VND7140AJ - STMicroelectronics

VND7140AJ
Double channel high-side driver with MultiSense analog
feedback for automotive applications
Datasheet - production data
−
−
−
Loss of ground and loss of VCC
Reverse battery with external
components
Electrostatic discharge protection
Applications
•
Features
Max transient supply voltage
VCC
40 V
Operating voltage range
VCC
4 to 28 V
Typ. on-state resistance (per Ch)
RON
140 mΩ
Current limitation (typ)
ILIMH
12 A
Standby current (max)
ISTBY
0.5 µA
•
•
•
•
Automotive qualified
General
−
Double channel smart high-side driver
with MultiSense analog feedback
−
Very low standby current
−
Compatible with 3 V and 5 V CMOS
outputs
MultiSense diagnostic functions
−
Multiplexed analog feedback of: load
current with high precision proportional
current mirror, VCC supply voltage and
TCHIP device temperature
−
Overload and short to ground (power
limitation) indication
−
Thermal shutdown indication
−
OFF-state open-load detection
−
Output short to VCC detection
−
Sense enable/disable
Protections
−
Undervoltage shutdown
−
Overvoltage clamp
−
Load current limitation
−
Self limiting of fast thermal transients
−
Configurable latch-off on
overtemperature or power limitation
with dedicated fault reset pin
May 2015
•
All types of automotive resistive, inductive
and capacitive loads
Specially intended for automotive signal
lamps (up to R10W or LED Rear
Combinations)
Description
The device is a double channel high-side driver
manufactured using ST proprietary VIPower® M07 technology and housed in PowerSSO-16
package. The device is designed to drive 12 V
automotive grounded loads through a 3 V and
5 V CMOS-compatible interface, providing
protection and diagnostics.
The device integrates advanced protective
functions such as load current limitation, overload
active management by power limitation and
overtemperature shutdown with configurable
latch-off.
A FaultRST pin unlatches the output in case of
fault or disables the latch-off functionality.
A dedicated multifunction multiplexed analog
output pin delivers sophisticated diagnostic
functions including high precision proportional
load current sense, supply voltage feedback and
chip temperature sense, in addition to the
detection of overload and short circuit to ground,
short to VCC and OFF-state open-load.
A sense enable pin allows OFF-state diagnosis to
be disabled during the module low-power mode
as well as external sense resistor sharing among
similar devices.
DocID027398 Rev 1
This is information on a product in full production.
1/46
www.st.com
Contents
VND7140AJ
Contents
1
Block diagram and pin description ................................................ 5
2
Electrical specification.................................................................... 7
3
4
2.1
Absolute maximum ratings ................................................................ 7
2.2
Thermal data ..................................................................................... 8
2.3
Main electrical characteristics ........................................................... 8
2.4
Waveforms ...................................................................................... 20
2.5
Electrical characteristics curves ...................................................... 22
Protections..................................................................................... 26
3.1
Power limitation ............................................................................... 26
3.2
Thermal shutdown........................................................................... 26
3.3
Current limitation ............................................................................. 26
3.4
Negative voltage clamp ................................................................... 26
Application information ................................................................ 27
4.1
GND protection network against reverse battery............................. 27
4.1.1
Diode (DGND) in the ground line ..................................................... 28
4.2
Immunity against transient electrical disturbances .......................... 28
4.3
MCU I/Os protection........................................................................ 28
4.4
Multisense - analog current sense .................................................. 29
4.4.1
Principle of Multisense signal generation ......................................... 30
4.4.2
TCASE and VCC monitor ................................................................. 32
4.4.3
Short to VCC and OFF-state open-load detection ........................... 33
5
Maximum demagnetization energy (VCC = 16 V) ........................ 35
6
Package and PCB thermal data .................................................... 36
6.1
7
PowerSSO-16 thermal data ............................................................ 36
Package information ..................................................................... 39
7.1
PowerSSO-16 package information ................................................ 39
7.2
PowerSSO-16 packing information ................................................. 41
7.3
PowerSSO-16 marking information ................................................. 43
8
Order codes ................................................................................... 44
9
Revision history ............................................................................ 45
2/46
DocID027398 Rev 1
VND7140AJ
List of tables
List of tables
Table 1: Pin functions ................................................................................................................................. 5
Table 2: Suggested connections for unused and not connected pins ........................................................ 6
Table 3: Absolute maximum ratings ........................................................................................................... 7
Table 4: Thermal data ................................................................................................................................. 8
Table 5: Power section ............................................................................................................................... 8
Table 6: Switching....................................................................................................................................... 9
Table 7: Logic inputs ................................................................................................................................. 10
Table 8: Protections .................................................................................................................................. 11
Table 9: MultiSense .................................................................................................................................. 11
Table 10: Truth table ................................................................................................................................. 19
Table 11: MultiSense multiplexer addressing ........................................................................................... 19
Table 12: ISO 7637-2 - electrical transient conduction along supply line................................................. 28
Table 13: MultiSense pin levels in off-state .............................................................................................. 32
Table 14: PCB properties ......................................................................................................................... 36
Table 15: Thermal parameters ................................................................................................................. 38
Table 16: PowerSSO-16 mechanical data................................................................................................ 39
Table 17: Reel dimensions ....................................................................................................................... 41
Table 18: PowerSSO-16 carrier tape dimensions .................................................................................... 42
Table 19: Device summary ....................................................................................................................... 44
Table 20: Document revision history ........................................................................................................ 45
DocID027398 Rev 1
3/46
List of figures
VND7140AJ
List of figures
Figure 1: Block diagram .............................................................................................................................. 5
Figure 2: Configuration diagram (top view)................................................................................................. 6
Figure 3: Current and voltage conventions ................................................................................................. 7
Figure 4: IOUT/ISENSE versus IOUT....................................................................................................... 16
Figure 5: Current sense accuracy versus IOUT ....................................................................................... 16
Figure 6: Switching time and Pulse skew ................................................................................................. 17
Figure 7: MultiSense timings (current sense mode) ................................................................................. 17
Figure 8: Multisense timings (chip temperature and VCC sense mode) .................................................. 18
Figure 9: TDSTKON.................................................................................................................................. 18
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD) ...................... 20
Figure 11: Latch functionality - behavior in hard short circuit condition.................................................... 20
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off) .... 21
Figure 13: Standby mode activation ......................................................................................................... 21
Figure 14: Standby state diagram ............................................................................................................. 22
Figure 15: OFF-state output current ......................................................................................................... 22
Figure 16: Standby current ....................................................................................................................... 22
Figure 17: IGND(ON) vs. Iout ................................................................................................................... 23
Figure 18: Logic Input high level voltage .................................................................................................. 23
Figure 19: Logic Input low level voltage.................................................................................................... 23
Figure 20: High level logic input current ................................................................................................... 23
Figure 21: Low level logic input current .................................................................................................... 23
Figure 22: Logic Input hysteresis voltage ................................................................................................. 23
Figure 23: FaultRST Input clamp voltage ................................................................................................. 24
Figure 24: Undervoltage shutdown ........................................................................................................... 24
Figure 25: On-state resistance vs. Tcase ................................................................................................. 24
Figure 26: On-state resistance vs. VCC ................................................................................................... 24
Figure 27: Turn-on voltage slope .............................................................................................................. 24
Figure 28: Turn-off voltage slope .............................................................................................................. 24
Figure 29: Won vs. Tcase ......................................................................................................................... 25
Figure 30: Woff vs. Tcase ......................................................................................................................... 25
Figure 31: ILIMH vs. Tcase ....................................................................................................................... 25
Figure 32: OFF-state open-load voltage detection threshold ................................................................... 25
Figure 33: Vsense clamp vs. Tcase.......................................................................................................... 25
Figure 34: Vsenseh vs. Tcase .................................................................................................................. 25
Figure 35: Application diagram ................................................................................................................. 27
Figure 36: Simplified internal structure ..................................................................................................... 27
Figure 37: MultiSense and diagnostic – block diagram ............................................................................ 29
Figure 38: MultiSense block diagram ....................................................................................................... 30
Figure 39: Analogue HSD – open-load detection in off-state ................................................................... 31
Figure 40: Open-load / short to VCC condition ......................................................................................... 32
Figure 41: GND voltage shift .................................................................................................................... 33
Figure 42: Maximum turn off current versus inductance .......................................................................... 35
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5) ............................................ 36
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7) ........................................... 36
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on) ..................... 37
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on) .............. 37
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16.......................................... 38
Figure 48: PowerSSO-16 package outline ............................................................................................... 39
Figure 49: PowerSSO-16 reel 13" ............................................................................................................ 41
Figure 50: PowerSSO-16 carrier tape ...................................................................................................... 42
Figure 51: PowerSSO-16 schematic drawing of leader and trailer tape .................................................. 42
Figure 52: PowerSSO-16 marking information ......................................................................................... 43
4/46
DocID027398 Rev 1
VND7140AJ
1
Block diagram and pin description
Block diagram and pin description
Figure 1: Block diagram
Table 1: Pin functions
Name
VCC
Function
Battery connection.
