AS3833

austriamicrosystems AG
is now
ams AG
The technical content of this austriamicrosystems datasheet is still valid.
Contact information:
Headquarters:
ams AG
Tobelbaderstrasse 30
8141 Unterpremstaetten, Austria
Tel: +43 (0) 3136 500 0
e-Mail: [email protected]
Please visit our website at www.ams.com
D atas he et
A S3 8 3 3
1 General Description
The integrated step-up controller provides the necessary output
voltage for the LED string supply.
The SMPS feedback control optimizes the power efficiency by
adjusting the LED string supply voltage.
2 Key Features
6 channel LED controller
Step-up controller optimized for 2D/3D mode
Supply voltage range: 12V to 50V
Figure 1. AS3833
Output current up to 250mA per channel
Absolute current accuracy +/- 0.8%
Channel to channel accuracy+/- 0.6%
1 PWM input with internal phase shift
Open LED detection and disconnect
Short LED protection and auto-turnoff
Undervoltage shutdown
Temperature shutdown
Temperature supervision of external BJT
BJT Beta compensation
SMPS feedback control
DCDC Softstart Function
Over Voltage Protection (OVP)
Package SOIC-28
Package TQFP-32
am
lc s
on A
te G
nt
st
il
Build in safety features include under-voltage and thermal shutdown
as well as open and short LED detection.
lv
The AS3833 is a 6 channel high precision LED controller with PWM
input for driving external bipolar transistors in LCD-backlight panels,
optimized for 2D and 3D operation.
al
id
6 c h a n n e l h ig h - p re c is io n L E D c o n tr o ll e r fo r 3 D- L C D b a ck l ig h t w it h
in t eg ra t e d s te p - u p c o n t r o lle r
3 Applications
Te
ch
ni
ca
LED backlighting for 3D-LCD backlight TV sets and monitors
www.austriamicrosystems.com/AS3833
Revision 1.8
1 - 20
AS3833
Datasheet - C o n t e n t s
Contents
1 General Description
.................................................................................................................................................................. 1
2 Key Features
............................................................................................................................................................................ 1
3 Applications
.............................................................................................................................................................................. 1
4 Pin Assignments (Top View)
.................................................................................................................................................................................. 4
5 Absolute Maximum Ratings
6 Electrical Characteristics
...................................................................................................................................................... 5
.......................................................................................................................................................... 6
7 Typical Operating Characteristics
............................................................................................................................................. 8
............................................................................................................................................................... 10
8.1 Precision current output
..................................................................................................................................................................... 10
lv
8 Detailed Description
al
id
4.1 Pin Descriptions
..................................................................................................................................................... 3
8.1.1 Phase shift
.............................................................................................................................................................................. 10
8.2 VDDH_HC resistor
............................................................................................................................................................................. 11
8.3.1
8.3.2
8.3.3
8.3.4
................................................................................................................................................................................... 11
Undervoltage lockout .............................................................................................................................................................. 11
Overtemperature Shutdown ................................................................................................................................................... 12
Short LED protection .............................................................................................................................................................. 12
Open LED detection ............................................................................................................................................................... 13
8.4 Boost controller
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
am
lc s
on A
te G
nt
st
il
8.3 Safety features
.................................................................................................................................................................................. 13
Setting the output voltage ....................................................................................................................................................... 14
Continuous Conduction Mode (CCM) .................................................................................................................................... 15
Duty Cycle .............................................................................................................................................................................. 15
Inductor Current ..................................................................................................................................................................... 15
Input Capacitor ....................................................................................................................................................................... 16
Output Capacitor .................................................................................................................................................................... 16
Current Sense Resistor .......................................................................................................................................................... 16
Compensation Network .......................................................................................................................................................... 16
9 Package Drawings and Markings
............................................................................................................................................................. 20
Te
ch
ni
ca
10 Ordering Information
........................................................................................................................................... 17
Revision 1.8
2 - 20
AS3833
Datasheet - P i n A s s i g n m e n t s ( To p V i e w )
4 Pin Assignments (Top View)
Te
ch
ni
ca
am
lc s
on A
te G
nt
st
il
lv
al
id
Figure 2. Pin Assignments (Top View)
Revision 1.8
3 - 20
AS3833
Datasheet - P i n A s s i g n m e n t s ( To p V i e w )
4.1 Pin Descriptions
Pin
Number
AS3833
TQFP-32
Pin
Number
AS3833
SOIC-28
Pin Name
Pin Type
29
1
VSS
P
30
2
B4
A_I/O
Base 4. Connect to base of external transistor.
