Technical Data Sheet

STM32F070xB STM32F070x6
ARM®-based 32-bit MCU, up to 128 KB Flash, USB FS 2.0,
11 timers, ADC, communication interfaces, 2.4 - 3.6 V
Datasheet - production data
Features
• Core: ARM® 32-bit Cortex®-M0 CPU,
frequency up to 48 MHz
• Memories
– 32 to 128 Kbytes of Flash memory
– 6 to 16 Kbytes of SRAM with HW parity
• CRC calculation unit
• Reset and power management
– Digital & I/Os supply: VDD = 2.4 V to 3.6 V
– Analog supply: VDDA = VDD to 3.6 V
– Power-on/Power down reset (POR/PDR)
– Low power modes: Sleep, Stop, Standby
• Clock management
– 4 to 32 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– Internal 8 MHz RC with x6 PLL option
– Internal 40 kHz RC oscillator
• Up to 51 fast I/Os
– All mappable on external interrupt vectors
– Up to 5155 I/Os with 5V tolerant capability
• 5-channel DMA controller
• One 12-bit, 1.0 μs ADC (up to 16 channels)
– Conversion range: 0 to 3.6 V
– Separate analog supply: 2.4 V to 3.6 V
TSSOP20
LQFP64 10x10 mm
LQFP48 7x7 mm
• Communication interfaces
– Up to two I2C interfaces
–
one supporting Fast Mode Plus
(1 Mbit/s) with 20 mA current sink,
–
one supporting SMBus/PMBus.
– Up to four USARTs supporting master
synchronous SPI and modem control; one
with auto baud rate detection
– Up to two SPIs (18 Mbit/s) with 4 to 16
programmable bit frames
– USB 2.0 full-speed interface with BCD and
LPM support
• Serial wire debug (SWD)
®
• All packages ECOPACK 2
Table 1. Device summary
Reference
Part number
STM32F070xB STM32F070CB, STM32F070RB
STM32F070x6
STM32F070C6, STM32F070F6
• Calendar RTC with alarm and periodic wakeup
from Stop/Standby
• 11 timers
– One 16-bit advanced-control timer for
six-channel PWM output
– Up to seven 16-bit timers, with up to four
IC/OC, OCN, usable for IR control
decoding
– Independent and system watchdog timers
– SysTick timer
January 2015
This is information on a product in full production.
DocID027114 Rev 2
1/88
www.st.com
Contents
STM32F070xB STM32F070x6
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1
ARM®-Cortex®-M0 core with embedded Flash and SRAM . . . . . . . . . . . 12
3.2
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13
3.5
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.2
Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.10
3.11
2/88
3.5.1
3.9.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16
3.9.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 16
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.2
General-purpose timers (TIM3, TIM14..17) . . . . . . . . . . . . . . . . . . . . . . 19
3.11.3
Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.5
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.6
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12
Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13
Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14
Universal synchronous/asynchronous receiver transmitters (USART) . . 22
DocID027114 Rev 2
STM32F070xB STM32F070x6
Contents
3.15
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.16
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17
Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 41
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 42
6.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.6
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.10
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.16
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.17
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.18
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
DocID027114 Rev 2
3/88
4
Contents
STM32F070xB STM32F070x6
6.3.19
7
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F070xB/6 family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . 10
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
STM32F070xB/6 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
STM32F070xB/6 USART implementationF070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
STM32F070xB/6 SPI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STM32F070xB/6 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 31
Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 32
Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 33
Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 33
Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 33
STM32F070xB/6 peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . 35
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 42
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 43
Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 44
Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 44
Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Low-power mode wakeup timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Output voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
DocID027114 Rev 2
5/88
6
List of tables
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
6/88
STM32F070xB STM32F070x6
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 77
LQFP48 - 7 mm x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 80
TSSOP20 - 20-pin thin shrink small outline package mechanical data . . . . . . . . . . . . . . . 83
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DocID027114 Rev 2
STM32F070xB STM32F070x6
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
LQFP64 64-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
LQFP48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
TSSOP20 20-pin package pinout (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM32F070xB/6 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 77
LQFP64 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
LQFP48 - 7 mm x 7 mm, 48 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 80
LQFP48 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
TSSOP20 - 20-pin thin shrink small outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
TSSOP20 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
DocID027114 Rev 2
7/88
7
Introduction
1
STM32F070xB STM32F070x6
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F070xB/6 microcontrollers.
This document should be read in conjunction with the STM32F0x0xx reference manual
(RM0360). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the ARM® Cortex®-M0 core, please refer to the Cortex®-M0 Technical
Reference Manual, available from the www.arm.com website.
8/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
2
Description
Description
The STM32F070xB/6 microcontrollers incorporate the high-performance ARM® Cortex®M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up
to 128 Kbytes of Flash memory and up to 16 Kbytes of SRAM), and an extensive range of
enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to
two I2Cs, up to two SPIs and up to four USARTs), one USB Full speed device, one 12-bit
ADC, seven general-purpose 16-bit timers and an advanced-control PWM timer.
The STM32F070xB/6 microcontrollers operate in the -40 to +85 °C temperature range from
a 2.4 to 3.6V power supply. A comprehensive set of power-saving modes allows the design
of low-power applications.
The STM32F070xB/6 microcontrollers include devices in three different packages ranging
from 20 pins to 64 pins. Depending on the device chosen, different sets of peripherals are
included. The description below provides an overview of the complete range of
STM32F070xB/6 peripherals proposed.
These features make the STM32F070xB/6 microcontrollers suitable for a wide range of
applications such as application control and user interfaces, handheld equipment, A/V
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,
PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.
DocID027114 Rev 2
9/88
23
Description
STM32F070xB STM32F070x6
Table 2. STM32F070xB/6 family device features and peripheral counts
Peripheral
STM32F070F6
STM32F070C6
STM32F070RB
Flash (Kbytes)
32
128
SRAM (Kbytes)
6
16
Advanced
control
Timers
Comm.
interfaces
1 (16-bit)
General
purpose
4 (16-bit)
5 (16-bit)
Basic
-
2 (16-bit)
SPI
1
2
I C
1
2
USART
2
4
2
USB
12-bit ADC
(number of channels)
GPIOs
1
1
(9 ext. + 3 int.)
1
(10 ext. + 3 int.)
1
(10 ext. + 3 int.)
1
(16 ext. + 3 int.)
15
37
37
51
Max. CPU frequency
48 MHz
Operating voltage
Operating temperature
Packages
10/88
STM32F070CB
2.4 to 3.6 V
Ambient operating temperature: -40°C to 85°C
Junction temperature: -40°C to 105°C
TSSOP20
LQFP48
DocID027114 Rev 2
LQFP48
LQFP64
STM32F070xB STM32F070x6
Description
Figure 1. Block diagram
9''
6HULDO:LUH
'HEXJ
)ODVK 2EO
LQWHUIDFH
6:&/.
6:',2
DV$)
%XVPDWUL[
65$0
FRQWUROOHU
&257(;0&38
I0$; 0+]
19,&
32:(5
92/75(*
9WR9
)ODVK*3/
8SWR.%
ELWV
65$0
8SWR
.%
9'',2 WR9
966
#9'',2
9''86%2.,1
#9''$
325
5HVHW
,QW
6833/<
683(59,6,21
3253'5
1567
9''$
966$
5&+60+]
5&+60+]
*3'0$
FKDQQHOV
#9''$
#9'',2
3//
5&/6
;7$/26&
0+]
26&B,13)
26&B2873)
,QG:LQGRZ:'*
*3,2SRUW$
3%>@
*3,2SRUW%
3&>@3&>@
*3,2SRUW&
3'
*3,2SRUW'
3)>@
*3,2SRUW)
5(6(7
&/2&.
&21752/
$+%
GHFRGHU
3$>@
$+%3&/.
$3%3&/.
$'&&/.
&(&&/.
86$57&/.
+&/.
)&/.
86%&/.
3RZHU
&RQWUROOHU
#96:
;7$/N+]
57&
26&B,1
26&B287
7$03(557&
$/$50287
57&LQWHUIDFH
&5&
3:07,0(5
FKDQQHOV
FRPSO&KDQQHOV
%5.(75LQSXWDV$)
$+%
$3%
(;7,7
:.83
$)
''
86%
3+<
86%
65$0
%
#9''86%
65$0
%
:,QGRZ:'*
7,0(5
FK(75DV$)
7,0(5
FKDQQHODV$)
7,0(5
FKDQQHOV
FRPSO%5.DV$)
7,0(5
FKDQQHO
FRPSO%5.DV$)
7,0(5
FKDQQHO
FRPSO%5.DV$)
,5B287DV$)
'%*0&8
026,6'
0,620&.
6&.&.
166:6DV$)
026,6'
0,620&.
6&.&.
166:6DV$)
63,
63,
6<6&)*,)
7HPS
VHQVRU
$'LQSXWV
#9''$
ELW
$'&
,)
86$57
5;7;&76576
&.DV$)
86$57
5;7;&76576
&.DV$)
86$57
5;7;&76576
&.DV$)
86$57
5;7;&76576
&.DV$)
,&
6&/6'$60%$
P$IRU)0
DV$)
,&
6&/6'$DV$)
7,0(5
9''$
966$
7,0(5
#9''$
>ĞŐĞŶĚ͗
6XSSOLHGE\9''$
6XSSOLHGE\9''
06Y9
DocID027114 Rev 2
11/88
23
Functional overview
STM32F070xB STM32F070x6
3
Functional overview
3.1
ARM®-Cortex®-M0 core with embedded Flash and SRAM
The ARM® Cortex®-M0 processor is the latest generation of ARM processors for
embedded systems. It has been developed to provide a low-cost platform that meets the
needs of MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced system response to
interrupts.
The ARM® Cortex®-M0 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The STM32F0xx family has an embedded ARM core and is therefore compatible with all
ARM tools and software.
Figure 1 shows the general block diagram of the device family.
3.2
Memories
The device has the following features:
•
6 to 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0
wait states and featuring embedded parity checking with exception generation for failcritical applications.
•
The non-volatile memory is divided into two arrays:
–
32 to 128 Kbytes of embedded Flash memory for programs and data
–
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or
readout-protect the whole memory with the following options:
–
Level 0: no readout protection
–
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
®
–
Level 2: chip readout protection, debug features (Cortex -M0 serial wire) and
boot in RAM selection disabled
3.3
Boot modes
At startup, the boot pin and boot selector option bit are used to select one of the three boot
options:
•
Boot from User Flash
•
Boot from System Memory
•
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART on pins PA14/PA15 or PA9/PA10.
12/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
3.4
Functional overview
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.5
Power management
3.5.1
Power supply schemes
•
•
VDD = 2.4 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.
VDDA = from VDD to 3.6 V: external analog power supply for ADC, Reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used). The
VDDA voltage level must be always greater or equal to the VDD voltage level and must
be provided first.
For more details on how to connect power pins, refer to Figure 9: Power supply scheme.
3.5.2
Power supply supervisors
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
•
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
•
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
3.5.3
Voltage regulator
The regulator has two operating modes and it is always enabled after reset.
•
Main (MR) is used in normal operating mode (Run).
•
Low power (LPR) can be used in Stop mode where the power demand is reduced.
In Standby mode, it is put in power down mode. In this mode, the regulator output is in high
impedance and the kernel circuitry is powered down, inducing zero consumption (but the
contents of the registers and SRAM are lost).
DocID027114 Rev 2
13/88
23
Functional overview
3.5.4
STM32F070xB STM32F070x6
Low-power modes
The STM32F070xB/6 microcontrollers support three low-power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
Stop mode achieves very low power consumption while retaining the content of SRAM
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the
HSE crystal oscillators are disabled. The voltage regulator can also be put either in
normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line
source can be one of the 16 external lines and RTC.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the RTC
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pins, or an RTC event occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.6
Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the application to configure the frequency of the AHB and the APB
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.