OUTPUT0,1 Power output.
GND
INPUT0,1
Ground connection. Must be reverse battery protected by an external diode / resistor
network.
Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs.
It controls output switch state.
MultiSense
Multiplexed analog sense output pin; it delivers a current proportional to the selected
diagnostic: load current, supply voltage or chip temperature.
SEn
Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense
diagnostic pin.
SEL0,1
FaultRST
Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense
multiplexer.
Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in
case of fault; If kept low, sets the outputs in auto-restart. mode
DocID027398 Rev 1
5/46
Block diagram and pin description
VND7140AJ
Figure 2: Configuration diagram (top view)
Table 2: Suggested connections for unused and not connected pins
SEn, SELx,
Connection /
pin
MultiSense
N.C.
Output
Input
Floating
Not allowed
X (1)
X
X
X
To ground
Through 1 kΩ
resistor
X
Not
allowed
Through 15 kΩ
resistor
Through 15 kΩ
resistor
Notes:
(1)X:
6/46
do not care.
DocID027398 Rev 1
FaultRST
VND7140AJ
2
Electrical specification
Electrical specification
Figure 3: Current and voltage conventions
IS
VCC
FaultRST
ISEn
IOUT
OUTPUT0,1
ISEL
MultiSense
SEL0,1
VSEL
VSEn
VOUT
ISENSE
SEn
VFR
VCC
VFn
IFR
VSENSE
IIN
VIN
INPUT0,1
IGND
GAPGCFT00315
VFn = VOUTn - VCC during reverse battery condition.
2.1
Absolute maximum ratings
Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to the conditions in table below for extended
periods may affect device reliability.
Table 3: Absolute maximum ratings
Symbol
Parameter
Value
Unit
VCC
DC supply voltage
38
-VCC
Reverse DC supply voltage
0.3
VCCPK
Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped
to 40V; RL = 4 Ω)
40
V
VCCJS
Maximum jump start voltage for single pulse short circuit protection
28
V
-IGND
DC reverse ground pin current
200
mA
IOUT
OUTPUT0,1 DC output current
Internally
limited
A
-IOUT
Reverse DC output current
IIN
INPUT0,1 DC input current
ISEn
SEn DC input current
ISEL
SEL0,1 DC input current
IFR
FaultRST DC input current
VFR
FaultRST DC input voltage
DocID027398 Rev 1
V
4
-1 to 10
mA
7.5
V
7/46
Electrical specification
VND7140AJ
Symbol
Parameter
Unit
MultiSense pin DC output current (VGND = VCC and VSENSE < 0 V)
10
MultiSense pin DC output current in reverse (VCC < 0 V)
-20
EMAX
Maximum switching energy (single pulse) (TDEMAG = 0.4 ms;
Tjstart = 150 °C)
10
mJ
VESD
Electrostatic discharge (JEDEC 22A-114F)
•
INPUT0,1
•
MultiSense
•
SEn, SEL0,1, FaultRST
•
OUTPUT0,1
•
VCC
4000
2000
4000
4000
4000
V
V
V
V
V
VESD
Charge device model (CDM-AEC-Q100-011)
750
V
ISENSE
Tj
Tstg
2.2
Value
mA
Junction operating temperature
-40 to 150
Storage temperature
-55 to 150
°C
Thermal data
Table 4: Thermal data
Symbol
Parameter
Typ. value
Rthj-board Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8)
Rthj-amb
Rthj-amb
(1)(2)
Unit
7.7
Thermal resistance junction-ambient (JEDEC JESD 51-5)
(1)(3)
61
Thermal resistance junction-ambient (JEDEC JESD 51-7)
(1)(2)
26.5
°C/W
Notes:
(1)One
2.3
channel ON.
(2)Device
mounted on four-layers 2s2p PCB
(3)Device
mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace
Main electrical characteristics
7 V < VCC < 28 V; -40°C < Tj < 150°C, unless otherwise specified.
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
Table 5: Power section
Symbol
Parameter
VCC
Operating supply
voltage
VUSD
Test conditions
28
V
Undervoltage shutdown
4
V
VUSDReset
Undervoltage shutdown
reset
5
V
VUSDhyst
Undervoltage shutdown
hysteresis
4
On-state resistance (1)
13
0.3
IOUT = 1 A; Tj = 25°C
RON
8/46
Min. Typ. Max. Unit
V
140
IOUT = 1 A; Tj = 150°C
280 mΩ
IOUT = 1 A; VCC = 4 V; Tj = 25°C
210
DocID027398 Rev 1
VND7140AJ
Electrical specification
Symbol
Vclamp
ISTBY
Parameter
Test conditions
Clamp voltage
Supply current in
standby at VCC = 13 V
(2)
tD_STBY
IS(ON)
IGND(ON)
IL(off)
VF
Min. Typ. Max. Unit
IS = 20 mA; 25°C < Tj < 150°C
41
IS = 20 mA; Tj = -40°C
38
52
0.5
VCC = 13 V; VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 85°C (3)
0.5
VCC = 13 V; VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 125°C
3
Supply current
VCC = 13 V; VSEn = VFR = VSEL0,1 = 0 V;
VIN0 = 5 V; VIN1 = 5 V;
IOUT0 = 0 A; IOUT1 = 0 A
Control stage current
consumption in ON
state. All channels
active.