31
3
E4
A_I/O
Emitter 4. Connect to emitter of external transistor.
1
4
xFAULT
DO_OD
2
5
ISET
A_I/O
Current setting. Connect current setting resistor.
3
6
UVLO
A_I/O
Undervoltage lockout input.
4
7
COMP
A_I/O
Compensation network. Connect compensation network.
5
8
6
9
7
10
8
11
10
12
11
13
12
14
14
am
lc s
on A
te G
nt
st
il
Table 1. Pin Descriptions
Description
al
id
Analog Ground
lv
Fault output. Active low.
Current sense input. Provide a short, direct PCB path between
SENSE
A_I/O
FB
A_I/O
Output voltage feedback input. Input for voltage divider.
Connect voltage divider output as short as possible to this pin
VDDL
A_I/O
Voltage regulator output 3.3V. Connect 2.2µ F decoupling capacitor to GND
GATE
A_I/O
Gate driver output.
PGND
P
Power Ground
VDDM
P
Voltage regulator output. Connect 2.2µ F decoupling capacitor to GND
VDDH
P
Supply voltage. Connect 1µ F decoupling capacitor to GND
15
VDDH_HC
P
Voltage regulator Input. Connect 2.2µ F decoupling capacitor to GND
15
16
VTH
A_I/O
Reference input for overtemperature detection.
16
17
PWM1
DI_PD
PWM input 1. PWM input for channel 1
17
18
E6
A_I/O
Emitter 6. Connect to emitter of external transistor.
18
19
B6
A_I/O
Base 6. Connect to base of external transistor.
19
20
B5
A_I/O
Base 5. Connect to base of external transistor.
20
21
E5
A_I/O
Emitter 5. Connect to emitter of external transistor.
21
22
VSS
P
22
23
E2
A_I/O
ni
ca
this pin and the positive side of the current sense resistor.
Analog Ground
Emitter 2. Connect to emitter of external transistor.
24
B2
A_I/O
Base 2. Connect to base of external transistor.
25
B1
A_I/O
Base 1. Connect to base of external transistor.
26
E1
A_I/O
Emitter 1. Connect to emitter of external transistor.
26
27
E3
A_I/O
Emitter 3. Connect to emitter of external transistor.
27
28
B3
A_I/O
Base 3. Connect to base of external transistor.
23
24
Te
ch
25
A_I/O...Analog pin, P...Power pin, DO...digital output, DO_OD...digital output open drain, DI...digital input,
DI_PU...digital input with pullup resistor, DI_PD...digital input with pull down resistor
Revision 1.8
4 - 20
AS3833
Datasheet - A b s o l u t e M a x i m u m R a t i n g s
5 Absolute Maximum Ratings
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of
the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 6 is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Table 2. Absolute Maximum Ratings
Min
Max
Units
Comments
al
id
Parameter
VDDH to VSS, VDDH_HC to VSS
-0.3
55
V
VDDM to VSS, GATE to VSS
-0.3
25
V
xFAULT to VSS
-0.3
7
V
VDDL to VSS
-0.3
5
V
1
-0.3
5
V
2
-0.3
5
V
Analog Pin Voltage to VSS
am
lc s
on A
te G
nt
st
il
Digital Pin Voltage to VSS
Input Current (latch-up immunity)
Electrostatic Discharge
lv
Electrical Parameters
-100
100
mA
Norm: JEDEC 78
Electrostatic Discharge HBM
+/- 1500
V
Norm: MIL 883 E method 3015
Electrostatic Discharge MM
+/- 200
V
Norm: JESD22-A115C
Continuos Power Dissipation
1.5
W
PT for SOIC-28 Package
Continuos Power Dissipation Derating Factor
13
mW / °C
PDERATE
Junction to ambient thermal resistance
76
ºC/W
SOIC-28 Package.
For more information about thermal metrics, see
application note AN01 Thermal Characteristics.
Junction Temperature (TJmax)
+150
ºC
+150
ºC
Continuos Power Dissipation (TA = +70°C)
3
4
Temperature Ranges and Storage Conditions
Storage Temperature Range
-55
ca
Package Body Temperature
ni
Humidity non-condensing
Moisture Sensitive Level
5
+260
ºC
85
%
1
The reflow peak soldering temperature (body
temperature) specified is in accordance with IPC/
JEDEC J-STD-020“Moisture/Reflow Sensitivity
Classification for Non-Hermetic Solid State Surface
Mount Devices”.