14/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Functional overview
Figure 2. Clock tree
)/,7)&/.
WR)ODVK
SURJUDPPLQJLQWHUIDFH
+6,
WR,&
6<6&/.
0+]
+6,5&
+6,
+&/.
6:
3//65&
35(',9
3//08/
3//
[[
[
+6,
3//&/.
+6(
WR$+%EXVFRUH
PHPRU\DQG'0$
WRFRUWH[6\VWHPWLPHU
)&/.&RUWH[IUHHUXQQLQJFORFN
$+%
$+%
SUHVFDOHU
6<6&/.
$3%
SUHVFDOHU
3&/.
WR$3%SHULSKHUDOV
&66
26&B287
26&B,1
,I$3%SUHVFDOHU
[HOVH[
0+]
+6(26&
3&/.
6<6&/.
+6,
/6(
26&B,1
26&B287
/6(26&
N+]
57&&/.
/6,5&
N+]
0&235(
0DLQFORFN
RXWSXW
WR7,0
WR86$57
WR57&
/6(
WR86%
57&6(/>@
0&2
WR7,0
/6,
WR,:'*
3//12',9
3//&/.
0&2
+6,
+6,
+6(
6<6&/.
/6,
/6(
0+] +6,
+6,5&
WR$'&
DV\QFKURQRXV
FORFNLQSXW
069
3.7
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions.
The I/O configuration can be locked if needed following a specific sequence in order to
avoid spurious writing to the I/Os registers.
DocID027114 Rev 2
15/88
23
Functional overview
3.8
STM32F070xB STM32F070x6
Direct memory access controller (DMA)
The 5-channel general-purpose DMA manages memory-to-memory, peripheral-to-memory
and memory-to-peripheral transfers.
The DMA supports circular buffer management, removing the need for user code
intervention when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except
TIM14) and ADC.
3.9
Interrupts and events
3.9.1
Nested vectored interrupt controller (NVIC)
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to
®
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4
priority levels.
•
Closely coupled NVIC gives low latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Closely coupled NVIC core interface
•
Allows early processing of interrupts
•
Processing of late arriving higher priority interrupts
•
Support for tail-chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.9.2
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 32 edge detector lines used to generate
interrupt/event requests and wake-up the system. Each line can be independently
configured to select the trigger event (rising edge, falling edge, both) and can be masked
independently. A pending register maintains the status of the interrupt requests. The EXTI
can detect an external line with a pulse width shorter than the internal clock period. Up to 51
GPIOs can be connected to the 16 external interrupt lines.
16/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
3.10
Functional overview
Analog to digital converter (ADC)
The 12-bit analog to digital converter has up to 16 external and two internal (temperature
sensor, voltage reference measurement) channels and performs conversions in single-shot
or scan modes. In scan mode, automatic conversion is performed on a selected group of
analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
3.10.1
Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
Table 3. Temperature sensor calibration values
Calibration value name
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
TS_CAL1
3.10.2
Description
Memory address
0x1FFF F7B8 - 0x1FFF F7B9
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage
of VREFINT is individually measured for each part by ST during production test and stored in
the system memory area. It is accessible in read-only mode.
Table 4. Internal voltage reference calibration values
Calibration value name
VREFINT_CAL
Description
Memory address
Raw data acquired at a
temperature of 30 °C (± 5 °C), 0x1FFF F7BA - 0x1FFF F7BB
VDDA= 3.3 V (± 10 mV)
DocID027114 Rev 2
17/88
23
Functional overview
3.11
STM32F070xB STM32F070x6
Timers and watchdogs
The STM32F070xB/6 devices include up to six general-purpose timers, two basic timers
and one advanced control timer.
Table 5 compares the features of the different timers.
Table 5. Timer feature comparison
Timer
type
Timer
Counter
resolution
Counter
type
Prescaler
factor
Advanced
control
TIM1
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
Yes
TIM3
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
No
TIM14
16-bit
Up
Any integer
between 1
and 65536
No
1
No
TIM15(1)
16-bit
Up
Any integer
between 1
and 65536
Yes
2
No
TIM16,
TIM17
16-bit
Up
Any integer
between 1
and 65536
Yes
1
Yes
TIM6,(1)
TIM7(1)
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
General
purpose
Basic
DMA request Capture/compare Complementary
generation
channels
outputs
1. Not available on STM32F070x6 devices.
18/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
3.11.1
Functional overview
Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six
channels. It has complementary PWM outputs with programmable inserted dead times. It
can also be seen as a complete general-purpose timer. The four independent channels can
be used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes)
•
One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard timers which have the same
architecture. The advanced control timer can therefore work together with the other timers
via the Timer Link feature for synchronization or event chaining.
3.11.2
General-purpose timers (TIM3, TIM14..17)
There are five synchronizable general-purpose timers embedded in the STM32F070xB/6
devices (see Table 5 for differences). Each general-purpose timer can be used to generate
PWM outputs, or as simple time base.
TIM3
STM32F070xB/6 devices feature one synchronizable 4-channel general-purpose timer.
TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. It features
four independent channels each for input capture/output compare, PWM or one-pulse mode
output. This gives up to 12 input captures/output compares/PWMs on the largest packages.
The TIM3 general-purpose timer can work with the TIM1 advanced-control timer via the
Timer Link feature for synchronization or event chaining.
TIM3 has an independent DMA request generation.
This timer is capable of handling quadrature (incremental) encoder signals and the digital
outputs from 1 to 3 hall-effect sensors.
The counter can be frozen in debug mode.
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM14 features one single channel for input capture/output compare, PWM or one-pulse
mode output.
Its counter can be frozen in debug mode.
TIM15, TIM16 and TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single
channel for input capture/output compare, PWM or one-pulse mode output.
DocID027114 Rev 2
19/88
23
Functional overview
STM32F070xB STM32F070x6
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate
withTIM1 via the Timer Link feature for synchronization or event chaining.
TIM15 can be synchronized with TIM16 and TIM17.
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and
independent DMA request generation.
Their counters can be frozen in debug mode.
3.11.3
Basic timers TIM6 and TIM7
These timers can be used as a generic 16-bit time base.
3.11.4
Independent watchdog (IWDG)
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it
operates independently from the main clock, it can operate in Stop and Standby modes. It
can be used either as a watchdog to reset the device when a problem occurs, or as a free
running timer for application timeout management. It is hardware or software configurable
through the option bytes. The counter can be frozen in debug mode.
3.11.5
System window watchdog (WWDG)
The system window watchdog is based on a 7-bit downcounter that can be set as free
running. It can be used as a watchdog to reset the device when a problem occurs. It is
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the
counter can be frozen in debug mode.
3.11.6
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source (HCLK or HCLK/8)
20/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
3.12
Functional overview
Real-time clock (RTC)
The RTC is an independent BCD timer/counter. Its main features are the following:
•
Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.
•
Programmable alarm with wake up from Stop and Standby mode capability.
•
Periodic wakeup unit with programmable resolution and period.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize the RTC with a master clock.
•
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Tow anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop and Standby modes on tamper event detection.
•
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
The RTC clock sources can be:
•
A 32.768 kHz external crystal
•
A resonator or oscillator
•
The internal low-power RC oscillator (typical frequency of 40 kHz)
•
The high-speed external clock divided by 32
3.13
Inter-integrated circuit interfaces (I2C)
Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both
can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also
supports Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two
addresses, one with configurable mask). They also include programmable analog and
digital noise filters.
Table 6. Comparison of I2C analog and digital filters
Analog filter
Digital filter
Pulse width of
suppressed spikes
≥ 50 ns
Programmable length from 1 to 15
I2C peripheral clocks
Benefits
Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks
Variations depending on
temperature, voltage, process
DocID027114 Rev 2
-
21/88
23
Functional overview
STM32F070xB STM32F070x6
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management.
The I2C interfaces can be served by the DMA controller.
Refer to Table 7 for the differences between I2C1 and I2C2.
Table 7. STM32F070xB/6 I2C implementation
I2C features(1)
I2C1
I2C2(2)
7-bit addressing mode
X
X
10-bit addressing mode
X
X
Standard mode (up to 100 kbit/s)
X
X
Fast mode (up to 400 kbit/s)
X
X
Fast Mode Plus (up to 1 Mbit/s) with 20mA output drive I/Os
X
-
Independent clock
X
-
SMBus
X
-
Wakeup from STOP
-
-
1. X = supported.
2. Only available on STM32F070xB devices.
3.14
Universal synchronous/asynchronous receiver transmitters
(USART)
The device embeds up to four universal synchronous/asynchronous receiver transmitters
(USART1, USART2 and USART3, USART4 on STM32F070xB devices only), which
communicate at speeds of up to 6 Mbit/s.
They provide hardware management of the CTS and RTS signals, multiprocessor
communication mode, master synchronous communication and single-wire half-duplex
communication mode. USART1 supports also the auto baud rate feature.
The USART interfaces can be served by the DMA controller.
Table 8. STM32F070xB/6 USART implementationF070(1)
USART1 and USART2
USART3(2)and USART4(2)
Hardware flow control for modem
X
X
Continuous communication using DMA
X
X
Multiprocessor communication
X
X
Synchronous mode
X
X
Single-wire half-duplex communication
X
X
Receiver timeout interrupt
X
-
Auto baud rate detection
X
-
USART modes/features
1. Where X means supported.
2. Not available on STM32F070x6 devices.
22/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
3.15
Functional overview
Serial peripheral interface (SPI)
Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
SPI1 and SPI2 are identical and implement the set of features shown in the following table.
Table 9. STM32F070xB/6 SPI implementation
SPI features(1)
SPI1
SPI2(2)
Hardware CRC calculation
X
X
Rx/Tx FIFO
X
X
NSS pulse mode
X
X
TI mode
X
X
1. X = supported.
2. Available on STM32F070xB only.
3.16
Universal serial bus (USB)
The STM32F070xB/6 embeds a full-speed USB device peripheral compliant with the USB
specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP
pull-up and also battery charging detection according to Battery Charging Specification
Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with
added support for USB 2.0 Link Power Management. It has software-configurable endpoint
setting with packet memory up-to 1 KB and suspend/resume support. It requires a precise
48 MHz clock which can be generated from the internal main PLL (the clock source must
use an HSE crystal oscillator).
3.17
Serial wire debug port (SW-DP)
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected
to the MCU.
DocID027114 Rev 2
23/88
23
Pinouts and pin descriptions
4
STM32F070xB STM32F070x6
Pinouts and pin descriptions
3&
3&26&B,1
3&26&B287
3)26&B,1
3)26&B287
1567
3&
3&
3&
3&
966$
9''$
3$
3$
966
9''
3$
3$
/4)3
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3$
3$
3$
3$
3&
3&
3%
3%
3%
3%
3%
966
9''
9''
3%
3%
%227
3%
3%
3%
3%
3%
3'
3& 3& 3& 3$
3$
9''
966
Figure 3. LQFP64 64-pin package pinout (top view)
069
24/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Pinouts and pin descriptions
9''
3&
3&26&B,1
3&26&B287
3)26&B,1
3)26&B287
1567
966$
9''$
3$
3$
3%
3$
3$
3%
3%
3%
3%
%227
3%
/4)3
9''
966
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
9''
3%
966
3%
3%
3%
3%
3$
3$
3$
3$
3$
3$
3%
9''
966
Figure 4. LQFP48 48-pin package pinout (top view)
069
Figure 5. TSSOP20 20-pin package pinout (top view)
3$
3$
3$>[email protected]
3$>[email protected]
9''
966
3%
3$
3$
3$
%227
3)26&B,1
3)26&B287
1567
9''$
3$
3$
3$
3$
3$
069
DocID027114 Rev 2
25/88
30
Pinouts and pin descriptions
STM32F070xB STM32F070x6
Table 10. Legend/abbreviations used in the pinout table
Name
Abbreviation
Unless otherwise specified in brackets below the pin name, the pin function during and
after reset is the same as the actual pin name
Pin name
Pin type
I/O structure
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
FTf
5 V tolerant I/O, FM+ capable
TTa
3.3 V tolerant I/O directly connected to ADC
TC
Standard 3.3 V I/O
B
Dedicated BOOT0 pin
RST
Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after
reset.