VCC = 13 V; VSEn = 5 V; VFR = VSEL0,1 = 0 V;
VIN0 = 5 V; VIN1 = 5 V; IOUT0 = 1 A;
IOUT1 = 1 A
60
300 550
5
Off-state output current VIN = VOUT = 0 V; VCC = 13 V; Tj = 25°C
at VCC = 13 V (1)
VIN = VOUT = 0 V; VCC = 13 V; Tj = 125°C
0
V
V
VCC = 13 V; VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 25°C
VCC = 13 V;
Standby mode blanking
VIN = VOUT = VFR = VSEL0,1 = 0 V; VSEn = 5 V
time
to 0 V
Output - VCC diode
voltage (1)
46
mA
12
mA
3
IOUT = -1 A; Tj = 150°C
µs
8
0.01 0.5
0
µA
0.7
µA
V
Notes:
(1)For
each channel
(2)PowerMOS
(3)Parameter
leakage included.
specified by design; not subject to production test.
Table 6: Switching
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified
Symbol
Parameter
td(on)(1)
Turn-on delay time at Tj = 25 °C
td(off)(1)
Turn-off delay time at Tj = 25 °C
(dVOUT/dt)on(1) Turn-on voltage slope at Tj = 25 °C
(dVOUT/dt)off
(1)
Turn-off voltage slope at Tj = 25 °C
Test conditions Min. Typ. Max. Unit
RL = 13 Ω
RL = 13 Ω
10
70
120
10
40
100
0.1 0.27
0.7
0.1 0.35
0.7
µs
V/µs
WON
Switching energy losses at turn-on (twon)
RL = 13 Ω
—
0.15 0.18(2) mJ
WOFF
Switching energy losses at turn-off (twoff)
RL = 13 Ω
—
0.1 0.18(2) mJ
Differential Pulse skew (tPHL - tPLH)
RL = 13 Ω
tSKEW (1)
-100 -50
0
µs
Notes:
(1)See Figure 6: "Switching time and Pulse skew".
(2)Parameter
guaranteed by design and characterization; not subject to production test.
DocID027398 Rev 1
9/46
Electrical specification
VND7140AJ
Table 7: Logic inputs
7 V < VCC < 28 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
0.9
V
INPUT0,1 characteristics
VIL
Input low level voltage
IIL
Low level input current
VIH
Input high level voltage
IIH
High level input current
VI(hyst)
Input hysteresis voltage
VICL
VIN = 0.9 V
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
Input clamp voltage
1
V
5.3
IIN = -1 mA
µA
7.2
-0.7
V
FaultRST characteristics
VFRL
Input low level voltage
IFRL
Low level input current
VFRH
Input high level voltage
IFRH
High level input current
VFR(hyst)
Input hysteresis voltage
VFRCL
0.9
VIN = 0.9 V
1
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
Input clamp voltage
V
V
5.3
IIN = -1 mA
µA
7.5
-0.7
V
SEL0,1 characteristics (7 V < VCC < 18 V)
VSELL
Input low level voltage
ISELL
Low level input current
VSELH
Input high level voltage
ISELH
High level input current
VSEL(hyst)
Input hysteresis voltage
VSELCL
0.9
VIN = 0.9 V
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
Input clamp voltage
1
µA
V
5.3
IIN = -1 mA
V
7.2
-0.7
V
SEn characteristics (7 V < VCC < 18 V)
VSEnL
Input low level voltage
ISEnL
Low level input current
VSEnH
Input high level voltage
ISEnH
High level input current
VSEn(hyst)
Input hysteresis voltage
VSEnCL
10/46
Input clamp voltage
0.9
VIN = 0.9 V
1
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
IIN = -1 mA
DocID027398 Rev 1
V
µA
V
5.3
7.2
-0.7
V
VND7140AJ
Electrical specification
Table 8: Protections
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
ILIMH
DC short circuit current
ILIML
Short circuit current during
thermal cycling
TTSD
Shutdown temperature
Reset temperature
TRS
Thermal reset of fault
diagnostic indication
Dynamic temperature
Tj = -40°C; VCC = 13 V
Fault reset time for output
unlatch (1)
VFR = 5 V to 0 V;
VSEn = 5 V;
•
E.g. Ch0:
VIN0 = 5 V;
VSEL0 = 0 V;
VSEL1 = 0 V
Max.
Unit
16
A
4
150
175
TRS + 1
TRS + 7
VFR = 0 V; VSEn = 5 V
ΔTJ_SD
VON
12
VCC = 13 V;
TR < Tj < TTSD
Thermal hysteresis
(TTSD - TR)(1)
VDEMAG
8
4 V < VCC < 18 V (1)
THYST
tLATCH_RST
Typ.
VCC = 13 V
(1)
TR
Min.
200
°C
135
7
Turn-off output voltage
clamp
Output voltage drop
limitation
60
3
K
10
20
µs
IOUT = 1 A; L = 6 mH;
Tj = -40°C
VCC - 38
V
IOUT = 1 A; L = 6 mH;
Tj = 25°C to 150°C
VCC - 41 VCC - 46 VCC - 52
V
20
mV
IOUT = 0.07 A
Notes:
(1)Parameter
guaranteed by design and characterization; not subject to production test.
Table 9: MultiSense
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
VSENSE_CL
MultiSense clamp
voltage
Test conditions
VSEn = 0 V; ISENSE = 1 mA
Min.
Typ.
-17
Max. Unit
-12
V
VSEn = 0 V; ISENSE = -1 mA
7
Current sense characteristics
KOL
dKcal/Kcal(1)(2)
KLED
IOUT/ISENSE
IOUT = 0.01 A; VSENSE = 0.5 V;
VSEn = 5 V
295
Current sense ratio drift
at calibration point
IOUT = 0.01 A to 0.025 A;
Ical = 17.5 mA;
VSENSE = 0.5 V; VSEn = 5 V
-30
IOUT/ISENSE
IOUT = 0.025 A;
VSENSE = 0.5 V; VSEn = 5 V
330
DocID027398 Rev 1
30
580
%
820
11/46
Electrical specification
VND7140AJ
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
dK0/K0(1)(2)
K1
dK1/K1(1)(2)
K2
dK2/K2(1)(2)
K3
dK3/K3(1)(2)
ISENSE0
12/46
Min.
Typ.