The lead finish for Pb-free leaded packages is matte
tin (100% Sn).
Represents a max. floor life time of unlimited
ch
1. Pins Vth, UVLO, Comp, Sense, FB, Iset, Ex, Bx
Te
2. Pins PWMx
3. Depending on actual PCB layout and PCB used.
4. PDERATE derating factor changes the total continuous power dissipation (PT) if the ambient temperature is not 25ºC. Therefore for e.g.
TA=85ºC calculate PT at 85ºC = PT - PDERATE x (85ºC - 25ºC)
Revision 1.8
5 - 20
AS3833
Datasheet - E l e c t r i c a l C h a r a c t e r i s t i c s
6 Electrical Characteristics
VDDH = 24V, all voltages referenced to VSS, Typical values are at TA = +25°C (unless otherwise specified). All limits are guaranteed. The
parameters with min. and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.
Table 3. Electrical Characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Units
TA
Operating Temperature Range
apply proper cooling to stay below maximum
allowed TJ.
-20
TJ
Operating Junction Temperature
-20
VDDH
Supply Voltage
+12
VDDM
Driver supply voltage regulator output
VDDL
3V voltage regulator output
IDD
Operating Current Consumption
UVLO=2V, PWM1=0, Rset=6kΩ, Vth=0.47V
4.6
5.0
5.6
mA
IDDQ
Quiescent Current Consumption
UVLO=0V, PWM1=0, Rset=6kΩ, Vth=0.47V
2.25
2.50
2.75
mA
-0.8
+0.8
%
al
id
General
+115
°C
+50
V
+9
V
+3.3
V
am
lc s
on A
te G
nt
st
il
Current sink parameters
°C
lv
Power supply
+85
ILED_100
Trimmed current accuracy
ILED=100mA, Tj = 25°C
excluding error of Rset
ILED_ALL
current accuracy
ILED=50 to 250mA, BJT β>50
Tj = -20 to +115°C
-1.5
+1.5
%
ICH_100
Channel to channel accuracy
ILED=100mA, Tj = 25°C
-0.6
+0.6
%
VIsetX
Reference Voltage at pins Iset
+1.22
V
Ratio
Ratio = ILED/Iset
IBX
Base output current limit
5.5
7.5
mA
-10
+10
mV
1
+1.18
+1.20
500
Short detection comparator
ACCshort
Over-Temperature protection accuracy
ca
Power supply regulation
Accuracy of Vbe comparison with VTH level
BJT beta threshold
Bth
45
48
52
Oscillator frequency
220
250
280
kHz
Maximum duty cycle
85
87
89
%
+1.23
+1.25
+1.27
V
fosc
ni
Boost controller oscillator
Boost controller PWM
ch
DMAX
Boost controller error amplifier
Reference Voltage at pin FB
AV
Voltage gain
BW
Bandwidth
IFB_in
Icomp_out
Te
VFB
80
dB
AV = 0dB
2
MHz
Voltage sense input current
pins FB
0.1
Compensation output current
pins COMP, Vcomp = 1V
10
0.2
µA
µA
Boost controller over current protection
VSENSE
Current sense threshold
pin SENSE
Revision 1.8
+600
+800
+1000
mV
6 - 20
AS3833
Datasheet - E l e c t r i c a l C h a r a c t e r i s t i c s
Table 3. Electrical Characteristics (Continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Rdriver
Driver resistance sink and source
pin GATE
4
6
8
Ω
Vdriver
GATE maximum output voltage
IGATE = 0mA
tRISE_driver
GATE voltage rise time
VGATE = 0 to 3V, CLOAD = 3nF
15
25
tFALL_driver
GATE voltage fall time
VGATE = 3 to 0V, CLOAD = 3nF
15
25
+1.28
+1.35
Boost controller driver
VDDM
Under voltage lockout threshold
IUVLO_Hyst
Under voltage lockout hysteresis
current
20
Digital pins
ns
50
ns
+1.42
V
µA
lv
VUVLO
50
al
id
Boost controller under voltage lockout
V
VIH
Logic high input threshold
VIL
Logic low input threshold
VOL
Logic low output level
RPU
Input resistance Pull-up inputs
300
kΩ
RPD
Input resistance Pull-down inputs
300
kΩ
V
+0.8
V
+0.3
V
am
lc s
on A
te G
nt
st
il
Thermal protection
+1.8
PIN xFAULT open drain. I = -2mA
TOFF
Thermal shutdown threshold
140
°C
Thyst
Thermal shutdown hysteresis
30
°C
Te
ch
ni
ca
1. Is is not recommended to set ILED < 50mA in order to minimize influences of offset voltages.
Revision 1.8
7 - 20
AS3833
Datasheet - Ty p i c a l O p e r a t i n g C h a r a c t e r i s t i c s
7 Typical Operating Characteristics
VOUT Boost = 60V; IOUT = 1A, TAMB = +25ºC (unless otherwise specified).