Notes
Pin
functions
Definition
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
LQFP48
TSSOP20
1
1
-
Pin name
(function after
reset)
Pin
type
VDD
S
Alternate functions
Additional functions
Digital power supply
-
WKUP2,
RTC_TAMP1,
RTC_TS,
RTC_OUT
-
OSC32_IN
-
OSC32_OUT
FT
I2C1_SDA(3)
OSC_IN
I/O
FT
I2C1_SCL(3)
OSC_OUT
I/O
RST
2
2
-
PC13
I/O
TC
3
3
-
PC14-OSC32_IN
(PC14)
I/O
TC
4
4
-
PC15OSC32_OUT
(PC15)
I/O
TC
5
5
2
PF0-OSC_IN
(PF0)
I/O
6
6
3
PF1-OSC_OUT
(PF1)
7
7
4
NRST
26/88
Pin functions
Notes
LQFP64
Pin numbers
I/O structure
Table 11. STM32F070xB/6 pin definitions
(1)
(2)
(1)
(2)
(1)
(2)
Device reset input / internal reset output (active low)
DocID027114 Rev 2
STM32F070xB STM32F070x6
Pinouts and pin descriptions
Table 11. STM32F070xB/6 pin definitions (continued)
TSSOP20
Notes
LQFP48
Pin
type
Pin functions
LQFP64
Pin name
(function after
reset)
I/O structure
Pin numbers
8
-
-
PC0
I/O
TTa
EVENTOUT
ADC_IN10
9
-
-
PC1
I/O
TTa
EVENTOUT
ADC_IN11
10
-
-
PC2
I/O
TTa
SPI2_MISO, EVENTOUT
ADC_IN12
11
-
-
PC3
I/O
TTa
SPI2_MOSI, EVENTOUT
ADC_IN13
12
8
-
VSSA
S
Analog ground
13
9
5
VDDA
S
Analog power supply
14
10
6
PA0
I/O
TTa
(4)
USART2_CTS,
USART4_TX
RTC_ TAMP2,
WKUP1, ADC_IN0,
15
11
7
PA1
I/O
TTa
(4)
USART2_RTS,
TIM15_CH1N,
USART4_RX, EVENTOUT
ADC_IN1
16
12
8
PA2
I/O
TTa
(4)
USART2_TX, TIM15_CH1
ADC_IN2, WKUP4
TTa
(4)
USART2_RX, TIM15_CH2
ADC_IN3
Alternate functions
Additional functions
17
13
9
PA3
I/O
18
-
15
VSS
S
Ground
19
-
16
VDD
S
Digital power supply
20
14
20
PA4
I/O
TTa
SPI1_NSS, TIM14_CH1,
USART2_CK,
USB_NOE(3)
ADC_IN4
21
15
11
PA5
I/O
TTa
SPI1_SCK
ADC_IN5
SPI1_MISO, TIM3_CH1,
TIM1_BKIN,
TIM16_CH1, EVENTOUT,
USART3_CTS
ADC_IN6
SPI1_MOSI, TIM3_CH2,
TIM14_CH1,
TIM1_CH1N, TIM17_CH1,
EVENTOUT
ADC_IN7
22
16
12
PA6
I/O
TTa
(4)
23
17
13
PA7
I/O
TTa
24
-
-
PC4
I/O
TTa
(4)
EVENTOUT, USART3_TX
ADC_IN14
USART3_RX
ADC_IN15, WKUP5
25
-
-
PC5
I/O
TTa
(4)
26
18
-
PB0
I/O
TTa
(4)
TIM3_CH3, TIM1_CH2N,
EVENTOUT,
USART3_CK
ADC_IN8
27
19
14
PB1
I/O
TTa
(4)
TIM3_CH4,
USART3_RTS,
TIM14_CH1, TIM1_CH3N
ADC_IN9
28
20
-
PB2
I/O
FT
-
-
SPI2_SCK, USART3_TX
-
29
21
-
PB10
I/O
FT
(4)
DocID027114 Rev 2
27/88
30
Pinouts and pin descriptions
STM32F070xB STM32F070x6
Table 11. STM32F070xB/6 pin definitions (continued)
(4)
TSSOP20
FT
LQFP48
Pin
type
LQFP64
Pin name
(function after
reset)
Notes
Pin functions
I/O structure
Pin numbers
30
22
-
PB11
I/O
31
23
-
VSS
S
Ground
32
24
-
VDD
S
Digital power supply
33
25
-
PB12
I/O
FT
(4)
TIM1_BKIN, TIM15_BKIN,
SPI2_NSS, EVENTOUT,
USART3_CK
-
34
26
-
PB13
I/O
FTf
(4)
SPI2_SCK, I2C2_SCL,
TIM1_CH1N,
USART3_CTS
-
35
27
-
PB14
I/O
FTf
(4)
SPI2_MISO, I2C2_SDA,
TIM1_CH2N, TIM15_CH1,
USART3_RTS
-
36
28
-
PB15
I/O
FT
(4)
SPI2_MOSI, TIM1_CH3N,
TIM15_CH1N,
TIM15_CH2
WKUP7,
RTC_REFIN
37
-
-
PC6
I/O
FT
TIM3_CH1
-
38
-
-
PC7
I/O
FT
TIM3_CH2
-
39
-
-
PC8
I/O
FT
TIM3_CH3
-
40
-
-
PC9
I/O
FT
TIM3_CH4
-
41
29
-
PA8
I/O
FT
USART1_CK, TIM1_CH1,
EVENTOUT, MCO
-
42
30
17
PA9
I/O
FT
USART1_TX, TIM1_CH2,
TIM15_BKIN,
I2C1_SCL(3)
-
43
31
18
PA10
I/O
FT
USART1_RX, TIM1_CH3,
TIM17_BKIN,
I2C1_SDA(3)
-
44
32
17(5)
PA11
I/O
FT
USART1_CTS,
TIM1_CH4, EVENTOUT
USB_DM
45
33
18(5)
PA12
I/O
FT
USART1_RTS,
TIM1_ETR, EVENTOUT
USB_DP
46
34
19
PA13
I/O
FT
IR_OUT, SWDIO,
USB_NOE
-
47
35
-
VSS
S
Ground
48
36
-
VDD
S
Digital power supply
49
37
20
PA14
I/O
28/88
FT
(4)
(6)
Alternate functions
Additional functions
USART3_RX,
EVENTOUT, I2C2_SDA
-
USART2_TX, SWCLK
DocID027114 Rev 2
-
STM32F070xB STM32F070x6
Pinouts and pin descriptions
Table 11. STM32F070xB/6 pin definitions (continued)
LQFP48
TSSOP20
I/O structure
Notes
Pin functions
LQFP64
Pin numbers
50
38
-
PA15
I/O
FT
(4)
SPI1_NSS, USART2_RX,
USART4_RTS,
EVENTOUT
-
51
-
-
PC10
I/O
FT
(4)
USART3_TX,
USART4_TX
-
52
-
-
PC11
I/O
FT
(4)
USART3_RX,
USART4_RX
-
53
-
-
PC12
I/O
FT
(4)
USART3_CK,
USART4_CK
-
54
-
-
PD2
I/O
FT
(4)
TIM3_ETR,
USART3_RTS
-
55
39
-
PB3
I/O
FT
SPI1_SCK, EVENTOUT
-
56
40
-
PB4
I/O
FT
SPI1_MISO, TIM17_BKIN,
TIM3_CH1, EVENTOUT
-
57
41
-
PB5
I/O
FT
SPI1_MOSI, I2C1_SMBA,
TIM16_BKIN,
TIM3_CH2
WKUP6
58
42
-
PB6
I/O
FTf
I2C1_SCL, USART1_TX,
TIM16_CH1N
-
59
43
-
PB7
I/O
FTf
I2C1_SDA, USART1_RX,
USART4_CTS,
TIM17_CH1N
-
60
44
1
BOOT0
I
B
61
45
-
PB8
I/O
FTf
62
46
-
PB9
I/O
FTf
63
47
-
VSS
S
Ground
64
48
-
VDD
S
Digital power supply
Pin name
(function after
reset)
Pin
type
(4)
(4)
Alternate functions
Additional functions
Boot memory selection
(4)
I2C1_SCL, TIM16_CH1
-
SPI2_NSS, I2C1_SDA,
IR_OUT,
TIM17_CH1, EVENTOUT
-
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the
content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to
the RTC domain and RTC register descriptions in the reference manual.
3. Available on STM32F070x6 devices only.
4. TIM15, I2C2, WKUP4, WKUP5, WKUP6, WKUP7, SPI2, USART3 and USART4 are available on STM32F070xB devices
only.
5. On STM32F070x6 devices, pin pair PA11/12 can be remapped instead of pin pair PA9/10 using SYSCFG_CFGR1 register.
DocID027114 Rev 2
29/88
30
Pinouts and pin descriptions
STM32F070xB STM32F070x6
6. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO
pin and the internal pull-down on the SWCLK pin are activated.
30/88
DocID027114 Rev 2
Pin
name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PA0
-
USART2_CTS
-
-
USART4_TX(1)
-
-
-
PA1
EVENTOUT
USART2_RTS
-
-
USART4_RX(1)
TIM15_CH1N(1)
-
-
TIM15_CH1
(1)
USART2_TX
-
-
-
-
-
-
TIM15_CH2
(1)
USART2_RX
-
-
-
-
-
-
-
TIM14_CH1
-
-
-
-
-
-
-
-
TIM16_CH1
EVENTOUT
-
PA2
PA3
PA4
SPI1_NSS
USART2_CK
PA5
SPI1_SCK
-
-
(1)
DocID027114 Rev 2
PA6
SPI1_MISO
TIM3_CH1
TIM1_BKIN
-
USART3_CTS
PA7
SPI1_MOSI
TIM3_CH2
TIM1_CH1N
-
TIM14_CH1
TIM17_CH1
EVENTOUT
-
PA8
MCO
USART1_CK
TIM1_CH1
EVENTOUT
-
-
-
-
PA9
TIM15_BKIN(1)
USART1_TX
TIM1_CH2
-
I2C1_SCL (2)
-
-
-
(2)
-
-
-
PA10
TIM17_BKIN
USART1_RX
TIM1_CH3
-
PA11
EVENTOUT
USART1_CTS
TIM1_CH4
-
-
-
-
-
PA12
EVENTOUT
USART1_RTS
TIM1_ETR
-
-
-
-
-
PA13
SWDIO
IR_OUT
USB_NOE
-
-
-
-
-
PA14
SWCLK
USART2_TX
-
-
-
-
-
-
-
-
-
PA15
SPI1_NSS
USART2_RX
1. Available on STM32F070xB devices only.
2.
USB_NOE
(2)
Available on STM32F070x6 devices only.