Max. Unit
IOUT = 0.025 A;
VSENSE = 0.5 V; VSEn = 5 V
-25
IOUT/ISENSE
IOUT = 0.07 A; VSENSE = 0.5 V;
VSEn = 5 V
375
Current sense ratio drift
IOUT = 0.07 A; VSENSE = 0.5 V;
VSEn = 5 V
-20
IOUT/ISENSE
IOUT = 0.15 A; VSENSE = 4 V;
VSEn = 5 V
360
Current sense ratio drift
IOUT = 0.15 A; VSENSE = 4 V;
VSEn = 5 V
-15
IOUT/ISENSE
IOUT = 0.7 A; VSENSE = 4 V;
VSEn = 5 V
380
Current sense ratio drift
IOUT = 0.7 A; VSENSE = 4 V;
VSEn = 5 V
-10
IOUT/ISENSE
IOUT = 2 A; VSENSE = 4 V;
VSEn = 5 V
430
Current sense ratio drift
IOUT = 2 A; VSENSE = 4 V;
VSEn = 5 V
-5
5
MultiSense disabled:
VSEn = 0 V
0
0.5
MultiSense disabled:
-1 V < VSENSE < 5 V(1)
-0.5
0.5
MultiSense enabled:
VSEn = 5 V; All channels ON;
IOUTX = 0 A; ChX diagnostic
selected;
•
E.g. Ch0:
VIN0 = 5 V; VIN1 = 5 V;
VSEL0 = 0 V;
VSEL1 = 0 V; IOUT0 = 0 A;
IOUT1 = 1 A
0
2
MultiSense enabled:
VSEn = 5 V; ChX OFF; ChX
diagnostic selected:
•
E.g. Ch0:
VIN0 = 0 V; VIN1 = 5 V;
VSEL0 = 0 V;
VSEL1 = 0 V; IOUT1 = 1 A
0
dKLED/KLED(1)(2) Current sense ratio drift
K0
Test conditions
MultiSense leakage
current
VOUT_MSD(1)
Output Voltage for
MultiSense shutdown
VSEn = 5 V; RSENSE = 2.7 kΩ;
•
E.g. Ch0:
VIN0 = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; IOUT0 = 1 A
VSENSE_SAT
Multisense saturation
voltage
VCC = 7 V; RSENSE = 2.7 kΩ;
VSEn = 5 V; VIN0 = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
IOUT0 = 2 A; Tj = 150°C
DocID027398 Rev 1
25
550
720
20
500
%
570
10
470
%
670
15
475
%
%
520
%
µA
2
5
5
V
V
VND7140AJ
Electrical specification
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
ISENSE_SAT(1)
IOUT_SAT
(1)
Parameter
CS saturation current
Test conditions
VCC = 7 V; VSENSE = 4 V;
VIN0 = 5 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
Tj = 150°C
VCC = 7 V; VSENSE = 4 V;
VIN0 = 5 V; VSEn = 5 V;
Output saturation current V
SEL0 = 0 V; VSEL1 = 0 V;
Tj = 150°C
Min.
Typ.
Max. Unit
4
mA
2.2
A
OFF-state diagnostic
VOL
OFF-state open-load
voltage detection
threshold
VSEn = 5 V; ChX OFF;
ChX diagnostic selected
•
E.g: Ch0
VIN0 = 0 V; VSEL0 = 0 V;
VSEL1 = 0 V
IL(off2)
OFF-state output sink
current
VIN = 0 V; VOUT = VOL
-100
tDSTKON
OFF-state diagnostic
delay time from falling
edge of INPUT (see
Figure 9: "TDSTKON")
VSEn = 5 V; ChX ON to OFF
transition;
ChX diagnostic selected
•
E.g: Ch0
VIN0 = 5 V to 0 V;
VSEL0 = 0 V;
VSEL1 = 0 V; IOUT0 = 0 A;
VOUT = 4 V
100
tD_OL_V
Settling time for valid
OFF-state open load
diagnostic indication
from rising edge of SEn
VIN0 = 0 V; VIN1 = 0 V;
VFR = 0 V; VSEL0 = 0 V;
VSEL1 = 0 V; VOUT0 = 4 V;
VSEn = 0 V to 5 V
OFF-state diagnostic
delay time from rising
edge of VOUT
VSEn = 5 V; ChX OFF;
ChX diagnostic selected
•
E.g: Ch0
VIN0 = 0 V; VSEL0 = 0 V;
VSEL1 = 0 V; VOUT = 0 V
to 4 V
tD_VOL
2
3
350
5
4
V
-15
µA
700
µs
60
µs
30
µs
Chip temperature analog feedback
VSENSE_TC
MultiSense output
voltage proportional to
chip temperature
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN0,1 = 0 V;
RSENSE = 1 kΩ; Tj = -40°C
2.325
2.41 2.495
V
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN0,1 = 0 V;
RSENSE = 1 kΩ; Tj = 25°C
1.985
2.07 2.155
V
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN0,1 = 0 V;
RSENSE = 1 kΩ; Tj = 125°C
1.435
1.52 1.605
V
mV/
K
dVSENSE_TC/dT(1) Temperature coefficient
Tj = -40°C to 150°C
Transfer function
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)
DocID027398 Rev 1
-5.5
13/46
Electrical specification
VND7140AJ
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min.
Typ.
3.16
3.23
Max. Unit
VCC supply voltage analog feedback
VSENSE_VCC
MultiSense output
voltage proportional to
VCC supply voltage
Transfer function (3)
VCC = 13 V; VSEn = 5 V;
VSEL0 = 5 V; VSEL1 = 5 V;
VIN0,1 = 0 V; RSENSE = 1 kΩ
3.3
V
6.6
V
30
mA
VSENSE_VCC = VCC / 4
Fault diagnostic feedback (see Table 10: "Truth table")
VSENSEH
ISENSEH
MultiSense output
voltage in fault condition
MultiSense output
current in fault condition
VCC = 13 V; RSENSE = 1 kΩ;
•
E.g: Ch0 in open load
VIN0 = 0 V; VSEn = 5 V;
VSEL0 = 0 V;
VSEL1 = 0 V; IOUT0 = 0 A;
VOUT = 4 V
5
VCC = 13 V; VSENSE = 5 V
7
20
(2)
MultiSense timings (current sense mode - see Figure 7: "MultiSense timings (current sense
mode)")(4)
tDSENSE1H
Current sense settling
time from rising edge of
SEn
VIN = 5 V; VSEn = 0 V to 5 V;
RSENSE = 1 kΩ; RL = 13 Ω
tDSENSE1L
Current sense disable
delay time from falling
edge of SEn
VIN = 5 V; VSEn = 5 V to 0 V;
RSENSE = 1 kΩ; RL = 13 Ω
tDSENSE2H
Current sense settling
time from rising edge of
INPUT
VIN = 0 V to 5 V; VSEn = 5 V;
RSENSE = 1 kΩ; RL = 13 Ω
ΔtDSENSE2H
tDSENSE2L
60
µs
5
20
µs
100
250
µs
100
µs
250
µs
Current sense settling
VIN = 5 V; VSEn = 5 V;
time from rising edge of
RSENSE = 1 kΩ; ISENSE = 90 %
IOUT (dynamic response
of ISENSEMAX; RL = 13 Ω
to a step change of IOUT)
Current sense turn-off
delay time from falling
edge of INPUT
VIN = 5 V to 0 V; VSEn = 5 V;
RSENSE = 1 kΩ; RL = 13 Ω
50
MultiSense timings (chip temperature sense mode - see Figure 8: "Multisense timings (chip
temperature and VCC sense mode)")(4)
tDSENSE3H
VSENSE_TC settling time
from rising edge of SEn
VSEn = 0 V to 5 V;
VSEL0 = 0 V; VSEL1 = 5 V;
RSENSE = 1 kΩ
60
µs
tDSENSE3L
VSENSE_TC disable delay
time from falling edge of
SEn
VSEn = 5 V to 0 V;
VSEL0 = 0 V; VSEL1 = 5 V;
RSENSE = 1 kΩ
20
µs
MultiSense timings (VCC voltage sense mode - see Figure 8: "Multisense timings (chip
temperature and VCC sense mode)")(4)
tDSENSE4H
14/46
VSENSE_VCC settling time
from rising edge of SEn
VSEn = 0 V to 5 V;
VSEL0 = 5 V; VSEL1 = 5 V;
RSENSE = 1 kΩ
DocID027398 Rev 1
60
µs
VND7140AJ
Electrical specification
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
tDSENSE4L
VSENSE_VCC disable delay
time from falling edge of
SEn
Test conditions
VSEn = 5 V to 0 V;
VSEL0 = 5 V; VSEL1 = 5 V;
RSENSE = 1 kΩ
Min.