100
90
90
80
80
70
70
60
50
40
60
50
40
30
30
20
20
10
10
lv
Efficiency (%)
100
al
id
Figure 4. Boost - Efficiency vs. Output Current; VIN = 24V
am
lc s
on A
te G
nt
st
il
Efficiency (%)
Figure 3. Boost - Efficiency vs. Output Current; VIN = 13V
0
0
0,1
1
10
0,1
1
10
Output Current (A)
Output Current (A)
Figure 5. VOUT vs. IOUT ,VIN = 13V
100
90
Output Voltage (V)
80
70
60
50
40
30
20
0
0
0,5
ca
10
1
1,5
2
2,5
3
3,5
4
Te
ch
ni
Output Current (A)
Revision 1.8
8 - 20
AS3833
Datasheet - Ty p i c a l O p e r a t i n g C h a r a c t e r i s t i c s
Figure 6. VOUT vs. IOUT ,VIN = 24V
100
90
70
60
50
al
id
Output Voltage (V)
80
40
30
20
lv
10
0
0
0,5
1
1,5
2
2,5
3
3,5
4
am
lc s
on A
te G
nt
st
il
Output Current (A)
Figure 7. Boost - Efficiency vs. Input Voltage, IOUT = 1A
100
90
Efficiency (%)
80
70
60
50
40
30
20
10
0
10
12 14
16 18
20
22
24
26 28
30
Input Voltage (V)
ca
Figure 8. VOUT vs. Temp ,VIN = 24V, IOUT = 0.2A
100
70
60
ch
Output Voltage (V)
80
ni
90
50
40
Te
30
20
10
0
-30
-15
0
15
30
45
60
75
90
Temperature (°C)
Revision 1.8
9 - 20
AS3833
Datasheet - D e t a i l e d D e s c r i p t i o n
8 Detailed Description
8.1 Precision current output
am
lc s
on A
te G
nt
st
il
lv
al
id
Figure 9. Current output stage
The LED-current is derived from either Rset using the following equation
Vset
1.2V
I LED = RATIO × I set = RATIO × --------- = 500 × -----------Rset
R SET
(EQ 1)
Iset is protected against a short to ground. In the case of a ground short the current Iset is limited to 660uA and the LED-current to 330mA.
8.1.1
Phase shift
ca
Iset has a lower limit of 6uA with a 1uA hysteresis.This sets the lower limit of the LED-current to 3mA with Rset=200kΩ. If Rset is large than
200kΩ, the LED-current is set to 0mA.
ni
The outputs are controlled by the PWM-input and a built in phase shift generator. All outputs are phase shifted by 1/6 of the PWM-period. In
order to calculate the phase shift timing, two PWM-periods are needed. This means that after changing the PWM-frequency, the phase shift is
updated after the second period. The PWM-frequency must be in the range from 60Hz to 1kHz.
Te
ch
Figure 10. Phase shift
Revision 1.8
10 - 20
AS3833
Datasheet
8.2 VDDH_HC resistor
al
id
Figure 11. VDDH_HC resistor
am
lc s
on A
te G
nt
st
il
V in – 5V
R VDDH_HC = ------------------75mA
lv
Pin VDDH_HC is connected to an internal 3.3V voltage regulator. In order to keep the power dissipation of this regulator low, it is recommended
to connect pin VDDH_HC to the power supply Vin with a resistor. The resistor should guarantee sufficient voltage drop so that the remaining
voltage at pin VDDH_HC is approximately 5V. The power dissipation of the RVDDH_HC hat to be considered.
2
P R VDDH_HC = ( 75mA ) × R VDDH_HC
(EQ 2)
(EQ 3)
Typical values for RVVDH2 are:
VIN = 13V:
RVDDH_HC= 100Ω / 1W
VIN = 24V:
RVDDH_HC= 250Ω / 2W
8.3 Safety features
8.3.1
Undervoltage lockout
ca
In order to avoid startup of the Boost controller at low supply voltage an undervoltage lockout function is implemented. The boost controller only
turns on when the voltage at pin UVLO exceeds VUVLO. Once the boost controller is turned on a current source IUVLO_Hyst is activated which
increases the UVLO voltage and so shifts the turn off voltage level.