-
EVENTOUT
I2C1_SDA
USART4_RTS
(1)
STM32F070xB STM32F070x6
Table 12. Alternate functions selected through GPIOA_AFR registers for port A
31/88
32/88
Table 13. Alternate functions selected through GPIOB_AFR registers for port B
Pin name
AF0
AF1
AF2
AF3
AF4
AF5
PB0
EVENTOUT
TIM3_CH3
TIM1_CH2N
-
USART3_CK(1)
USART3_RTS
(1)
-
PB1
TIM14_CH1
TIM3_CH4
TIM1_CH3N
-
PB2
-
-
-
-
-
-
PB3
SPI1_SCK
EVENTOUT
-
-
-
-
PB4
SPI1_MISO
TIM3_CH1
EVENTOUT
-
-
TIM17_BKIN
PB5
SPI1_MOSI
TIM3_CH2
TIM16_BKIN
I2C1_SMBA
-
-
PB6
USART1_TX
I2C1_SCL
TIM16_CH1N
-
-
-
DocID027114 Rev 2
PB7
USART1_RX
I2C1_SDA
TIM17_CH1N
-
PB8
-
I2C1_SCL
TIM16_CH1
-
-
-
PB9
IR_OUT
I2C1_SDA
TIM17_CH1
EVENTOUT
-
SPI2_NSS(1)
PB10
-
I2C2_SCL(1)
-
-
USART3_TX(1)
SPI2_SCK(1)
PB11
EVENTOUT
I2C2_SDA(1)
-
-
USART3_RX(1)
-
PB12
SPI2_NSS(1)
EVENTOUT
TIM1_BKIN
-
USART3_CK(1)
TIM15_BKIN(1)
PB13
SPI2_SCK(1)
-
TIM1_CH1N
-
USART3_CTS(1)
I2C2_SCL(1)
PB14
SPI2_MISO(1)
TIM15_CH1
TIM1_CH2N
-
USART3_RTS(1)
I2C2_SDA(1)
PB15
SPI2_MOSI(1)
TIM15_CH2
TIM1_CH3N
TIM15_CH1N(1)
-
-
STM32F070xB STM32F070x6
1. Available on STM32F070xB devices only.
USART4_CTS
(1)
STM32F070xB STM32F070x6
Table 14. Alternate functions selected through GPIOC_AFR registers for port C
Pin name
AF0(1)
PC0
EVENTOUT(1)
-
PC1
EVENTOUT
(1)
-
PC2
EVENTOUT
(1)
SPI2_MISO(1)
PC3
EVENTOUT(1)
SPI2_MOSI(1)
PC4
EVENTOUT(1)
USART3_TX(1)
PC5
-
USART3_RX(1)
PC6
TIM3_CH1(1)
-
PC7
TIM3_CH2(1)
-
PC8
TIM3_CH3
(1)
-
TIM3_CH4
(1)
-
PC9
AF1(1)
PC10
USART4_TX
(1)
USART3_TX(1)
PC11
USART4_RX(1)
USART3_RX(1)
PC12
USART4_CK(1)
USART3_CK(1)
PC13
-
-
PC14
-
-
PC15
-
-
1. Available on STM32F070xB devices only.
Table 15. Alternate functions selected through GPIOD_AFR registers for port D
Pin name
AF0(1)
AF1(1)
PD2
TIM3_ETR(1)
-
1. Available on STM32F070xB devices only.
Table 16. Alternate functions selected through GPIOF_AFR registers for port F
Pin name
AF0
AF1
PF0
-
I2C1_SDA(1)
PF1
-
I2C1_SCL(1)
1. Available on STM32F070x6 devices only.
DocID027114 Rev 2
33/88
33
Memory mapping
5
STM32F070xB STM32F070x6
Memory mapping
Figure 6. STM32F070xB/6 memory map
[))))))))
[))
$+%
[
[(
[(
&RUWH[ 0,QWHUQDO 3HULSKHUDOV
UHVHUYHG
[&
[))
$+%
[
5HVHUYHG
[$
[
[)))))))
[))))
$3%
2SWLRQE\WHV
[
[
6\VWHPPHPRU\
5HVHUYHG
[
[)))&
$3%
[
[
5HVHUYHG
[
3HULSKHUDOV
[
)ODVKPHPRU\
[
65$0
[
5HVHUYHG
&2'(
[
)ODVKV\VWHPPHPRU\
RU65$0GHSHQGLQJRQ
%227FRQILJXUDWLRQ
[
[
5HVHUYHG
069
34/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Memory mapping
Table 17. STM32F070xB/6 peripheral register boundary addresses
Bus
AHB2
AHB1
APB
Boundary address
Size
Peripheral
0x4800 1800 - 0x5FFF FFFF
~384 MB
Reserved
0x4800 1400 - 0x4800 17FF
1 KB
GPIOF
0x4800 1000 - 0x4800 13FF
1 KB
Reserved
0x4800 0C00 - 0x4800 0FFF
1 KB
GPIOD
0x4800 0800 - 0x4800 0BFF
1 KB
GPIOC
0x4800 0400 - 0x4800 07FF
1 KB
GPIOB
0x4800 0000 - 0x4800 03FF
1 KB
GPIOA
0x4002 4400 - 0x47FF FFFF
~128 MB
Reserved
0x4002 3400 - 0x4002 43FF
4 KB
Reserved
0x4002 3000 - 0x4002 33FF
1 KB
CRC
0x4002 2400 - 0x4002 2FFF
3 KB
Reserved
0x4002 2000 - 0x4002 23FF
1 KB
FLASH Interface
0x4002 1400 - 0x4002 1FFF
3 KB
Reserved
0x4002 1000 - 0x4002 13FF
1 KB
RCC
0x4002 0400 - 0x4002 0FFF
3 KB
Reserved
0x4002 0000 - 0x4002 03FF
1 KB
DMA
0x4001 8000 - 0x4001 FFFF
32 KB
Reserved
0x4001 5C00 - 0x4001 7FFF
9 KB
Reserved
0x4001 5800 - 0x4001 5BFF
1 KB
DBGMCU
0x4001 4C00 - 0x4001 57FF
3 KB
Reserved
0x4001 4800 - 0x4001 4BFF
1 KB
TIM17
0x4001 4400 - 0x4001 47FF
1 KB
TIM16
0x4001 4000 - 0x4001 43FF
1 KB
TIM15
0x4001 3C00 - 0x4001 3FFF
1 KB
Reserved
0x4001 3800 - 0x4001 3BFF
1 KB
USART1
0x4001 3400 - 0x4001 37FF
1 KB
Reserved
0x4001 3000 - 0x4001 33FF
1 KB
SPI1
0x4001 2C00 - 0x4001 2FFF
1 KB
TIM1
0x4001 2800 - 0x4001 2BFF
1 KB
Reserved
0x4001 2400 - 0x4001 27FF
1 KB
ADC
0x4001 0800 - 0x4001 23FF
7 KB
Reserved
0x4001 0400 - 0x4001 07FF
1 KB
EXTI
0x4001 0000 - 0x4001 03FF
1 KB
SYSCFG
0x4000 8000 - 0x4000 FFFF
32 KB
Reserved
DocID027114 Rev 2
35/88
36
Memory mapping
STM32F070xB STM32F070x6
Table 17. STM32F070xB/6 peripheral register boundary addresses (continued)
Bus
APB
Boundary address
Size
Peripheral
0x4000 7400 - 0x4000 7FFF
3 KB
Reserved
0x4000 7000 - 0x4000 73FF
1 KB
PWR
0x4000 6C00 - 0x4000 6FFF
1 KB
Reserved
0x4000 6400 - 0x4000 67FF
2 KB
Reserved
0x4000 6000 - 0x4000 63FF
1 KB
USB RAM
0x4000 5800 - 0x4000 5BFF
1 KB
I2C2(1)
0x4000 5400 - 0x4000 57FF
1 KB
I2C1
0x4000 5000 - 0x4000 53FF
3 KB
Reserved
0x4000 4C00 - 0x4000 4FFF
1 KB
USART4(1)
0x4000 4800 - 0x4000 4BFF
1 KB
USART3(1)
0x4000 4400 - 0x4000 47FF
1 KB
USART2
0x4000 3C00 - 0x4000 43FF
2 KB
Reserved
0x4000 3800 - 0x4000 3BFF
1 KB
SPI2(1)
0x4000 3400 - 0x4000 37FF
1 KB
Reserved
0x4000 3000 - 0x4000 33FF
1 KB
IWDG
0x4000 2C00 - 0x4000 2FFF
1 KB
WWDG
0x4000 2800 - 0x4000 2BFF
1 KB
RTC
0x4000 2400 - 0x4000 27FF
1 KB
Reserved
0x4000 2000 - 0x4000 23FF
1 KB
TIM14
0x4000 1800 - 0x4000 1FFF
2 KB
Reserved
0x4000 1400 - 0x4000 17FF
1 KB
TIM7
0x4000 1000 - 0x4000 13FF
1 KB
TIM6
0x4000 0800 - 0x4000 0FFF
2 KB
Reserved
0x4000 0400 - 0x4000 07FF
1 KB
TIM3
0x4000 0000 - 0x4000 03FF
1 KB
Reserved
1. Available on STM32F070xB devices only.
36/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 7.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 8.
Figure 7. Pin loading conditions
Figure 8. Pin input voltage
0&8SLQ
0&8SLQ
& S)
9,1
069
DocID027114 Rev 2
069
37/88
75
Electrical characteristics
6.1.6
STM32F070xB STM32F070x6
Power supply scheme
Figure 9. Power supply scheme
287
*3,2V
,1
/HYHOVKLIWHU
/6(57&
:DNHXSORJLF
9''
[9''
[Q)
[—)
,2ORJLF
.HUQHOORJLF
&38
GLJLWDO
PHPRULHV
5HJXODWRU
[966
9''$
9''$
95()
Q)
—)
$'&'$&
95()
$QDORJ5&V
3//FRPSDUDWRUV23$03
966$
069
Caution:
38/88
Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
DocID027114 Rev 2
STM32F070xB STM32F070x6
6.1.7
Electrical characteristics
Current consumption measurement
Figure 10. Current consumption measurement scheme
,''
9''
,''$
9''$
069
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics,
Table 19: Current characteristics and Table 20: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 18. Voltage characteristics(1)
Symbol
Ratings
Min
Max
Unit
VDD–VSS
External main supply voltage
-0.3
4.0
V
VDDA–VSS
External analog supply voltage
-0.3
4.0
V
VDD–VDDA
Allowed voltage difference for VDD > VDDA
-
0.4
VIN(2)
Input voltage on FT and FTf pins
VSS − 0.3
Input voltage on TTa pins
VSS − 0.3
BOOT0
0
|VSSx − VSS|
VESD(HBM)
V
4.0
VDDIOx + 4.0
V
(3)
V
VSS − 0.3
4.0
V
Variations between different VDD power pins
-
50
mV
Variations between all the different ground
pins
-
50
mV
Input voltage on any other pin
|ΔVDDx|
VDDIOx + 4.0
V
(3)
Electrostatic discharge voltage
(human body model)
see Section 6.3.12: Electrical
sensitivity characteristics
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum
allowed injected current values.
3. VDDIOx is internally connected with VDD pin.
DocID027114 Rev 2
39/88
75
Electrical characteristics
STM32F070xB STM32F070x6
Table 19. Current characteristics
Symbol
Ratings
Max.
