3.3V ECL 1:2 Differential Fanout Buffer

MC100LVEL11
3.3V ECL 1:2
Differential Fanout Buffer
Description
The MC100LVEL11 is a differential 1:2 fanout buffer. The device is
functionally similar to the E111 device but with higher performance
capabilities. Having within-device skews and output transition times
significantly improved over the E111, the LVEL11 is ideally suited for
those applications which require the ultimate in AC performance.
The differential inputs of the LVEL11 employ clamping circuitry to
maintain stability under open input conditions. If the inputs are left
open (pulled to VEE) the Q outputs will go LOW.
Features
•
•
•
•
•
•
•
•
•
www.onsemi.com
MARKING
DIAGRAMS*
8
8
1
KVL11
ALYW
G
SOIC−8
D SUFFIX
CASE 751
330 ps Propagation Delay
5 ps Skew Between Outputs
High Bandwidth Output Transitions
The 100 Series Contains Temperature Compensation
PECL Mode Operating Range: VCC = 3.0 V to 3.8 V
with VEE = 0 V
NECL Mode Operating Range: VCC = 0 V
with VEE = −3.0 V to −3.8 V
Internal Input Pulldown Resistors on D,
Pullup and Pulldown Resistors on D
Q Output will Default LOW with Inputs Open or at VEE
These Devices are Pb−Free and are RoHS Compliant
1
8
8
1
KV11
ALYWG
G
TSSOP−8
DT SUFFIX
CASE 948R
1
1
3ZMG
G
1
DFN8
MN SUFFIX
CASE 506AA
Q0
1
8
VCC
Q0
2
7
D
Q1
3
6
D
A
L
Y
W
M
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Date Code
= Pb−Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.
Q1
4
5
VEE
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 5 of this data sheet.
Figure 1. Logic Diagram and Pinout Assignment
© Semiconductor Components Industries, LLC, 2015
January, 2015 − Rev. 13
1
Publication Order Number:
MC100LVEL11/D
MC100LVEL11
Table 1. PIN DESCRIPTION
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Pin
Function
Q0, Q0; Q1, Q1
ECL Data Outputs
D, D
ECL Data Inputs
VCC
Positive Supply
VEE
Negative Supply
EP
(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative
supply (GND) or leave unconnected, floating open.
Table 2. ATTRIBUTES
Characteristics
Value
Internal Input Pulldown Resistor
75 kW
Internal Input Pullup Resistor
75 kW
ESD Protection
Human Body Model
Machine Model
Charge Device Model
> 4 KV
> 400 V
> 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)
SOIC−8
TSSOP−8
DFN8
Level 1
Level 3
Level 1
Flammability Rating
Oxygen Index: 28 to 34
UL 94 V−0 @ 0.125 in
Transistor Count
63
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
Table 3. MAXIMUM RATINGS
Rating
Units
VCC
Symbol
PECL Mode Power Supply
Parameter
VEE = 0 V
Condition 1
8 to 0
V
VEE
NECL Mode Power Supply
VCC = 0 V
−8 to 0
V
VI
PECL Mode Input Voltage
NECL Mode Input Voltage
VEE = 0 V
VCC = 0 V
6 to 0
−6 to 0
V
Iout
Output Current
Continuous
Surge
50
100
mA
mA
TA
Operating Temperature Range
−40 to +95
°C
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction−to−Ambient)
0 lpfm
500 lpfm
SOIC−8
SOIC−8
190
130
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
Standard Board
SOIC−8
41 to 44 ± 5%
°C/W
qJA
Thermal Resistance (Junction−to−Ambient)
0 lpfm
500 lpfm
TSSOP−8
TSSOP−8
185
140
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
Standard Board
TSSOP−8
41 to 44 ± 5%
°C/W
qJA
Thermal Resistance (Junction−to−Ambient)
0 lfpm
500 lfpm
DFN8
DFN8
129
84
°C/W
°C/W
Tsol
Wave Solder
<2 to 3 sec @ 260°C
265
°C
qJC
Thermal Resistance (Junction−to−Case)
