolutions
where the embedded protections (power limitation or thermal cycling during
thermal shutdown) are not triggered.
Table 15: Thermal parameters
40/55
Area/island (cm2)
Footprint
R1 (°C/W)
1.1
R2 (°C/W)
3
R3 (°C/W)
7
R4 (°C/W)
16
R5 (°C/W)
30
R6 (°C/W)
26
C1 (W.s/°C)
0.0004
C2 (W.s/°C)
0.008
C3 (W.s/°C)
0.1
C4 (W.s/°C)
2
8
4L
7
7
5
6
6
4
20
10
3
20
18
7
0.2
0.3
0.3
0.4
C5 (W.s/°C)
0.4
1
1
4
C6 (W.s/°C)
3
5
7
18
DocID027400 Rev 2
VN7040AJ, VN7040AS
6.2
Package and PCB thermal data
SO-8 thermal data
Figure 48: S0-8 on two-layers PCB (2s0p to JEDEC JESD 51-5)
Figure 49: SO-8 on four-layers PCB (2s2p to JEDEC JESD 51-7)
Table 16: PCB properties
Dimension
Value
Board finish thickness
1.6 mm +/- 10%
Board dimension
77 mm x 86 mm
Board Material
FR4
Copper thickness (top and bottom layers)
0.070 mm
Copper thickness (inner layers)
0.035 mm
Thermal vias separation
1.2 mm
Thermal via diameter
0.3 mm +/- 0.08 mm
Copper thickness on vias
0.025 mm
Heatsink copper area dimension (bottom layer)
DocID027400 Rev 2
Footprint, 2 + 2 cm2 or 8 + 8 cm2
41/55
Package and PCB thermal data
VN7040AJ, VN7040AS
Figure 50: SO-8 Rthj-amb vs PCB copper area in open box free air condition (one channel on)
RTHjamb
100
95
RTHjamb
90
85
80
75
70
65
60
55
50
0
2
4
6
8
10
RTHj_amb on 4Layer PCB: 45°C/W
GAPGCFT01145
Figure 51: SO-8 thermal impedance junction ambient single pulse (one channel on)
ZTH (°C/W)
100
10
1
Cu=8 cm2
Cu=2 cm2
Cu=foot print
4 Layer
0.1
0.0001
0.001
0.01
0.1
1
10
100
1000
Time (s)
GAPGCFT01146
Equation: pulse calculation formula
ZTHδ = RTH · δ + ZTHtp (1 - δ)
where δ = tP/T
42/55
DocID027400 Rev 2
VN7040AJ, VN7040AS
Package and PCB thermal data
Figure 52: Thermal fitting model of a double-channel HSD in SO-8
The fitting model is a simplified thermal tool and is valid for transient evolutions
where the embedded protections (power limitation or thermal cycling during
thermal shutdown) are not triggered.
Table 17: Thermal parameters
Area/island (cm2)
Footprint
R1 (°C/W)
1.5
R2 (°C/W)
3.3
R3 (°C/W)
10
R4 (°C/W)
2
8
4L
28
17
17
17
R5 (°C/W)
24
12
9
4
R6 (°C/W)
30
23
19
9
C1 (W.s/°C)
0.0004
C2 (W.s/°C)
0.008
C3 (W.s/°C)
0.05
C4 (W.s/°C)
0.1
C5 (W.s/°C)
0.4
0.8
0.8
0.8
C6 (W.s/°C)
3
7
11
22
DocID027400 Rev 2
43/55
Package information
7
VN7040AJ, VN7040AS
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1
PowerSSO-16 package information
Figure 53: PowerSSO-16 package outline
Table 18: PowerSSO-16 mechanical data
Dimensions
Ref.
Millimeters
Min.
Θ
0°
Θ1
0°
Θ2
5°
Θ3
5°
A
44/55
Typ.
Max.
8°
15°
15°
1.70
DocID027400 Rev 2
VN7040AJ, VN7040AS
Package information
Dimensions
Ref.
Millimeters
Min.
A1
Typ.
Max.
0.00
0.10
A2
1.10
1.60
b
0.20
0.30
b1
0.20
c
0.19
c1
0.19
D
D1
0.25
0.28
0.25
0.20
0.23
4.9 BSC
2.90
3.50
e
0.50 BSC
E
6.00 BSC
E1
3.90 BSC
E2
2.20
2.80
h
0.25
0.50
L
0.40
0.60
L1
1.00 REF
N
16
R
0.07
R1
0.07
S
0.20
0.85
Tolerance of form and position
aaa
0.10
bbb
0.10
ccc
0.08
ddd
0.08
eee
0.10
fff
0.10
ggg
0.15
DocID027400 Rev 2
45/55
Package information
7.2
VN7040AJ, VN7040AS
SO-8 package information
Figure 54: SO-8 package outline
0016023_H
GAPG1605141113CFT
Table 19: SO-8 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
1.75
A1
0.10
A2
1.25
b
0.28
0.48
c
0.17
0.23
D
4.80
4.90
5.00
E
5.80
6.00
6.20
E1
3.80
3.90
4.00
0.25
1.27
e
h
0.25
0.50
L
0.40
1.27
1.04
L1
k
0º
ccc
46/55
Max.