ΣIVDD
Total current into sum of all VDD power lines (source)(1)
120
ΣIVSS
(1)
-120
Total current out of sum of all VSS ground lines (sink)
IVDD(PIN)
(1)
Maximum current into each VDD power pin (source)
100
IVSS(PIN)
Maximum current out of each VSS ground pin (sink)(1)
-100
IIO(PIN)
Output current sunk by any I/O and control pin
25
Output current source by any I/O and control pin
-25
(2)
ΣIIO(PIN)
IINJ(PIN)(3)
Total output current sunk by sum of all I/Os and control pins
80
Total output current sourced by sum of all I/Os and control pins(2)
-80
mA
(4)
Injected current on FT and FTf pins
-5/+0
Injected current on TC and RST pin
±5
(5)
ΣIINJ(PIN)
Unit
Injected current on TTa pins
±5
Total injected current (sum of all I/O and control pins)(6)
± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer to Table 18: Voltage characteristics for the maximum allowed input voltage values.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the
device. See note (2) below Table 52: ADC accuracy.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 20. Thermal characteristics
Symbol
TSTG
TJ
40/88
Ratings
Storage temperature range
Maximum junction temperature
DocID027114 Rev 2
Value
Unit
–65 to +150
°C
150
°C
STM32F070xB STM32F070x6
Electrical characteristics
6.3
Operating conditions
6.3.1
General operating conditions
Table 21. General operating conditions
Symbol
Parameter
Conditions
Min
Max
Unit
fHCLK
Internal AHB clock frequency
-
0
48
fPCLK
Internal APB clock frequency
-
0
48
VDD
Standard operating voltage
-
2.4
3.6
V
VDDA
Analog operating voltage
Must have a potential equal
to or higher than VDD
2.4
3.6
V
TC and RST I/O
-0.3
VDDIOx+0.3
TTa I/O
-0.3
VDDA+0.3(2)
FT and FTf I/O
-0.3
5.5(2)
BOOT0
0
5.5
LQFP64
-
455
LQFP48
-
364
TSSOP20
-
263
-40
85
-40
105
-40
105
VIN
I/O input voltage
PD
Power dissipation at TA = 85 °C
for suffix 6 (1)
TA
Ambient temperature for the
suffix 6 version
Maximum power dissipation
TJ
Junction temperature range
Suffix 6 version
Low power
dissipation(2)
MHz
V
mW
°C
°C
1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
2. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.2:
Thermal characteristics).
6.3.2
Operating conditions at power-up / power-down
The parameters given in Table 22 are derived from tests performed under the ambient
temperature condition summarized in Table 21.
Table 22. Operating conditions at power-up / power-down
Symbol
tVDD
tVDDA
Parameter
VDD rise time rate
VDD fall time rate
VDDA rise time rate
VDDA fall time rate
Conditions
-
-
DocID027114 Rev 2
Min
Max
0
∞
20
∞
0
∞
20
∞
Unit
μs/V
41/88
75
Electrical characteristics
6.3.3
STM32F070xB STM32F070x6
Embedded reset and power control block characteristics
The parameters given in Table 23 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Table 23. Embedded reset and power control block characteristics
Symbol
VPOR/PDR(1)
VPDRhyst
tRSTTEMPO(4)
Parameter
Power on/power down
reset threshold
Conditions
Min
Typ
Max
Unit
Falling edge(2)
1.80
1.88
1.96(3)
V
1.84(3)
1.92
2.00
V
-
40
-
mV
1.50
2.50
4.50
ms
Rising edge
PDR hysteresis
Reset temporization
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
3. Data based on characterization results, not tested in production.
4. Guaranteed by design, not tested in production.
6.3.4
Embedded reference voltage
The parameters given in Table 24 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Table 24. Embedded internal reference voltage
Symbol
Parameter
Conditions
Min
Typ
VREFINT
Internal reference voltage
–40 °C < TA < +85 °C
1.16
1.2 1.24(1)
tS_vrefint
ADC sampling time when
reading the internal
reference voltage
ΔVREFINT
Internal reference voltage
spread over the
temperature range
TCoeff
VDDA = 3 V
Temperature coefficient
Max
Unit
V
4(2)
-
-
μs
-
-
10(2)
mV
- 100(2)
-
100(2) ppm/°C
1. Data based on characterization results, not tested in production.
2. Guaranteed by design, not tested in production.
6.3.5
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 10: Current consumption
measurement scheme.
42/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in analog input mode
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time is adjusted to the fHCLK frequency:
–
0 wait state and Prefetch OFF from 0 to 24 MHz
–
1 wait state and Prefetch ON above 24 MHz
•
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 25 to Table 27 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6 V
Symbol
All peripherals enabled
IDD
IDD
IDD
Parameter
Conditions
fHCLK
Max @ TA(1)
Unit
Typ
85 °C
Supply current in
HSI or HSE clock, PLL on
Run mode, code
executing from Flash
HSI or HSE clock, PLL off
Supply current in
Run mode, code
executing from RAM
Supply current in
Sleep mode, code
executing from Flash
or RAM
HSI or HSE clock, PLL on
HSI or HSE clock, PLL off
HSI or HSE clock, PLL on
HSI or HSE clock, PLL off
48 MHz
24.1
27.6
24 MHz
12.4
14.4
8 MHz
4.52
5.28
48 MHz
23.1
25.0
24 MHz
11.5
13.6
8 MHz
4.34
5.03
48 MHz
15.0
17.3
24 MHz
7.53
8.87
8 MHz
2.95
3.41
mA
mA
mA
1. Data based on characterization results, not tested in production unless otherwise specified.
DocID027114 Rev 2
43/88
75
Electrical characteristics
STM32F070xB STM32F070x6
Table 26. Typical and maximum current consumption from the VDDA supply
VDDA = 3.6 V
Symbol
Conditions(1)
Parameter
fHCLK
Typ
Max @ TA
Unit
85 °C
HSE bypass, PLL on
IDDA
Supply current in
Run or Sleep mode,
code executing from
Flash or RAM
48 MHz
165
196
8 MHz
3.6
5.2
1 MHz
3.6
5.2
HSI clock, PLL on
48 MHz
245
279
HSI clock, PLL off
8 MHz
83.4
95.3
HSE bypass, PLL off
μA
1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being
in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, IDDA is independent from the
frequency.
Table 27. Typical and maximum consumption in Stop and Standby modes
Symbol
IDD
Parameter
Supply current in
Stop mode
Typ @VDD
(VDD = VDDA)
Max(1)
3.6 V
TA = 85 °C
Regulator in run mode, all oscillators OFF
15.9
49
Regulator in low-power mode, all oscillators OFF
3.7
33
1.5
-
Regulator in run or lowpower mode, all
oscillators OFF
2.8
3.6
LSI ON and IWDG ON
3.5
-
LSI OFF and IWDG OFF
2.6
3.6
Regulator in run or lowpower mode, all
oscillators OFF
1.5
-
LSI ON and IWDG ON
2.2
-
LSI OFF and IWDG OFF
1.4
-
Conditions
Supply current in
LSI ON and IWDG ON
Standby mode
Supply current in
Stop mode
VDDA monitoring ON
Supply current in
Standby mode
IDDA
Supply current in
Stop mode
VDDA monitoring OFF
Supply current in
Standby mode
1. Data based on characterization results, not tested in production unless otherwise specified.
44/88
DocID027114 Rev 2
Unit
μA
STM32F070xB STM32F070x6
Electrical characteristics
Typical current consumption
The MCU is placed under the following conditions:
•
VDD = VDDA = 3.3 V
•
All I/O pins are in analog input configuration
•
The Flash access time is adjusted to fHCLK frequency:
–
0 wait state and Prefetch OFF from 0 to 24 MHz
–
1 wait state and Prefetch ON above 24 MHz
•
When the peripherals are enabled, fPCLK = fHCLK
•
PLL is used for frequencies greater than 8 MHz
•
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and
500 kHz respectively
Table 28. Typical current consumption in Run mode, code with data processing
running from Flash
Typ
Symbol
IDD
IDDA
Parameter
Conditions
Supply current in Run
Running from
mode from VDD
HSE crystal
supply
clock 8 MHz,
Supply current in Run code executing
mode from VDDA
from Flash
supply
DocID027114 Rev 2
fHCLK
Peripherals Peripherals
enabled
disabled
48 MHz
23.5
13.5
8 MHz
4.8
3.1
48 MHz
163.3
163.3
8 MHz
2.5
2.5
Unit
mA
μA
45/88
75
Electrical characteristics
STM32F070xB STM32F070x6
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 46: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously, the I/Os
used by an application also contribute to the current consumption. When an I/O pin
switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to
charge/discharge the capacitive load (internal or external) connected to the pin:
I SW = V DDIOx × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
46/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
Table 29. Switching output I/O current consumption
Symbol
Parameter
Conditions(1)
VDDIOx = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
ISW
I/O current
consumption
VDDIOx = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
VDDIOx = 3.3 V
CEXT = 47 pF
C = CINT + CEXT+ CS
C = Cint
I/O toggling
frequency (fSW)
Typ
4 MHz
0.18
8 MHz
0.37
16 MHz
0.76
24 MHz
1.39
48 MHz
2.188
4 MHz
0.49
8 MHz
0.94
16 MHz
2.38
24 MHz
3.99
4 MHz
0.81
8 MHz
1.7
16 MHz
3.67
Unit
mA
1. CS = 7 pF (estimated value).
DocID027114 Rev 2
47/88
75
Electrical characteristics
6.3.6
STM32F070xB STM32F070x6
Wakeup time from low-power mode
The wakeup times given in Table 30 are the latency between the event and the execution of
the first user instruction. The device goes in low-power mode after the WFE (Wait For
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles
must be added to the following timings due to the interrupt latency in the Cortex M0
architecture.
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.
During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.
The wakeup source from Standby mode is the WKUP1 pin (PA0).
All timings are derived from tests performed under the ambient temperature and supply
voltage conditions summarized in Table 21: General operating conditions.
Table 30. Low-power mode wakeup timings
Symbol
Parameter
Conditions
Typ @VDD =
VDDA
Max Unit
= 3.3 V
tWUSTOP
Wakeup from Stop mode
Regulator in run mode
2.8
5
-
51
-
-
4 SYSCLK
cycles
-
tWUSTANDBY Wakeup from Standby mode
tWUSLEEP
48/88
Wakeup from Sleep mode
DocID027114 Rev 2
μs
STM32F070xB STM32F070x6
6.3.7
Electrical characteristics
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 11: High-speed external clock
source AC timing diagram.
Table 31. High-speed external user clock characteristics
Parameter(1)
Symbol
Min
Typ
Max
Unit
-
8
32
MHz
fHSE_ext
User external clock source frequency
VHSEH
OSC_IN input pin high level voltage
0.7 VDDIOx
-
VDDIOx
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3 VDDIOx
15
-
-
tw(HSEH)
tw(HSEL)
OSC_IN high or low time
tr(HSE)
tf(HSE)
OSC_IN rise or fall time
V
ns
-
-
20
1. Guaranteed by design, not tested in production.
Figure 11. High-speed external clock source AC timing diagram
WZ+6(+
9+6(+
9+6(/
WU+6(
WI+6(
WZ+6(/
W
7+6(
069
DocID027114 Rev 2
49/88
75
Electrical characteristics
STM32F070xB STM32F070x6
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 12.