35 to 40
°C/W
Pb−Free
(Note 2)
Condition 2
VI VCC
VI VEE
DFN8
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
2. JEDEC standard multilayer board − 2S2P (2 signal, 2 power)
www.onsemi.com
2
MC100LVEL11
Table 4. LVPECL DC CHARACTERISTICS VCC = 3.3 V; VEE = 0.0 V (Note 3)
−40°C
Symbol
Characteristic
Min
25°C
Typ
Max
24
28
Min
95°C
Typ
Max
24
28
Min
Typ
Max
Unit
25
30
mA
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 4)
2215
2295
2420
2275
2345
2420
2275
2345
2420
mV
VOL
Output LOW Voltage (Note 4)
1470
1605
1745
1490
1595
1680
1490
1595
1680
mV
VIH
Input HIGH Voltage (Single−Ended)
2135
2420
2135
2420
2135
2420
mV
VIL
Input LOW Voltage (Single−Ended)
1490
1825
1490
1825
1490
1825
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 8)
Vpp < 500 mV
Vpp y 500 mV
1.2
3.1
1.1
3.1
1.1
3.1
V
1.4
3.1
1.3
3.1
1.3
3.1
V
150
mA
IIH
Input HIGH Current
IIL
Input LOW Current
150
D
D
150
0.5
−600
0.5
−600
mA
mA
0.5
−600
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm.
3. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V.
4. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
5. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1.0 V.
Table 5. LVNECL DC CHARACTERISTICS VCC = 0.0 V; VEE = −3.3 V (Note 6)
−40°C
Symbol
Characteristic
Min
25°C
Typ
Max
24
28
Min
95°C
Typ
Max
24
28
Min
Typ
Max
Unit
25
30
mA
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 7)
−1085
−1005
−880
−1025
−955
−880
−1025
−955
−880
mV
VOL
Output LOW Voltage (Note 7)
−1830
−1695
−1555
−1810
−1705
−1620
−1810
−1705
−1620
mV
VIH
Input HIGH Voltage (Single−Ended)
−1165
−880
−1165
−880
−1165
−880
mV
VIL
Input LOW Voltage (Single−Ended)
−1810
−1475
−1810
−1475
−1810
−1475
mV
−2.1
−0.2
−2.2
−0.2
−2.2
−0.2
V
−1.9
−0.2
−2.0
−0.2
−2.0
−0.2
V
150
mA
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 8)
Vpp < 500 mV
Vpp y 500 mV
IIH
Input HIGH Current
IIL
Input LOW Current
150
D
D
0.5
−600
150
0.5
−600
0.5
−600
mA
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm.
6. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V.
7. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
8. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1.0 V.
www.onsemi.com
3
MC100LVEL11
Table 6. AC CHARACTERISTICS VCC = 3.3 V; VEE = 0.0 V or VCC = 0.0 V; VEE = −3.3 V (Note 9)
−40°C
Symbol
Characteristic
Min
Typ
25°C
Max
Min
fmax
Maximum Toggle Frequency
tPLH
tPHL
Propagation Delay to Output
tSKEW
Within-Device Skew (Note 10)
Device−to−Device (Note 11)
Duty Cycle Skew (Note 12)
tJITTER
Random Clock Jitter (RMS)
VPP
Input Swing (Note 13)
200
1000
200
tr
tf
Output Rise/Fall Times Q
(20% − 80%)
120
320
120
Typ
95°C
Max
Min
Typ
Max
1.0
235
385
5
10
255
20
150
20
GHz
330
405
5
10
20
150
20
285
5
10
435
ps
20
150
20
ps
0.6
220
Unit
ps
1000
200
1000
mV
320
120
320
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm.
9. VEE can vary ±0.3 V.
10. Within-device skew defined as identical transitions on similar paths through a device.
11. Device−to−device skew for identical transitions at identical VCC levels.
12. Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device.
13. VPP(min) is the minimum input swing for which AC parameters guaranteed. The device will function properly with input swings below 200 mV,
however, AC delays may move outside of the specified range. The device has a DC gain of ≈40.