8º
0.10
DocID027400 Rev 2
VN7040AJ, VN7040AS
7.3
Package information
PowerSSO-16 packing information
Figure 55: PowerSSO-16 reel 13"
Table 20: Reel dimensions
Description
Value(1)
Base quantity
2500
Bulk quantity
2500
A (max)
330
B (min)
1.5
C (+0.5, -0.2)
13
D (min)
20.2
N
100
W1 (+2 /-0)
12.4
W2 (max)
18.4
Notes:
(1)All
dimensions are in mm.
DocID027400 Rev 2
47/55
Package information
VN7040AJ, VN7040AS
Figure 56: PowerSSO-16 carrier tape
0.30 ±0.05
P2
P0
2.0 ±0.1
4.0 ±0.1
X
1.55 ±0.05
1.75 ±0.1
B0
W
F
1.6±0.1
R 0.5
Typical
K1
Y
Y
X
K0
P1
A0
REF 4.18
REF 0.6
SECTION X - X
REF 0.5
SECTION Y - Y
GAPG2204151242CFT
Table 21: PowerSSO-16 carrier tape dimensions
Description
Value(1)
A0
6.50 ± 0.1
B0
5.25 ± 0.1
K0
2.10 ± 0.1
K1
1.80 ± 0.1
F
5.50 ± 0.1
P1
8.00 ± 0.1
W
12.00 ± 0.3
Notes:
(1)All
dimensions are in mm.
Figure 57: PowerSSO-16 schematic drawing of leader and trailer tape
48/55
DocID027400 Rev 2
VN7040AJ, VN7040AS
7.4
Package information
SO-8 packing information
Figure 58: Reel for SO-8
Table 22: Reel dimensions
Description
Value(1)
Base quantity
2500
Bulk quantity
2500
A (max)
330
B (min)
1.5
C (+0.5, -0.2)
13
D (min)
20.2
N
100
W1 (+2/ -0)
12.4
W2 (max)
18.4
Notes:
(1)All
dimensions are in mm.
DocID027400 Rev 2
49/55
Package information
VN7040AJ, VN7040AS
Figure 59: SO-8 carrier tape
GAPG2105151447CFT
Table 23: SO-8 carrier tape dimensions
Description
Value(1)
A0
6.50 ± 0.1
B0
5.30 ± 0.1
K0
2.20 ± 0.1
K1
1.90 ± 0.1
F
5.50 ± 0.1
P1
8.00 ± 0.1
W
12.00 ± 0.3
Notes:
(1)All
50/55
dimensions are in mm.
DocID027400 Rev 2
VN7040AJ, VN7040AS
Package information
Figure 60: SO-8 schematic drawing of leader and trailer tape
7.5
PowerSSO-16 marking information
Figure 61: PowerSSO-16 marking information
Marking area
1
2
3
4
5
6
7
8
Special function digit
&: Engineering sample
<blank>: Commercial sample
PowerSSO-16 TOP VIEW
(not in scale)
GAPG0401151415CFT
Engineering Samples: these samples can be clearly identified by a dedicated
special symbol in the marking of each unit. These samples are intended to be
used for electrical compatibility evaluation only; usage for any other purpose may
be agreed only upon written authorization by ST. ST is not liable for any customer
usage in production and/or in reliability qualification trials.
Commercial Samples: fully qualified parts from ST standard production with no
usage restrictions.
DocID027400 Rev 2
51/55
Package information
7.6
VN7040AJ, VN7040AS
SO-8 marking information
Figure 62: SO-8 marking information
Marking area
1
2
3
4
5
6
7
8
Special function digit
&: Engineering sample
<blank>: Commercial sample
SO-8 TOP VIEW
(not in scale)
GAPG2705151558CFT
Engineering Samples: these samples can be clearly identified by a dedicated
special symbol in the marking of each unit. These samples are intended to be
used for electrical compatibility evaluation only; usage for any other purpose may
be agreed only upon written authorization by ST. ST is not liable for any customer
usage in production and/or in reliability qualification trials.
Commercial Samples: fully qualified parts from ST standard production with no
usage restrictions
52/55
DocID027400 Rev 2
VN7040AJ, VN7040AS
8
Order codes
Order codes
Table 24: Device summary
Order codes
Package
Tape and reel
PowerSSO-16
VN7040AJTR
SO-8
VN7040ASTR
DocID027400 Rev 2
53/55
Revision history
9
VN7040AJ, VN7040AS
Revision history
Table 25: Document revision history
Date
Revision
04-Jun-2015
1
Initial release.
2
Updated cover image.
Updated Table 4: "Thermal data"
Updated following sections:
20-Jul-2015
Changes
•
•
54/55
Section 6.1: "PowerSSO-16 thermal data"
Section 6.2: "SO-8 thermal data"
DocID027400 Rev 2
VN7040AJ, VN7040AS
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID027400 Rev 2
55/55