Table 32. Low-speed external user clock characteristics
Parameter(1)
Symbol
Min
Typ
Max
Unit
kHz
fLSE_ext
User external clock source frequency
-
32.768
1000
VLSEH
OSC32_IN input pin high level voltage
0.7 VDDIOx
-
VDDIOx
VLSEL
OSC32_IN input pin low level voltage
VSS
-
0.3 VDDIOx
450
-
-
tw(LSEH)
OSC32_IN high or low time
tw(LSEL)
tr(LSE)
tf(LSE)
V
ns
OSC32_IN rise or fall time
-
-
50
1. Guaranteed by design, not tested in production.
Figure 12. Low-speed external clock source AC timing diagram
WZ/6(+
9/6(+
9/6(/
WU/6(
WI/6(
WZ/6(/
W
7/6(
069
50/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 33. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 33. HSE oscillator characteristics
Symbol
fOSC_IN
Parameter
Conditions(1)
Min(2)
Typ
Max(2)
Unit
4
8
32
MHz
-
200
-
kΩ
-
-
8.5
VDD = 3.3 V,
Rm = 45 Ω,
CL = 10 [email protected] MHz
-
0.5
-
VDD = 3.3 V,
Rm = 30 Ω,
CL = 20 [email protected] MHz
-
1.5
-
Startup
10
-
-
mA/V
VDD is stabilized
-
2
-
ms
Oscillator frequency
Feedback resistor
RF
(3)
During startup
IDD
HSE current consumption
gm
tSU(HSE)
Oscillator transconductance
(4)
Startup time
mA
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design, not tested in production.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 13). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DocID027114 Rev 2
51/88
75
Electrical characteristics
STM32F070xB STM32F070x6
Figure 13. Typical application with an 8 MHz crystal
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
26&B,1
0+]
UHVRQDWRU
&/
5(;7 I+6(
5)
%LDV
FRQWUROOHG
JDLQ
26&B287
069
1. REXT value depends on the crystal characteristics.
52/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 34. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol
IDD
gm
Parameter
LSE current consumption
Oscillator
transconductance
tSU(LSE)(3) Startup time
Conditions(1)
Min(2)
Typ
Max(2) Unit
LSEDRV[1:0]=00
lower driving capability
-
0.5
0.9
LSEDRV[1:0]= 01
medium low driving capability
-
-
1
LSEDRV[1:0] = 10
medium high driving capability
-
-
1.3
LSEDRV[1:0]=11
higher driving capability
-
-
1.6
LSEDRV[1:0]=00
lower driving capability
5
-
-
LSEDRV[1:0]= 01
medium low driving capability
8
-
-
LSEDRV[1:0] = 10
medium high driving capability
15
-
-
LSEDRV[1:0]=11
higher driving capability
25
-
-
VDDIOx is stabilized
-
2
-
μA
μA/V
s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DocID027114 Rev 2
53/88
75
Electrical characteristics
STM32F070xB STM32F070x6
Figure 14. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
26&B,1
I+6(
'ULYH
SURJUDPPDEOH
DPSOLILHU
N+]
UHVRQDWRU
26&B287
&/
069
Note:
54/88
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DocID027114 Rev 2
STM32F070xB STM32F070x6
6.3.8
Electrical characteristics
Internal clock source characteristics
The parameters given in Table 35 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI) RC oscillator
Table 35. HSI oscillator characteristics(1)
Symbol
fHSI
TRIM
Parameter
Conditions
Min
Typ
Max
Unit
Frequency
-
-
8
-
MHz
HSI user trimming step
-
-
-
1(2)
%
-
(2)
DuCyHSI
Duty cycle
ACCHSI
Accuracy of the HSI oscillator
(factory calibrated)
tSU(HSI)
HSI oscillator startup time
IDDA(HSI)
HSI oscillator power
consumption
TA = -40 to 85°C
45
-
55
(2)
%
-
±5
-
%
-
±1(3)
-
%
-
1(2)
-
2(2)
μs
-
-
80
-
μA
TA = 25°C
1. VDDA = 3.3 V, TA = -40 to 85°C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. With user calibration.
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)
Table 36. HSI14 oscillator characteristics(1)
Symbol
fHSI14
TRIM
Parameter
Conditions
Frequency
HSI14 user-trimming step
Accuracy of the HSI14
oscillator (factory calibrated)
tsu(HSI14)
HSI14 oscillator startup time
IDDA(HSI14)
Typ
-
14
-
DuCy(HSI14) Duty cycle
ACCHSI14
Min
TA = –40 to 85 °C
HSI14 oscillator power
consumption
Max
Unit
-
MHz
(2)
%
-
1
45(2)
-
55(2)
-
±5
1(2)
-
2(2)
μs
-
100
-
μA
%
%
1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
DocID027114 Rev 2
55/88
75
Electrical characteristics
STM32F070xB STM32F070x6
Low-speed internal (LSI) RC oscillator
Table 37. LSI oscillator characteristics(1)
Symbol
fLSI
tsu(LSI)
Parameter
Min
Typ
Max
Unit
30
40
50
kHz
LSI oscillator startup time
-
-
85
μs
LSI oscillator power consumption
-
0.75
-
μA
Frequency
(2)
IDDA(LSI)(2)
1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
6.3.9
PLL characteristics
The parameters given in Table 38 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Table 38. PLL characteristics
Value
Symbol
fPLL_IN
fPLL_OUT
tLOCK
JitterPLL
Parameter
Unit
Min
Typ
Max
1(2)
8.0
24(2)
MHz
PLL input clock duty cycle
40
(2)
-
60(2)
%
PLL multiplier output clock
16(2)
-
48
MHz
PLL lock time
-
-
200(2)
μs
Cycle-to-cycle jitter
-
-
300(2)
ps
PLL input clock(1)
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the
range defined by fPLL_OUT.
2. Guaranteed by design, not tested in production.
56/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
6.3.10
Electrical characteristics
Memory characteristics
Flash memory
The characteristics are given at TA = -40 to 85 °C unless otherwise specified.
Table 39. Flash memory characteristics
Min
Typ
Max(1)
Unit
16-bit programming time TA = -40 to +85 °C
-
53.5
-
μs
Page erase time (2)
TA = -40 to +85 °C
-
30
-
ms
tME
Mass erase time
TA = -40 to +85 °C
-
30
-
ms
IDD
Supply current
Write mode
-
-
10
mA
Erase mode
-
-
12
mA
2.4
-
3.6
V
Symbol
tprog
tERASE
Vprog
Parameter
Conditions
Programming voltage
1. Guaranteed by design, not tested in production.
2. Page size is 1KB for STM32F070x6 devices and 2KB for STM32F070xB devices.
Table 40. Flash memory endurance and data retention
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
TA = -40 to +85 °C
1
kcycle(2)
at TA = 85 °C
Min(1)
Unit
1
kcycles
20
Years
1. Data based on characterization results, not tested in production.
2. Cycling performed over the whole temperature range.
6.3.11
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 41. They are based on the EMS levels and classes
defined in application note AN1709.
DocID027114 Rev 2
57/88
75
Electrical characteristics
STM32F070xB STM32F070x6
Table 41. EMS characteristics
Symbol
Parameter
Level/
Class
Conditions
VFESD
VDD = 3.3V, LQFP48, TA = +25 °C,
Voltage limits to be applied on any I/O pin
fHCLK = 48 MHz,
to induce a functional disturbance
conforming to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3V, LQFP48, TA = +25°C,
fHCLK = 48 MHz,
conforming to IEC 61000-4-4
4B
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 42. EMI characteristics
Symbol Parameter
SEMI
58/88
Conditions
Monitored
frequency band
0.1 to 30 MHz
VDD = 3.6 V, TA = 25 °C,
30 to 130 MHz
LQFP100 package
Peak level
compliant with
130 MHz to 1 GHz
IEC 61967-2
EMI Level
DocID027114 Rev 2
Max vs. [fHSE/fHCLK]
Unit
8/48 MHz
-3
23
dBμV
17
4
-
STM32F070xB STM32F070x6
6.3.12
Electrical characteristics
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 43. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Packages
Class
Maximum
value(1)
Unit
VESD(HBM)
Electrostatic discharge voltage TA = +25 °C, conforming
(human body model)
to JESD22-A114
All
2
2000
V
VESD(CDM)
Electrostatic discharge voltage TA = +25 °C, conforming
(charge device model)
to ANSI/ESD STM5.3.1
All
II
500
V
1. Data based on characterization results, not tested in production.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin.
•
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 44. Electrical sensitivities
Symbol
LU
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
DocID027114 Rev 2
Class
II level A
59/88
75
Electrical characteristics
6.3.13
STM32F070xB STM32F070x6
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 μA/+0 μA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 45.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 45. I/O current injection susceptibility
Functional
susceptibility
Symbol
Description
Unit
Negative Positive
injection injection
IINJ
6.3.14
Injected current on BOOT0 and PF1 pins
-0
NA
Injected current on PA9, PB3, PB13, PF11 pins with induced
leakage current on adjacent pins less than 50 μA
-5
NA
Injected current on PA11 and PA12 pins with induced
leakage current on adjacent pins less than -1 mA
-5
NA
Injected current on all other FT and FTf pins
-5
NA
Injected current on PB0 and PB1 pins
-5
NA
Injected current on PC0 pin
-0
+5
Injected current on all other TTa, TC and RST pins
-5
+5
mA
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under the conditions summarized in Table 21: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).
60/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
Table 46. I/O static characteristics
Symbol
VIL
VIH
Vhys
Ilkg
RPU
Parameter
Low level input
voltage
High level input
voltage
Schmitt trigger
hysteresis
Input leakage
current(2)
Weak pull-up
equivalent resistor
(4)
RPD
Weak pull-down
equivalent
resistor(4)
CIO
I/O pin capacitance
Conditions
Min
Typ
Max
TC and TTa I/O
-
-
0.3 VDDIOx+0.07(1)
FT and FTf I/O
-
-
0.475 VDDIOx–0.2(1)
BOOT0
-
-
0.3 VDDIOx–0.3(1)
All I/Os except
BOOT0 pin
-
-
0.3 VDDIOx
TC and TTa I/O
0.445 VDDIOx+0.398(1)
-
-
-
-
-
-
0.5 VDDIOx+0.2
FT and FTf I/O
(1)
(1)
0.2 VDDIOx+0.95
BOOT0
Unit
V
V
All I/Os except
BOOT0 pin
0.7 VDDIOx
-
-
TC and TTa I/O
-
200(1)
-
FT and FTf I/O
-
100(1)
-
BOOT0
-
300
(1)
-
TC, FT and FTf I/O
TTa in digital mode
VSS ≤ VIN ≤ VDDIOx
-
-
± 0.1
TTa in digital mode
VDDIOx ≤ VIN ≤ VDDA
-
-
1
TTa in analog mode
VSS ≤ VIN ≤ VDDA
-
-
± 0.2
FT and FTf I/O (3)
VDDIOx ≤ VIN ≤ 5 V
-
-
10
VIN = VSS
25
40
55
kΩ
VIN = VDDIOx
25
40
55
kΩ
-
5
-
pF
mV
μA
1. Data based on design simulation only. Not tested in production.
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45:
I/O current injection susceptibility.
3. To sustain a voltage higher than VDDIOx + 0.3 V, the internal pull-up/pull-down resistors must be disabled.
4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
DocID027114 Rev 2
61/88
75
Electrical characteristics
STM32F070xB STM32F070x6
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 15 for standard I/Os, and in Figure 16 for
5 V tolerant I/Os. The following curves are design simulation results, not tested in
production.
Figure 15. TC and TTa I/O input characteristics
3
VIN (V)
2.5
TESTED RANGE
TTL standard requirement
2
1.5
UNDEFINED INPUT RANGE
1
TTL standard requirement
0.5
TESTED RANGE
0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VDDIOx
(V)
MS32130V3
62/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
Figure 16. Five volt tolerant (FT and FTf) I/O input characteristics
3
VIN (V)
2.5
TESTED RANGE
TTL standard requirement
2
1.5
1
TTL standard requirement
0.5
TESTED RANGE
0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VDDIOx (V)
MS32131V3
DocID027114 Rev 2
63/88
75
Electrical characteristics
STM32F070xB STM32F070x6
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
•
The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 18: Voltage characteristics).
•
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see
Table 18: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or
TC unless otherwise specified).