Te
ch
ni
Figure 12. Undervoltage lockout
www.austriamicrosystems.com/AS3833
Revision 1.8
11 - 20
AS3833
Datasheet - D e t a i l e d D e s c r i p t i o n
Following equations can be derived for adjusting the threshold voltages:
Undervoltage lockout LOW level:
8.3.2
RUVLO1
V DDH_UVH = V UVLO ×  1 + -------------------

RUVLO2
(EQ 4)
R UVLO1
VDDH_UVL = VUVLO ×  1 + ------------------- – I UVLO × R UVLO1
R UVLO2
(EQ 5)
al
id
Undervoltage lockout HIGH level:
Overtemperature Shutdown
If the device temperature reaches TOFF the boost controller and all current outputs are turned off. After the temperature has decreased by Thyst
all blocks are turned on again.
Short LED protection
lv
8.3.3
am
lc s
on A
te G
nt
st
il
Figure 13. Short Led protection
A built in short protection comparator is monitoring the junction temperature TJ of the external bipolar transistors by measuring the base-emitter
voltage VBE.
V BE = 1,2V – 0.002 × T J
Tj....junction temperature in K
(EQ 6)
Te
ch
ni
ca
When the measured VBE gets lower than the voltage applied at pin Vth an overtemperature an hence an short LED condition is detected.
Subsequently the fault output is activated (xFAULT = 0) and the corresponding output is deactivated.
Revision 1.8
12 - 20
AS3833
Datasheet - D e t a i l e d D e s c r i p t i o n
8.3.4
Open LED detection
am
lc s
on A
te G
nt
st
il
lv
al
id
Figure 14. Open Led detection
A broken LED-string is detected during PWM=1. If a LED-string is broken the power supply feedback will increment the IDAC to increase the
power supply output voltage. After the IDAC has reached its maximum value, a debounce counter is started. In order to run the debounce
counter, the corresponding PWM-signal has to be high for more than 150us. After the debounce counter has counted up for 32ms, the fault
output is activated (xFAULT = 0) and the corresponding output is disconnected from the power supply feedback loop.
8.4 Boost controller
Te
ch
ni
ca
Figure 15. Boost controller
Revision 1.8
13 - 20
AS3833
Datasheet - D e t a i l e d D e s c r i p t i o n
8.4.1
Setting the output voltage
lv
al
id
Figure 16. Vout setting
According to the requirements of the LED strings, the output voltage Vout is adjusted by the internal power supply feedback
Rfb1
V OUTmax = V fb  1 + ---------- + 255µA ⋅ R fb1

Rfb2
am
lc s
on A
te G
nt
st
il
between:
Rfb 1
V OUTmin = V fb  1 + ----------

Rfb 2
and
Once Vout_min and Vout_max is known the external resistors can be caluclated:
( V OUTmax – V OUTmin )
(EQ 7)
Rfb1 = ------------------------------------------------------255µA
V fb R fb1
Rfb2 = ---------------------------------------( VOUTmin – V fb )
(EQ 8)
Te
ch
ni
ca
Note: The overall resistance should be in the range of 100kΩ to 200kΩ to avoid any noise issues. Keep FB-line as short as possible.
Revision 1.8
14 - 20
AS3833
Datasheet - D e t a i l e d D e s c r i p t i o n
8.4.2
Continuous Conduction Mode (CCM)
For normal operation the converter should stay in continuous conduction mode, to ensure that the inductor value must be bigger than LCRIT.
al
id
Where:
VIN ... Input voltage at VDDH
VOUT ... Output voltage
VD ... Diode forward voltage at D1
fSW ... Switching frequency
R ... Load resistor, should be calculated with minimum current load R = VOUT / IOUT_min
Duty Cycle
am
lc s
on A
te G
nt
st
il
IOUT_min ... Minimum output current (e.g. for LED driver only one LED string is on)
8.4.3
(EQ 9)
lv
L CRIT
V IN
 1 – -------------------------- × V 2 IN × R

V OUT + VD
= --------------------------------------------------------------------2
2 × f SW × ( V OUT + VD )
Within CCM, the well known relation between input and output voltage is deriped in the following equation:
this means for the duty cycle:
8.4.4
Inductor Current
V OUT + VD
1
-------------------------- = ------------V IN
1–D
(EQ 10)
V IN
D = 1 – --------------------------V OUT + VD
(EQ 11)
The inductor current varies during a switching cycle. This variation can be expressed by the mean value of the inductor current and the delta rise/
fall current within each cycle (see Figure 17).