Typ.
Max. Unit
20
µs
20
µs
tD_CStoTC
VIN0 = 5 V; VSEn = 5 V;
MultiSense transition
VSEL0 = 0 V; VSEL1 = 0 V to
delay from current sense
5 V; IOUT0 = 0.5 A;
to TC sense
RSENSE = 1 kΩ
60
µs
tD_TCtoCS
MultiSense transition
delay from TC sense to
current sense
VIN0 = 5 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 5 V to
0 V; IOUT0 = 0.5 A;
RSENSE = 1 kΩ
20
µs
tD_CStoVCC
VIN1 = 5 V; VSEn = 5 V;
MultiSense transition
VSEL0 = 5 V; VSEL1 = 0 V to
delay from current sense
5 V; IOUT1 = 0.5 A;
to VCC sense
RSENSE = 1 kΩ
60
µs
tD_VCCtoCS
MultiSense transition
delay from VCC sense to
current sense
VIN1 = 5 V; VSEn = 5 V;
VSEL0 = 5 V; VSEL1 = 5 V to
0 V; IOUT1 = 0.5 A;
RSENSE = 1 kΩ
20
µs
tD_TCtoVCC
MultiSense transition
delay from TC sense to
VCC sense
VCC = 13 V; Tj = 125°C;
VSEn = 5 V; VSEL0 = 0 V to
5 V; VSEL1 = 5 V;
RSENSE = 1 kΩ
20
µs
tD_VCCtoTC
MultiSense transition
delay from VCC sense to
TC sense
VCC = 13 V; Tj = 125°C;
VSEn = 5 V; VSEL0 = 5 V to
0 V; VSEL1 = 5 V;
RSENSE = 1 kΩ
20
µs
60
µs
MultiSense timings (Multiplexer transition times)(4)
MultiSense transition
delay from ChX to ChY
tD_XtoY
tD_CStoVSENSEH
VIN0 = 5 V; VIN1 = 5 V;
VSEn = 5 V; VSEL1 = 0 V;
VSEL0 = 0 V to 5 V;
IOUT0 = 0 A; IOUT1 = 1 A;
RSENSE = 1 kΩ
VIN0 = 5 V; VIN1 = 0 V;
MultiSense transition
VSEn = 5 V; VSEL1 = 0 V;
delay from stable current
VSEL0 = 0 V to 5 V;
sense on ChX to VSENSEH
IOUT0 = 1 A; VOUT1 = 4 V;
on ChY
RSENSE = 1 kΩ
Notes:
(1)Parameter
(2)All
(3)V
specified by design; not subject to production test.
values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
CC
sensing and TC sensing are referred to GND potential.
(4)Transition
delays are measured up to +/- 10% of final conditions.
DocID027398 Rev 1
15/46
Electrical specification
VND7140AJ
Figure 4: IOUT/ISENSE versus IOUT
1000
800
Max
K-factor
Min
Typ
600
400
200
0
0
1
2
IOUT[A]
3
GAPGCFT01217
Figure 5: Current sense accuracy versus IOUT
65
60
55
50
45
40
35
%
30
25
20
15
10
5
0
Current sense uncalibrated precision
Current sense calibrated precision
0
1
2
3
IOUT[A]
GAPGCFT01218
16/46
DocID027398 Rev 1
VND7140AJ
Electrical specification
Figure 6: Switching time and Pulse skew
twon
VOUT
twoff
Vcc
80% Vcc
ON
OFF
dVOUT/dt
dVOUT/dt
20% Vcc
t
INPUT
td(off)
td(on)
tpLH
tpHL
t
GAPG2609141134CFT
Figure 7: MultiSense timings (current sense mode)
IN1
High
SEn
Low
High
SEL0
Low
High
SEL1
Low
IOUT1
CURRENT SENSE
tDSENSE2H
tDSENSE1L
tDSENSE1H
tDSENSE2L
GAPGCFT00318
DocID027398 Rev 1
17/46
Electrical specification
VND7140AJ
Figure 8: Multisense timings (chip temperature and VCC sense mode)
High
SEn
Low
High
SEL0
Low
High
SEL1
Low
VCC
VSENSE = VSENSE_VCC
VSENSE = VSENSE_TC
SENSE
tDSENSE4H
tDSENSE3H
tDSENSE4L
VCC VOLTAGE SENSE MODE
tDSENSE3L
CHIP TEMPERATURE SENSE MODE
GAPGCFT00319
Figure 9: TDSTKON
VINPU T
VOU T
VOU T > VOL
MultiSense
TDSTKON
GAPG2609141140CFT
18/46
DocID027398 Rev 1
VND7140AJ
Electrical specification
Table 10: Truth table
Mode
Conditions
Standby
All logic inputs low
Nominal load
connected;
Tj < 150 °C
Normal
INX FR SEn SELX OUTX MultiSense
L
L
L
X
H
L
H
Hi-Z
L
See (1)
H
See (1)
Outputs configured for
auto-restart
H
H
See (1)
Outputs configured for
Latch-off
L
See (1)
H
See (1)
Output cycles with
temperature
hysteresis
L
See (1)
Output latches-off
L
L
Hi-Z
Hi-Z
Re-start when
VCC > VUSD +
VUSDhyst (rising)
H
See (1)
H
See (1)
<0V
See (1)
L
X
H
L
H
H
Undervoltage
VCC < VUSD (falling)
X
X
OFF-state
diagnostics
Short to VCC
L
X
Open-load
L
X
L
X
Overload
Negative output Inductive loads
voltage
turn-off
L
Low quiescent current
consumption
L
Overload or short
to GND causing:
Tj > TTSD or
ΔTj > ΔTj_SD
L
Comments
See (1)
See (1)
X
X
See (1)
See (1)
External pull-up
Notes:
(1)Refer
to Table 11: "MultiSense multiplexer addressing"
Table 11: MultiSense multiplexer addressing
MultiSense output
SEn SEL1 SEL0
MUX channel
Normal mode
Overload
OFF-state
diag. (1)
Negative
output
L
X
X
Hi-Z
H
L
L
Channel 0
diagnostic
ISENSE =
1/K * IOUT0
VSENSE =
VSENSEH
VSENSE =
VSENSEH
Hi-Z
H
L
H
Channel 1
diagnostic
ISENSE =
1/K * IOUT1
VSENSE =
VSENSEH
VSENSE =
VSENSEH
Hi-Z
H
H
L
TCHIP Sense
VSENSE = VSENSE_TC
H
H
H
VCC Sense
VSENSE = VSENSE_VCC
Notes:
(1)In case the output channel corresponding to the selected MUX channel is latched off while the
relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic.