Table 47. Output voltage characteristics(1)
Symbol
Parameter
VOL
Output low level voltage for an I/O pin
VOH
Output high level voltage for an I/O pin
VOL(2)
Output low level voltage for an I/O pin
VOH(2)
Output high level voltage for an I/O pin
VOL(2)
Output low level voltage for an I/O pin
VOH(2)
Output high level voltage for an I/O pin
VOLFm+
(2)
Output low level voltage for an FTf I/O pin in
Fm+ mode
Conditions
Min
Max
|IIO| = 8 mA
VDDIOx ≥ 2.7 V
-
0.4
VDDIOx–0.4
-
-
1.3
VDDIOx–1.3
-
-
0.4
VDDIOx–0.4
-
|IIO| = 20 mA
VDDIOx ≥ 2.7 V
-
0.4
V
|IIO| = 10 mA
-
0.4
V
|IIO| = 20 mA
VDDIOx ≥ 2.7 V
|IIO| = 6 mA
Unit
V
V
V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣIIO.
2. Data based on characterization results. Not tested in production.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 17 and
Table 48, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
64/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
Table 48. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] value(1)
Symbol
Parameter
Conditions
Min
Max
Unit
-
2
MHz
-
125
-
125
-
10
-
25
-
25
CL = 30 pF, VDDIOx ≥ 2.7 V
-
50
CL = 50 pF, VDDIOx ≥ 2.7 V
-
30
CL = 50 pF, 2.4 V ≤ VDDIOx < 2.7 V
-
20
CL = 30 pF, VDDIOx ≥ 2.7 V
-
5
CL = 50 pF, VDDIOx ≥ 2.7 V
-
8
CL = 50 pF, 2.4 V ≤ VDDIOx < 2.7 V
-
12
CL = 30 pF, VDDIOx ≥ 2.7 V
-
5
CL = 50 pF, VDDIOx ≥ 2.7 V
-
8
CL = 50 pF, 2.4 V ≤ VDDIOx < 2.7 V
-
12
-
2
-
12
-
34
10
-
fmax(IO)out Maximum frequency(3)
x0
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx ≥ 2.4 V
fmax(IO)out Maximum frequency(3)
01
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx ≥ 2.4 V
(3)
fmax(IO)out Maximum frequency
11
tf(IO)out
tr(IO)out
Fm+
configuration
(4)
Output fall time
Output rise time
fmax(IO)out Maximum
frequency(3)
CL = 50 pF, VDDIOx ≥ 2.4 V
tf(IO)out
Output fall time
tr(IO)out
Output rise time
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
ns
MHz
ns
MHz
ns
MHz
ns
ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0360 reference manual for a
description of GPIO Port configuration register.
2. Guaranteed by design, not tested in production.
3. The maximum frequency is defined in Figure 17.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0360
for a detailed description of Fm+ I/O configuration.
DocID027114 Rev 2
65/88
75
Electrical characteristics
STM32F070xB STM32F070x6
Figure 17. I/O AC characteristics definition
W I,2RXW
W U,2RXW
7
7DQGLIWKHGXW\F\FOHLV
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWW”
U I
ZKHQORDGHGE\&VHHWKHWDEOH,2$&FKDUDFWHULVWLFVGHILQLWLRQ
069
6.3.15
NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 21: General operating conditions.
Table 49. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VIL(NRST)
NRST input low level voltage
-
-
-
0.3 VDD+0.07(1)
VIH(NRST)
NRST input high level voltage
-
0.445 VDD+0.398(1)
-
-
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis
-
-
200
-
mV
VIN = VSS
25
40
55
kΩ
-
-
100(1)
ns
2.7 < VDD < 3.6
300(3)
-
-
2.4 < VDD < 3.6
500(3)
-
-
RPU
Weak pull-up equivalent
resistor(2)
VF(NRST)
NRST input filtered pulse
VNF(NRST) NRST input not filtered pulse
1. Data based on design simulation only. Not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
3. Data based on design simulation only. Not tested in production.
66/88
DocID027114 Rev 2
Unit
V
ns
STM32F070xB STM32F070x6
Electrical characteristics
Figure 18. Recommended NRST pin protection
9''
([WHUQDO
UHVHWFLUFXLWU\
538
1567
,QWHUQDOUHVHW
)LOWHU
—)
069
1. The external capacitor protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 49: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
DocID027114 Rev 2
67/88
75
Electrical characteristics
6.3.16
STM32F070xB STM32F070x6
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 50 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 21: General operating conditions.
Note:
It is recommended to perform a calibration after each power-up.
Table 50. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA
Analog supply voltage for
ADC ON
-
2.4
-
3.6
V
VDD = VDDA = 3.3 V
-
0.9
-
mA
IDDA (ADC)
Current consumption of
the ADC(1)
fADC
ADC clock frequency
-
0.6
-
14
MHz
fS(2)
Sampling rate
-
0.05
-
1
MHz
fADC = 14 MHz
-
-
823
kHz
-
-
-
17
1/fADC
fTRIG(2)
External trigger frequency
VAIN
Conversion voltage range
-
0
-
VDDA
V
RAIN(2)
External input impedance
See Equation 1 and
Table 51 for details
-
-
50
kΩ
RADC(2)
Sampling switch
resistance
-
-
-
1
kΩ
CADC(2)
Internal sample and hold
capacitor
-
-
-
8
pF
tCAL(2)
Calibration time
fADC = 14 MHz
5.9
μs
-
83
1/fADC
1.5 ADC
cycles + 2
fPCLK cycles
-
1.5 ADC
cycles + 3
fPCLK cycles
ADC clock = PCLK/2
-
4.5
-
fPCLK
cycle
ADC clock = PCLK/4
-
8.5
-
fPCLK
cycle
ADC clock = HSI14
WLATENCY(2)
tlatr(2)
ADC_DR register write
latency
fADC = fPCLK/2 = 14 MHz
0.196
μs
fADC = fPCLK/2
5.5
1/fPCLK
0.219
μs
10.5
1/fPCLK
Trigger conversion latency fADC = fPCLK/4 = 12 MHz
fADC = fPCLK/4
JitterADC
tS(2)
68/88
ADC jitter on trigger
conversion
Sampling time
fADC = fHSI14 = 14 MHz
0.188
-
0.259
μs
fADC = fHSI14
-
1
-
1/fHSI14
fADC = 14 MHz
0.107
-
17.1
μs
1.5
-
239.5
1/fADC
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
Table 50. ADC characteristics (continued)
Symbol
Parameter
Conditions
tSTAB(2)
Power-up time
tCONV(2)
Total conversion time
(including sampling time)
Min
Typ
Max
Unit
0
0
1
μs
1
-
18
μs
fADC = 14 MHz
14 to 252 (tS for sampling +12.5 for
successive approximation)
1/fADC
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μA on IDDA and 60 μA
on IDD should be taken into account.
2. Guaranteed by design, not tested in production.
Equation 1: RAIN max formula
TS
- – R ADC
R AIN < ------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 51. RAIN max for fADC = 14 MHz
Ts (cycles)
tS (μs)
RAIN max (kΩ)(1)
1.5
0.11
0.4
7.5
0.54
5.9
13.5
0.96
11.4
28.5
2.04
25.2
41.5
2.96
37.2
55.5
3.96
50
71.5
5.11
NA
239.5
17.1
NA
1. Guaranteed by design, not tested in production.
Table 52. ADC accuracy(1)(2)(3)
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 kΩ
VDDA = 2.7 V to 3.6 V
TA = −40 to 85 °C
Typ
Max(4)
±3.3
±4
±1.9
±2.8
±2.8
±3
±0.7
±1.3
±1.2
±1.7
Unit
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
DocID027114 Rev 2
69/88
75
Electrical characteristics
STM32F070xB STM32F070x6
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
Figure 19. ADC accuracy characteristics
(*
([DPSOHRIDQDFWXDO WUDQVIHUFXUYH
7KHLGHDOWUDQVIHUFXUYH
(QG SRLQWFRUUHODWLRQOLQH
(7
(7 7RWDO 8QDGMXVWHG (UURU PD[LPXP GHYLDWLRQ
EHWZHHQ WKHDFWXDODQGWKHLGHDOWUDQVIHU FXUYHV
(2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKH ILUVWLGHDORQH
(* *DLQ (UURU GHYLDWLRQ EHWZHHQ WKH ODVW LGHDO
WUDQVLWLRQDQGWKH ODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURU PD[LPXPGHYLDWLRQ
EHWZHHQ DFWXDOVWHSVDQGWKHLGHDORQH
(/ ,QWHJUDO /LQHDULW\ (UURU PD[LPXP GHYLDWLRQ
EHWZHHQ DQ\ DFWXDO WUDQVLWLRQ DQG WKH HQG SRLQW
FRUUHODWLRQOLQH
(2
(/
('
/6%,'($/
966$
9''$
-36
Figure 20. Typical connection diagram using the ADC
9 ''$
6DPSOHDQGKROG$'&
FRQ YHU WHU
97
5 $,1 9$,1
5 $'&
$,1[
& SDU DVLWLF
97
,/ “ —$
ELW
FRQ YHU WHU
&$'&
069
1. Refer to Table 50: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
70/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 9: Power supply scheme.
The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as
possible to the chip.
6.3.17
Temperature sensor characteristics
Table 53. TS characteristics
Symbol
Parameter
TL(1)
Typ
Max
Unit
-
±1
±2
°C
4.0
4.3
4.6
mV/°C
1.34
1.43
1.52
V
Startup time
4
-
10
μs
ADC sampling time when reading the
temperature
4
-
-
μs
VSENSE linearity with temperature
Avg_Slope(1)
Average slope
Voltage at 30 °C (± 5
V30
tSTART
Min
(1)
tS_temp(1)
°C)(2)
1. Guaranteed by design, not tested in production.
2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3:
Temperature sensor calibration values.