ch
ni
ca
Figure 17. Inductor Current
Te
Mean inductor current:
I OUT
I L = ------------1–D
(EQ 12)
D × V IN
∆I L = ------------------fS × L
(EQ 13)
Delta inductor current:
Revision 1.8
15 - 20
AS3833
Datasheet - D e t a i l e d D e s c r i p t i o n
Peak current:
∆I L IOUT
D × VIN
I pk = IL + -------- = ------------- + ----------------------2
1 – D 2 × fS × L
(EQ 14)
RMS inductor current:
2
2
1
I L +  ------ × ∆I L
 12

(EQ 15)
al
id
I RMS =
Note: The saturation current of the inductor should be about 20 to 30% larger than the peak current
8.4.5
Input Capacitor
8.4.6
Output Capacitor
am
lc s
on A
te G
nt
st
il
The input capacitor has to supply the delta inductor current and it should be selected according to:
lv
This peak current is flowing through MN1 during phase 1 and through D1 during phase 2 of each cycle. Therefore this peak current is important
for a proper diode , MOSFET and inductor selection.
∆I L
C IN > -----------------------------------4 × ∆VIN × f SW
(EQ 16)
∆VIN
ESR < ----------------2 × ∆I L
(EQ 17)
The output capacitor must be chosen according to the max allowable output ripple at high load.
I OUT – max × D
C OUT > -----------------------------------∆VOUT × f SW
8.4.7
ca
∆V OUT
ESR < ----------------------------------------------------I
V IN × D 
OUT
 ------------ + ------------------------- 1 – D 2 × L × f SW
(EQ 18)
(EQ 19)
Current Sense Resistor
ch
ni
VSENSE
R S – max = ----------------------------------I L + 0 , 5 × ∆I L
P RS = I
2
L – rms ×
(EQ 20)
RS × D
(EQ 21)
Note: Low inductance, specific designed current sensing resistors should be used, e.g. Stackpole Electronics CSR/CSRN series of sensing
resistors with less than 0.2nH (typ.).
Compensation Network
Te
8.4.8
A typical choice for values of the compensation network is C10 = 100pF, C11 = 10nF, R11 = 100KΩ. Use these values as initial choice and
evaluate the transient response of the system to verify the behavior at output load change.
Revision 1.8
16 - 20
AS3833
Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s
9 Package Drawings and Markings
lv
al
id
Figure 18. TQFP-32 Marking
YY
am
lc s
on A
te G
nt
st
il
Table 4. Packaging Code
last two digits of the current year
WW
G
ZZ
manufacturing week
plant identifier
free choice / traceability code
WW
R
ZZ
manufacturing week
plant identifier
free choice / traceability code
Table 5. Packaging Code
YY
ca
Figure 19. SOIC-28 Marking
Te
ch
ni
last two digits of the current year
Revision 1.8
17 - 20
AS3833
Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s
Te
ch
ni
ca
am
lc s
on A
te G
nt
st
il
lv
al
id
Figure 20. TQFP-32 Package
Revision 1.8
18 - 20
AS3833
Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s
Te
ch
ni
ca
am
lc s
on A
te G
nt
st
il
lv
al
id
Figure 21. SOIC-28 Package
Revision 1.8
19 - 20
AS3833
Datasheet - O r d e r i n g I n f o r m a t i o n
10 Ordering Information
The devices are available as the standard products shown in Table 6.
Table 6. Ordering Information
AS3833-ZTQT
AS3833-ZSOT
Description
Delivery Form
Package
AS3833
Tape & Reel
TQFP-32
AS3833
Tape & Reel
SOIC-28
Note: All products are RoHS compliant and austriamicrosystems green.
Buy our products or get free samples online at ICdirect: http://www.austriamicrosystems.com/ICdirect
Technical Support is available at http://www.austriamicrosystems.com/Technical-Support
Te
ch
ni
ca
am
lc s
on A
te G
nt
st
il
For further information and requests, please contact us mailto: [email protected]
or find your local distributor at http://www.austriamicrosystems.com/distributor
al
id
Marking
lv
Ordering Code
Revision 1.8
20 - 20