Example 1: FR = 1; IN0 = 0; OUT0 = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0.
Example 2: FR = 1; IN0 = 0; OUT0 = latched, VOUT0 > VOL; MUX channel = channel 0 diagnostic;
Mutisense = VSENSEH
DocID027398 Rev 1
19/46
Electrical specification
2.4
VND7140AJ
Waveforms
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)
Figure 11: Latch functionality - behavior in hard short circuit condition
20/46
DocID027398 Rev 1
VND7140AJ
Electrical specification
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode +
latch off)
Figure 13: Standby mode activation
DocID027398 Rev 1
21/46
Electrical specification
VND7140AJ
Figure 14: Standby state diagram
2.5
Electrical characteristics curves
Figure 16: Standby current
Figure 15: OFF-state output current
Iloff [nA]
ISTBY [ µA]
180
1
160
0.9
140
0.8
Vcc = 13V
0.7
120
Off State
Vcc = 13V
Vin = Vout = 0
100
0.6
0.5
80
0.4
60
0.3
40
0.2
20
0.1
0
0
-50
-25
0
25
50
75
100
125
150
175
T [°C]
-25
0
25
50
75
100
125
150
175
T [°C]
GAPGCFT01221
22/46
-50
DocID027398 Rev 1
GAPGCFT01222
VND7140AJ
Electrical specification
Figure 17: IGND(ON) vs. Iout
Figure 18: Logic Input high level voltage
ViH, VFRH, VSELH, VSEnH [V]
IGND(ON) [mA]
2
8.0
1.8
7.0
1.6
6.0
1.4
Vcc = 13V
Iout0 = Iout1 = 1A
5.0
1.2
1
4.0
0.8
3.0
0.6
2.0
0.4
1.0
0.2
0
0 .0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
GAPGCFT01224
GAPGCFT01223
Figure 19: Logic Input low level voltage
VilL VFRL, VSELL, VSEnL [V]
Figure 20: High level logic input current
IiH, IFRH, ISELH, ISEnH [ µA]
2
4
1.8
3.5
1.6
3
1.4
2.5
1.2
1
2
0.8
1.5
0.6
1
0.4
0.5
0.2
0
0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
GAPGCFT01225
Figure 21: Low level logic input current
GAPGCFT01226
Figure 22: Logic Input hysteresis voltage
Vi(hyst), VFR(hyst), VSEL(hyst), VSEn(hyst) [V]
IiL, IFRL, ISELL, ISEnL [µA]
1
4
0.9
3.5
0.8
3
0.7
2.5
0.6
2
0.5
0.4
1.5
0.3
1
0.2
0.5
0.1
0
0
-50
-25
0
25
50
75
100
125
150
175
T [°C]
-50
-25
0
25
50
75
100
125
150
175
T [°C]
GAPGCFT01227
DocID027398 Rev 1
GAPGCFT01228
23/46
Electrical specification
VND7140AJ
Figure 23: FaultRST Input clamp voltage
VFRCL [V]
Figure 24: Undervoltage shutdown
VUSD [V]
8
8
7
7
Iin = 1mA
6
6
5
5
4
4
3
3
2
2
1
Iin = -1mA
1
0
-1
0
-25
-50
0
25
50
75
100
125
150
175
-50
-25
0
25
50
T [°C]
75
100
125
GAPGCFT01229
Figure 25: On-state resistance vs. Tcase
Figure 26: On-state resistance vs. VCC
Ron [mOhm]
280
280
260
260
240
240
220
220
200
200
T = 150 °C
T = 125 °C
180
Iout = 1A
Vcc = 13V
160
160
140
140
120
120
100
100
80
80
60
60
40
40
20
20
0
T = 25 °C
T = -40 °C
0
-50
-25
25
0
50
75
100
125
150
175
0
5
10
15
T [°C]
20
25
30
35
40
Vcc [V]
GAPGCFT01231
GAPGCFT01232
Figure 27: Turn-on voltage slope
Figure 28: Turn-off voltage slope
(dVout/dt)On [V/µs]
(dVout/dt)Off [V/ µs]
1
1
0.9
0.9
0.8
0.8
Vcc = 13V
Rl = 13Ω
0.7
Vcc = 13V
Rl = 13Ω
0.7
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0
0
-50
-25
0
25
50
75
100
125
150
175
T [°C]
-50
-25
0
25
50
75
100
125
150
175
T [°C]
GAPGCFT01233
24/46
175
GAPGCFT01230
Ron [mOhm]
180
150
T [°C]
DocID027398 Rev 1
GAPGCFT01234
VND7140AJ
Electrical specification
Figure 29: Won vs. Tcase
Figure 30: Woff vs. Tcase
Woff [mJ]
Won [mJ]
1
1
0.9
0.9
0.8
0.8
0.7
0.7
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0
0
-50
0
-25
25
50
75
100
125
150
175
-50
-25
0
25
50
T [°C]
75
100
125
150
175
T [°C]
GAPGCFT01235
GAPGCFT01236
Figure 32: OFF-state open-load voltage
detection threshold
Figure 31: ILIMH vs. Tcase
Ilimh [A]
VOL [V]
20
4
3.5
15
3
2.5
10
Vcc = 13V
2
1.5
5
1
0.5
0
-50
-25
0
25
50
75
100
125
150
175
0
-50
T [°C]
-25
0
25
50
75
100
125
150
175
T [°C]
GAPGCFT01237
GAPGCFT01238
Figure 34: Vsenseh vs. Tcase
Figure 33: Vsense clamp vs. Tcase
VSENSEH [V]
VSENSE_CL [V]
10
10
9
9
8
8
7
7
Iin = 1mA
6
6
5
5
4
4
3
3
2
2
1
Iin = -1mA
0
1
-1
-50
-25
0
25
50
75
100
125
150
175
0
-50
T [°C]
GAPGCFT01239
DocID027398 Rev 1
-25
0
25
50
75
100
125
150
175
T [°C]
GAPGCFT01240
25/46
Protections
VND7140AJ
3
Protections
3.1
Power limitation
The basic working principle of this protection consists of an indirect measurement of the
junction temperature swing ΔTj through the direct measurement of the spatial temperature
gradient on the device surface in order to automatically shut off the output MOSFET as
soon as ΔTj exceeds the safety level of ΔTj_SD. According to the voltage level on the
FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis
according to the maximum instantaneous power which can be handled (FaultRST = Low)
or remains off (FaultRST = High). The protection prevents fast thermal transient effects
and, consequently, reduces thermo-mechanical fatigue.