6.3.18
Timer characteristics
The parameters given in the following tables are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 54. TIMx characteristics
Symbol
Parameter
Conditions
Min
Max
Unit
1
-
tTIMxCLK
20.8
-
ns
0
fTIMxCLK/2
MHz
tres(TIM)
Timer resolution time
fEXT
Timer external clock
frequency on CH1 to
CH4
fTIMxCLK = 48 MHz
0
24
MHz
Timer resolution
TIMx
-
16
bit
1
65536
tTIMxCLK
0.0208
1365
μs
-
65536 × 65536
tTIMxCLK
-
89.48
s
ResTIM
tCOUNTER
tMAX_COUNT
16-bit counter clock
period
Maximum possible count
with 32-bit counter
fTIMxCLK = 48 MHz
fTIMxCLK = 48 MHz
fTIMxCLK = 48 MHz
DocID027114 Rev 2
71/88
75
Electrical characteristics
STM32F070xB STM32F070x6
Table 55. IWDG min/max timeout period at 40 kHz (LSI)(1)
Prescaler divider
PR[2:0] bits
Min timeout RL[11:0]=
0x000
Max timeout RL[11:0]=
0xFFF
/4
0
0.1
409.6
/8
1
0.2
819.2
/16
2
0.4
1638.4
/32
3
0.8
3276.8
/64
4
1.6
6553.6
/128
5
3.2
13107.2
/256
6 or 7
6.4
26214.4
Unit
ms
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Table 56. WWDG min/max timeout value at 48 MHz (PCLK)
6.3.19
Prescaler
WDGTB
Min timeout value
Max timeout value
1
0
0.0853
5.4613
2
1
0.1706
10.9226
4
2
0.3413
21.8453
8
3
0.6826
43.6906
Unit
ms
Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm): with a bit rate up to 100 kbit/s
•
Fast-mode (Fm): with a bit rate up to 400 kbit/s
•
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
72/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
Table 57. I2C analog filter characteristics(1)
Symbol
Parameter
Min
Max
Unit
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter
50(2)
260(3)
ns
1. Guaranteed by design, not tested in production.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
SPI characteristics
Unless otherwise specified, the parameters given in Table 58 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 21: General operating conditions.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 58. SPI characteristics(1)
Symbol
fSCK
1/tc(SCK)
Parameter
SPI clock frequency
Conditions
Min
Max
Master mode
-
18
Slave mode
-
18
-
6
tr(SCK)
tf(SCK)
SPI clock rise and fall
time
Capacitive load: C = 15 pF
tsu(NSS)
NSS setup time
Slave mode
4Tpclk
-
th(NSS)
NSS hold time
Slave mode
2Tpclk + 10
-
SCK high and low time
Master mode, fPCLK = 36 MHz,
presc = 4
Tpclk/2 -2
Tpclk/2 + 1
Master mode
4
-
Slave mode
5
-
Master mode
4
-
Slave mode
5
-
tw(SCKH)
tw(SCKL)
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
ta(SO)(2)
Data output access time
Slave mode, fPCLK = 20 MHz
0
3Tpclk
tdis(SO)(3)
Data output disable time
Slave mode
0
18
tv(SO)
Data output valid time
Slave mode (after enable edge)
-
22.5
tv(MO)
Data output valid time
Master mode (after enable edge)
-
6
Slave mode (after enable edge)
11.5
-
Master mode (after enable edge)
2
-
Slave mode
25
75
th(SO)
th(MO)
DuCy(SCK)
Data output hold time
SPI slave input clock
duty cycle
Unit
MHz
ns
ns
%
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
DocID027114 Rev 2
73/88
75
Electrical characteristics
STM32F070xB STM32F070x6
Figure 21. SPI timing diagram - slave mode and CPHA = 0
E^^ŝŶƉƵƚ
ƚĐ;^<Ϳ
ƚŚ;E^^Ϳ
^</ŶƉƵƚ
ƚ^h;E^^Ϳ
W,с Ϭ
WK>сϬ
ƚǁ;^<,Ϳƚǁ;^<>Ϳ
W,с Ϭ
WK>сϭ
ƚǀ;^KͿ
ƚĂ;^KͿ
D/^K
Khd W hd
ƚƌ;^<ͿƚĨ;^<Ϳ
ƚĚŝƐ;^KͿ
ƚŚ;^KͿ
D^ K hd
/ dϲ Khd
D ^ /E
/ dϭ /E
>^ Khd
ƚƐƵ;^/Ϳ
DK^/
/ EWhd
>^ /E
ƚŚ;^/Ϳ
DLF
Figure 22. SPI timing diagram - slave mode and CPHA = 1
E^^ŝŶƉƵƚ
^</ŶƉƵƚ
ƚ^h;E^^Ϳ
W ,сϭ
W K>сϬ
W ,сϭ
W K>сϭ
ƚĐ;^<Ϳ
ƚǁ;^>,Ϳ
ƚǁ;^>>Ϳ
ƚǀ;^KͿ
ƚĂ;^KͿ
D/^ K
Khd W hd
ƚŚ;^KͿ
D^ K hd
ƚƐƵ;^/Ϳ
DK^ /
/ EWhd
ƚŚ;E^^Ϳ
/ dϲ Khd
ƚƌ;^>Ϳ
ƚĨ;^>Ϳ
ƚĚŝƐ;^KͿ
> ^ Khd
ƚŚ;^/Ϳ
/ dϭ /E
D^ /E
> ^ /E
DL
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
74/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Electrical characteristics
Figure 23. SPI timing diagram - master mode
(IGH
.33INPUT
3#+/UTPUT
#0(! #0/,
3#+/UTPUT
TC3#+
#0(!
#0/,
#0(! #0/,
#0(!
#0/,
TSU-)
-)3/
).0 54
TW3#+(
TW3#+,
TR3#+
TF3#+
-3 ").
") 4).
,3").
TH-)
-/3)
/54054
- 3"/54
,3"/54
" ) 4/54
TV-/
TH-/
AI6
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
USB characteristics
The STM32F070xB/6 USB interface is fully compliant with the USB specification version 2.0
and is USB-IF certified (for Full-speed device operation).
Table 59. USB electrical characteristics
Symbol
VDD
Parameter
Conditions
USB transceiver operating
voltage
Min.
Typ
Max.
Unit
3.0(1)
-
3.6
V
μs
tSTARTUP(2)
USB transceiver startup time
-
-
1.0
RPUI
Embedded USB_DP pull-up
value during idle
1.1
1.26
1.5
RPUR
Embedded USB_DP pull-up
value during reception
2.0
2.26
2.6
ZDRV(2)
Output driver impedance(3)
28
40
44
kΩ
Driving high
and low
Ω
1. The STM32F070xB/6 USB functionality is ensured down to 2.7 V but not the full USB electrical
characteristics which are degraded in the 2.7-to-3.0 V voltage range.
2. Guaranteed by design, not tested in production.
3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching
impedance is already included in the embedded driver.
DocID027114 Rev 2
75/88
75
Package characteristics
STM32F070xB STM32F070x6
7
Package characteristics
7.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
76/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Package characteristics
Figure 24. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline
PP
*$8*(3/$1(
F
$
$
$
6($7,1*3/$1(
&
$
FFF &
'
'
'
.
/
/
3,1
,'(17,),&$7,21
(
(
(
E
H
:B0(B9
1. Drawing is not to scale.
Table 60. LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
0.200
0.0035
-
0.0079
D
11.800
12.000
12.200
0.4646
0.4724
0.4803
D1
9.800
10.000
10.200
0.3858
0.3937
0.4016
D3
-
7.500
-
-
0.2953
-
E
11.800
12.000
12.200
0.4646
0.4724
0.4803
E1
9.800
10.000
10.200
0.3858
0.3937
0.4016
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
DocID027114 Rev 2
77/88
86
Package characteristics
STM32F070xB STM32F070x6
Table 60. LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data
(continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
K
0°
3.5°
7°
0°
3.5°
7°
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 25. LQFP64 recommended footprint
1. Dimensions are in millimeters.
78/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Package characteristics
Device marking for LQFP64
The following figure shows the device marking for the LQFP64 package.
Figure 26. LQFP64 marking example (package top view)
5HYLVLRQFRGH
3
3URGXFWLGHQWLILFDWLRQ 45.'
3#5
'DWHFRGH
: 88
3LQLGHQWLILFDWLRQ
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID027114 Rev 2
79/88
86
Package characteristics
STM32F070xB STM32F070x6
Figure 27. LQFP48 - 7 mm x 7 mm, 48 pin low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
CCC #
+
!
$
$
,
,
$
%
%
%
B
0).
)$%.4)&)#!4)/.
E
"?-%?6
1. Drawing is not to scale.
Table 61. LQFP48 - 7 mm x 7 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
A
80/88
Typ
Max
Min
Typ
Max
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
DocID027114 Rev 2
STM32F070xB STM32F070x6
Package characteristics
Table 61. LQFP48 - 7 mm x 7 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
K
0°
3.5°
7°
0°
3.5°
7°
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 28. LQFP48 recommended footprint
AID
1. Dimensions are in millimeters.
DocID027114 Rev 2
81/88
86
Package characteristics
STM32F070xB STM32F070x6
Device marking for LQFP48
The following figure shows the device marking for the LQFP48 package.
Figure 29. LQFP48 marking example (package top view)
'HYLFHLGHQWLILFDWLRQ
45.
'$#5
'DWHFRGH
:
88
3LQLGHQWLILFDWLRQ
3
5HYLVLRQFRGH
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
82/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
Package characteristics
Figure 30. TSSOP20 - 20-pin thin shrink small outline
$
C
% %
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
0).
)$%.4)&)#!4)/.
K
AAA #
!
!
,
!
B
,
E
9!?-%?6
1. Drawing is not to scale.
Table 62. TSSOP20 - 20-pin thin shrink small outline package mechanical data
inches(1)
millimeters
Symbol
Min
A
Typ
Max
Min
Typ
-
1.2
-
-
0.0472
A1
0.05
-
0.15
0.002
-
0.0059
A2
0.8
1
1.05
0.0315
0.0394
0.0413
b
0.19
0.3
0.0075
-
0.0118
c
0.09
0.2
0.0035
-
0.0079
D(2)
6.4
6.5
6.6
0.252
0.2559
0.2598
E
6.2
6.4
6.6
0.2441
0.252
0.2598
4.3
4.4
4.5
0.1693
0.1732
0.1772
e
-
0.65
-
-
0.0256
-
L
0.45
0.6
0.75
0.0177
0.0236
0.0295
L1
-
1
-
-
0.0394
-
k
0.0°
-
8.0°
0.0°
-
8.0°
aaa
-
-
0.1
-
-
0.0039
E1
(3)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15mm per side.
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per
side.
DocID027114 Rev 2
83/88
86
Package characteristics
STM32F070xB STM32F070x6
Figure 31. TSSOP20 recommended footprint
9!?&0?6
1. Dimensions are in millimeters.
Device marking for TSSOP20
The following figure shows the device marking for the TSSOP20 package.
Figure 32. TSSOP20 marking example (package top view)
'HYLFHLGHQWLILFDWLRQ
''1
'DWHFRGH
3LQLGHQWLILFDWLRQ
5HYLVLRQFRGH
:
88
3
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
84/88
DocID027114 Rev 2
STM32F070xB STM32F070x6
7.2
Package characteristics
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 21: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ ((VDD - VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 63. Package thermal characteristics
Symbol
ΘJ
7.2.1
Parameter
Value
Thermal resistance junction-ambient
LQFP64 - 10 mm x 10 mm
44
Thermal resistance junction-ambient
LQFP48 - 7 mm x 7 mm
55
Thermal resistance junction-ambient
TSSOP20 - 6.5 mm x 6.4 mm
76
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
DocID027114 Rev 2
85/88
86
Part numbering
8
STM32F070xB STM32F070x6
Part numbering
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
+
Table 64. Ordering information scheme
Example:
STM32
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = General-purpose
Sub-family
070 = STM32F070xx
Pin count
F = 20 pins
C = 48 pins
R = 64 pins
Code size
4 = 16 Kbytes of Flash memory
6 = 32 Kbytes of Flash memory
8 = 64 Kbytes of Flash memory
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
Package
P = TSSOP
T = LQFP
Temperature range
6 = –40 to 85 °C
Options
xxx = programmed parts
TR = tape and reel
86/88
DocID027114 Rev 2
F
070
C
6
T
6
x
STM32F070xB STM32F070x6
9
Revision history
Revision history
Table 65. Document revision history
Date
Revision
27-Nov-2014
1
Initial release.
2
Updated the number of SPI in Features and Section 2:
Description.
Updated Section 3.15: Serial peripheral interface (SPI).
Updated the footnote4. of Table 11: STM32F070xB/6 pin
definitions, and added the reference to PB9 pin.
Moved the AF3 data to AF4 for PA9 and PA10 pins in
Table 12: Alternate functions selected through
GPIOA_AFR registers for port A.
Added the reference to footnote 1. to AF0 data for PB12,
PB13, PB14 and PB15, and to AF5 data for PB9 and
PB10 in Table 13: Alternate functions selected through
GPIOB_AFR registers for port B.
Added the reference to footnote 1. to SPI2 in Table 17:
STM32F070xB/6 peripheral register boundary
addresses.
15-Jan-2015
Changes
DocID027114 Rev 2
87/88
87
STM32F070xB STM32F070x6
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
88/88
DocID027114 Rev 2