800
VOUT(PP)(mV)
600
400
200
0
0
200
400
600
800
1000
1200
1400
f (MHz)
Figure 2. Output Swing versus Frequency
www.onsemi.com
4
1600
1800
2000
MC100LVEL11
ORDERING INFORMATION
Package
Shipping†
MC100LVEL11DG
SOIC−8
(Pb−Free)
98 Units / Rail
MC100LVEL11DR2G
SOIC−8
(Pb−Free)
2500 / Tape & Reel
MC100LVEL11DTG
TSSOP−8
(Pb−Free)
100 Units / Rail
MC100LVEL11DTR2G
TSSOP−8
(Pb−Free)
2500 / Tape & Reel
MC100LVEL11MNR4G
DFN8
(Pb−Free)
1000 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D
− ECL Clock Distribution Techniques
AN1406/D
− Designing with PECL (ECL at +5.0 V)
AN1503/D
− ECLinPSt I/O SPiCE Modeling Kit
AN1504/D
− Metastability and the ECLinPS Family
AN1568/D
− Interfacing Between LVDS and ECL
AN1672/D
− The ECL Translator Guide
AND8001/D
− Odd Number Counters Design
AND8002/D
− Marking and Date Codes
AND8020/D
− Termination of ECL Logic Devices
AND8066/D
− Interfacing with ECLinPS
AND8090/D
− AC Characteristics of ECL Devices
www.onsemi.com
5
MC100LVEL11
PACKAGE DIMENSIONS
SOIC−8 NB
CASE 751−07
ISSUE AK
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
−X−
A
8
5
S
B
0.25 (0.010)
M
Y
M
1
4
K
−Y−
G
C
N
DIM
A
B
C
D
G
H
J
K
M
N
S
X 45 _
SEATING
PLANE
−Z−
0.10 (0.004)
H
M
D
0.25 (0.010)
M
Z Y
S
X
J
S
SOLDERING FOOTPRINT*
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
www.onsemi.com
6
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8_
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
MC100LVEL11
PACKAGE DIMENSIONS
TSSOP−8
DT SUFFIX
CASE 948R−02
ISSUE A
8x
0.15 (0.006) T U
K REF
0.10 (0.004)
S
2X
L/2
8
1
PIN 1
IDENT
S
T U
S
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE -W-.
S
5
0.25 (0.010)
B
−U−
L
0.15 (0.006) T U
M
M
4
A
−V−
F
DETAIL E
C
0.10 (0.004)
−T− SEATING
PLANE
D
−W−
G
DETAIL E
www.onsemi.com
7
DIM
A
B
C
D
F
G
K
L
M
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
0.80
1.10
0.05
0.15
0.40
0.70
0.65 BSC
0.25
0.40
4.90 BSC
0_
6_
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
0.031
0.043
0.002
0.006
0.016
0.028
0.026 BSC
0.010
0.016
0.193 BSC
0_
6_
MC100LVEL11
PACKAGE DIMENSIONS
DFN8 2x2, 0.5P
CASE 506AA
ISSUE E
D
0.10 C
0.10 C
DETAIL A
E
OPTIONAL
CONSTRUCTIONS
TOP VIEW
A
DETAIL B
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
L1
ÉÉ
ÉÉ
EXPOSED Cu
0.10 C
2X
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994 .
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.20 MM FROM TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
L
L
L1
ÇÇ
ÇÇ
PIN ONE
REFERENCE
2X
A
B
MOLD CMPD
DETAIL B
OPTIONAL
CONSTRUCTION
0.08 C
(A3)
NOTE 4
A1
C
SIDE VIEW
SEATING
PLANE
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.20
0.30
2.00 BSC
1.10
1.30
2.00 BSC
0.70
0.90
0.50 BSC
0.30 REF
0.25
0.35
−−−
0.10
RECOMMENDED
SOLDERING FOOTPRINT*
DETAIL A
8X
D2
1
8X
1.30
L
PACKAGE
OUTLINE
4
E2
K
8
5
8X
e/2
e
0.50
0.90
b
2.30
1
0.10 C A B
0.05 C
8X
0.30
NOTE 3
BOTTOM VIEW
0.50
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ECLinPS Plus is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
8
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC100LVEL11/D