3.2
Thermal shutdown
In case the junction temperature of the device exceeds the maximum allowed threshold
(typically 175°C), it automatically switches off and the diagnostic indication is triggered.
According to the voltage level on the FaultRST pin, the device switches on again as soon
as its junction temperature drops to TR (FaultRST = Low) or remains off (FaultRST = High).
3.3
Current limitation
The device is equipped with an output current limiter in order to protect the silicon as well
as the other components of the system (e.g. bonding wires, wiring harness, connectors,
loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or
during load power-up, the output current is clamped to a safety level, ILIMH, by operating the
output power MOSFET in the active region.
3.4
Negative voltage clamp
In case the device drives inductive load, the output voltage reaches a negative value during
turn off. A negative voltage clamp structure limits the maximum negative voltage to a
certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the
device.
26/46
DocID027398 Rev 1
VND7140AJ
4
Application information
Application information
Figure 35: Application diagram
4.1
GND protection network against reverse battery
Figure 36: Simplified internal structure
DocID027398 Rev 1
27/46
Application information
4.1.1
VND7140AJ
Diode (DGND) in the ground line
A resistor (typ. RGND = 4.7 kΩ) should be inserted in parallel to DGND if the device drives an
inductive load.
This small signal diode can be safely shared amongst several different HSDs. Also in this
case, the presence of the ground network produces a shift (≈600 mV) in the input threshold
and in the status output values if the microprocessor ground is not common to the device
ground. This shift does not vary if more than one HSD shares the same diode/resistor
network.
4.2
Immunity against transient electrical disturbances
The immunity of the device against transient electrical emissions, conducted along the
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)
and ISO 16750-2:2010.
The related function performance status classification is shown in Table 12: "ISO 7637-2 electrical transient conduction along supply line".
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present
device only, without components and accessed through VCC and GND terminals.
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as
follows: “The function does not perform as designed during the test but returns
automatically to normal operation after the test”.
Table 12: ISO 7637-2 - electrical transient conduction along supply line
Test
Pulse
2011(E)
Test pulse severity
level with Status II
functional performance
status
Minimum
number of
pulses or test
time
Burst cycle / pulse
repetition time
Pulse duration and
pulse generator
internal impedance
Level
US(1)
1
III
-112V
500 pulses
0,5 s
2a
III
+55V
500 pulses
0,2 s
5s
50µs, 2Ω
3a
IV
-220V
1h
90 ms
100 ms
0.1µs, 50Ω
3b
IV
+150V
1h
90 ms
100 ms
0.1µs, 50Ω
IV
-7V
1 pulse
4
(2)
min
max
2ms, 10Ω
100ms, 0.01Ω
Load dump according to ISO 16750-2:2010
Test B (3)
40V
5 pulse
1 min
400ms, 2Ω
Notes:
(1)U
S
4.3
is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.
(2)Test
pulse from ISO 7637-2:2004(E).
(3)With
40 V external suppressor referred to ground (-40°C < Tj < 150°C).
MCU I/Os protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to
prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.
28/46
DocID027398 Rev 1
VND7140AJ
Application information
The value of these resistors is a compromise between the leakage current of
microcontroller and the current required by the HSD I/Os (Input levels compatibility) with
the latch-up limit of microcontroller I/Os.
Equation
VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax
Calculation example:
For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V
7.5 kΩ ≤ Rprot ≤ 140 kΩ.
Recommended values: Rprot = 15 kΩ
4.4
Multisense - analog current sense
Diagnostic information on device and load status are provided by an analog output pin
(MultiSense) delivering the following signals:
•
•
•
Current monitor: current mirror of channel output current
VCC monitor: voltage propotional to VCC
TCASE: voltage propotional to chip temperature
Those signals are routed through an analog multiplexer which is configured and controlled
by means of SELx and SEn pins, according to the address map in MultiSense multiplexer
addressing Table.
Figure 37: MultiSense and diagnostic – block diagram
DocID027398 Rev 1
29/46
Application information
4.4.1
VND7140AJ
Principle of Multisense signal generation
Figure 38: MultiSense block diagram
Current monitor
When current mode is selected in the MultiSense, this output is capable to provide:
•
•
Current mirror proportional to the load current in normal operation, delivering current
proportional to the load according to known ratio named K
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH
The current delivered by the current sense circuit, ISENSE, can be easily converted to a
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load
monitoring and abnormal condition detection.
Normal operation (channel ON, no fault, SEn active)
While device is operating in normal conditions (no fault intervention), VSENSE calculation can
be done using simple equations
Current provided by MultiSense output: ISENSE = IOUT/K
Voltage on RSENSE: VSENSE = RSENSE · ISENSE = RSENSE · IOUT/K
Where:
•
•
30/46
VSENSE is voltage measurable on RSENSE resistor
ISENSE is current provided from MultiSense pin in current output mode
DocID027398 Rev 1
VND7140AJ
Application information
•
•
IOUT is current flowing through output
K factor represents the ratio between PowerMOS cells and SenseMOS cells; its
spread includes geometric factor spread, current sense amplifier offset and process
parameters spread of overall circuitry specifying ratio between IOUT and ISENSE.
Failure flag indication
In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin
which is switched to a “current limited” voltage source, VSENSEH.
In any case, the current sourced by the MultiSense in this condition is limited to ISENSEH.
The typical behavior in case of overload or hard short circuit is shown in Waveforms
section.
Figure 39: Analogue HSD – open-load detection in off-state
DocID027398 Rev 1
31/46
Application information
VND7140AJ
Figure 40: Open-load / short to VCC condition
Table 13: MultiSense pin levels in off-state
Condition
Output
VOUT > VOL
Open-load
VOUT < VOL
4.4.2
Short to VCC
VOUT > VOL
Nominal
VOUT < VOL
MultiSense
SEn
Hi-Z
L
VSENSEH
H
Hi-Z
L
0
H
Hi-Z
L
VSENSEH
H
Hi-Z
L
0
H
TCASE and VCC monitor
In this case, MultiSense output operates in voltage mode and output level is referred to
device GND. Care must be taken in case a GND network protection is used, because a
voltage shift is generated between device GND and the microcontroller input GND
reference.
Figure 41: "GND voltage shift" shows link between VMEASURED and real VSENSE signal.
32/46
DocID027398 Rev 1
VND7140AJ
Application information
Figure 41: GND voltage shift
VCC monitor
Battery monitoring channel provides VSENSE = VCC / 4.
Case temperature monitor
Case temperature monitor is capable to provide information about the actual device
temperature. Since a diode is used for temperature sensing, the following equation
describes the link between temperature and output VSENSE level:
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)
where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C).
4.4.3
Short to VCC and OFF-state open-load detection
Short to VCC
A short circuit between VCC and output is indicated by the relevant current sense pin set to
VSENSEH during the device off-state. Small or no current is delivered by the current sense
during the on-state depending on the nature of the short circuit.
OFF-state open-load with external circuitry
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting
the output to a positive supply voltage VPU.
It is preferable VPU to be switched off during the module standby mode in order to avoid the
overall standby current consumption to increase in normal conditions, i.e. when load is
connected.
RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following
equation:
DocID027398 Rev 1
33/46
Application information
VND7140AJ
Equation
RPU <
34/46
VPU - 4
IL(off2)min @ 4V
DocID027398 Rev 1
VND7140AJ
Maximum demagnetization energy (VCC = 16 V)
Figure 42: Maximum turn off current versus inductance
VND7140Ax - Maximum turn off current versus inductance
I (A)
10
1
VND7140AJ - Single Pulse
Repetitive pulse Tjstart=100°C
Repetitive pulse Tjstart=125°C
0.1
0.1
1
10
100
1000
L (mH)
VND7140Ax - Maximum turn off Energy versus Tdemag
100
VND7140AJ - Single Pulse
Repetitive pulse Tjstart=100°C
Repetitive pulse Tjstart=125°C
E [mJ]
5
Maximum demagnetization energy (VCC = 16 V)
10
1
0.01
1
0.1
10
Tdemag [ms]
GAPGCFT01151
Values are generated with RL = 0 Ω.
In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of
every pulse must not exceed the temperature specified above for curves A and B.
DocID027398 Rev 1
35/46
Package and PCB thermal data
VND7140AJ
6
Package and PCB thermal data
6.1
PowerSSO-16 thermal data
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)
Table 14: PCB properties
Dimension
Board finish thickness
1.6 mm +/- 10%
Board dimension
77 mm x 86 mm
Board Material
FR4
Copper thickness (top and bottom layers)
0.070 mm
Copper thickness (inner layers)
0.035 mm
Thermal vias separation
1.2 mm
Thermal via diameter
0.3 mm +/- 0.08 mm
Copper thickness on vias
0.025 mm
Footprint dimension (top layer)
2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)
36/46
Value
DocID027398 Rev 1
Footprint, 2 cm2 or 8 cm2
VND7140AJ
Package and PCB thermal data
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on)
RTHjamb
100
RTHjamb
90
80
70
60
50
40
30
6
4
2
0
10
8
GAPGCFT01148
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)
ZTH (°C/W)
100
10
1
Cu=foot print
Cu=2 cm2
Cu=8 cm2
4 Layer
0 .1
0.0001
0.001
0.01
0.1
1
10
100
1000
Time (s)
GAPGCFT01149
Equation: pulse calculation formula
ZTHδ = RTH · δ + ZTHtp (1 - δ)
where δ = tP/T
DocID027398 Rev 1
37/46
Package and PCB thermal data
VND7140AJ
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16
The fitting model is a simplified thermal tool and is valid for transient evolutions
where the embedded protections (power limitation or thermal cycling during
thermal shutdown) are not triggered.
Table 15: Thermal parameters
Area/island
38/46
(cm2)
Footprint
2
8
4L
R1 = R7 (°C/W)
2.8
R2 = R8 (°C/W)
2.5
R3 (°C/W)
10
10
10
7
R4 (°C/W)
16
6
6
4
R5 (°C/W)
30
20
10
3
R6 (°C/W)
26
20
18
7
C1 = C7 (W.s/°C)
0.00012
C2 = C8 (W.s/°C)
0.005
C3 (W.s/°C)
0.07
C4 (W.s/°C)
0.2
0.3
0.3
0.4
C5 (W.s/°C)
0.4
1
1
4
C6 (W.s/°C)
3
5
7
18
DocID027398 Rev 1
VND7140AJ
7
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1
PowerSSO-16 package information
Figure 48: PowerSSO-16 package outline
Table 16: PowerSSO-16 mechanical data
Dimensions
Ref.
Millimeters
Min.
Θ
0°
Θ1
0°
Θ2
5°
Θ3
5°
A
Typ.
Max.
8°
15°
15°
1.70
DocID027398 Rev 1
39/46
Package information
VND7140AJ
Dimensions
Ref.
Millimeters
Min.
A1
Typ.
0.00
0.10
A2
1.10
1.60
b
0.20
0.30
b1
0.20
c
0.19
c1
0.19
D
D1
0.25
0.28
0.25
0.20
0.23
4.9 BSC
2.90
3.50
e
0.50 BSC
E
6.00 BSC
E1
3.90 BSC
E2
2.20
2.80
h
0.25
0.50
L
0.40
0.60
L1
1.00 REF
N
16
R
0.07
R1
0.07
S
0.20
Tolerance of form and position
aaa
40/46
Max.
0.10
bbb
0.10
ccc
0.08
ddd
0.08
eee
0.10
fff
0.10
ggg
0.15
DocID027398 Rev 1
0.85
VND7140AJ
7.2
Package information
PowerSSO-16 packing information
Figure 49: PowerSSO-16 reel 13"
Table 17: Reel dimensions
Description
Value(1)
Base quantity
2500
Bulk quantity
2500
A (max)
330
B (min)
1.5
C (+0.5, -0.2)
13
D (min)
20.2
N
100
W1 (+2 /-0)
12.4
W2 (max)
18.4
Notes:
(1)All
dimensions are in mm.
DocID027398 Rev 1
41/46
Package information
VND7140AJ
Figure 50: PowerSSO-16 carrier tape
0.30 ±0.05
P2
P0
2.0 ±0.1
4.0 ±0.1
X
1.55 ±0.05
1.75 ±0.1
B0
W
F
1.6±0.1
R 0.5
Typical
K1
Y
Y
X
K0
P1
A0
REF 4.18
REF 0.6
SECTION X - X
REF 0.5
SECTION Y - Y
GAPG2204151242CFT
Table 18: PowerSSO-16 carrier tape dimensions
Description
Value(1)
A0
6.50 ± 0.1
B0
5.25 ± 0.1
K0
2.10 ± 0.1
K1
1.80 ± 0.1
F
5.50 ± 0.1
P1
8.00 ± 0.1
W
12.00 ± 0.3
Notes:
(1)All
dimensions are in mm.
Figure 51: PowerSSO-16 schematic drawing of leader and trailer tape
42/46
DocID027398 Rev 1
VND7140AJ
7.3
Package information
PowerSSO-16 marking information
Figure 52: PowerSSO-16 marking information
Marking area
1
2
3
4
5
6
7
8
Special function digit
&: Engineering sample
<blank>: Commercial sample
PowerSSO-16 TOP VIEW
(not in scale)
GAPG0401151415CFT
Engineering Samples: these samples can be clearly identified by a dedicated
special symbol in the marking of each unit. These samples are intended to be
used for electrical compatibility evaluation only; usage for any other purpose may
be agreed only upon written authorization by ST. ST is not liable for any customer
usage in production and/or in reliability qualification trials.
Commercial Samples: fully qualified parts from ST standard production with no
usage restrictions.
DocID027398 Rev 1
43/46
Order codes
8
VND7140AJ
Order codes
Table 19: Device summary
Order codes
Package
Tape and reel
PowerSSO-16
44/46
VND7140AJTR
DocID027398 Rev 1
VND7140AJ
9
Revision history
Revision history
Table 20: Document revision history
Date
Revision
25-May-2015
1
DocID027398 Rev 1
Changes
Initial release.
45/46
VND7140AJ
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
46/46
DocID027398 Rev 1