Typical Performance Characteristics

Typical Performance Characteristics
www.vishay.com
Vishay Sprague
COTS Tantalum Capacitors
ELECTRICAL PERFORMANCE CHARACTERISTICS
ITEM
PERFORMANCE CHARACTERISTICS
Category temperature range
-55 °C to +85 °C (to +125 °C with voltage derating)
Capacitance tolerance
± 20 %, ± 10 %, tested via bridge method, at 25 °C, 120 Hz
Dissipation factor
Limit per Standard Ratings table. Tested via bridge method, at 25 °C, 120 Hz
ESR
Limit per Standard Ratings table. Tested via bridge method, at 25 °C, 100 kHz
Leakage current
After application of rated voltage applied to capacitors for 5 min using a steady source of power with 1 k
resistor in series with the capacitor under test, leakage current at 25 °C is not more than 0.01 CV or
0.5 μA, whichever is greater. Note that the leakage current varies with temperature and applied voltage.
See graph below for the appropriate adjustment factor.
Capacitance change by
temperature
+15 % max. (at +125 °C)
+10 % max. (at +85 °C)
-10 % max. (at -55 °C)
Reverse voltage
Capacitors are capable of withstanding peak voltages in the reverse direction equal to:
10 % of the DC rating at +25 °C
5 % of the DC rating at +85 °C
1 % of the DC rating at +125 °C
Vishay does not recommend intentional or repetitive application of reverse voltage.
Ripple current
For maximum ripple current values (at 25 °C) refer to relevant datasheet. If capacitors are to be used at
temperatures above +25 °C, the permissible RMS ripple current (or voltage) shall be calculated using the
derating factors:
1.0 at +25 °C
0.9 at +85 °C
0.4 at +125 °C
Maximum operating and surge
voltages vs. temperature
+85 °C
+125 °C
RATED VOLTAGE
(V)
SURGE VOLTAGE
(V)
CATEGORY VOLTAGE
(V)
SURGE VOLTAGE
(V)
4.0
5.2
2.7
3.4
6.3
8.0
4.0
5.0
10
13
7.0
8.0
16
20
10
12
20
26
13
16
25
32
17
20
35
46
23
28
40
52
26
31
50
65
33
40
60
33
40
63
75
42
50
75
75
50
50
50
(1)
Notes
• All information presented in this document reflects typical performance characteristics
(1) Capacitance value 15 μF and higher
Revision: 26-Feb-15
Document Number: 40209
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Typical Performance Characteristics
www.vishay.com
Vishay Sprague
TYPICAL LEAKAGE CURRENT - TEMPERATURE FACTOR
100
Leakage Current Factor
+125 °C
10
+85 °C
+55 °C
+25 °C
1.0
0 °C
0.1
-55 °C
0.01
0.001
0
10
20
30
40
50
60
70
80
90
100
Percent of Rated Voltage
Notes
• At +25 °C, the leakage current shall not exceed the value listed in the Standard Ratings table.
• At +85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings table.
• At +125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings table.
ENVIRONMENTAL PERFORMANCE CHARACTERISTICS
ITEM
CONDITION
POST TEST PERFORMANCE
Surge voltage
MIL-PRF-55365
1000 successive test cycles at 85 °C of surge
voltage (as specified in the table above), in
series with a 33  resistor at the rate of
30 s ON, 30 s OFF
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
Life test at +85 °C
MIL-STD-202, method 108
1000 h application of rated voltage at 85 °C
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Shall not exceed 125 % of initial limit
Life test at +125 °C
MIL-STD-202, method 108
1000 h application 2/3 of rated voltage at 125 °C
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Shall not exceed 125 % of initial limit
Moisture resistance
MIL-STD-202, method 106 at rated voltage,
20 cycles
Capacitance change
Dissipation factor
Leakage current
Within ± 15 % of initial value
Shall not exceed 150 % of initial limit
Shall not exceed 200 % of initial limit
Stability at low and
high temperatures
MIL-PRF-55365
Delta cap limit at -55 °C, 85 °C is ± 10 % of initial value
Delta cap limit at 125 °C is ± 15 % of initial value
Delta cap at step 3 and final step 25 °C is ± 10 %
DCL at 85 °C: 10 x initial specified value
DCL at 125 °C: 12 x initial specified value
DCL at 25 °C: initial specified value at RV
Thermal shock
MIL-STD-202, method 107
At -55 °C / +125 °C, for 5 cycles,
30 min at each temperature
Capacitance change
Dissipation factor
Leakage current
Revision: 26-Feb-15
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
Document Number: 40209
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Typical Performance Characteristics
www.vishay.com
Vishay Sprague
MECHANICAL PERFORMANCE CHARACTERISTICS
ITEM
CONDITION
POST TEST PERFORMANCE
Terminal strength /
Shear force test
Apply a pressure load of 5 N for 10 s ± 1 s horizontally to the
center of capacitor side body
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Vibration
MIL-STD-202, method 204, condition D,
10 Hz to 2000 Hz, 20 g peak, 8 h, at rated voltage
Electrical measurements are not applicable, since the
same parts are used for shock (specified pulse) test.
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Shock
(specified pulse)
MIL-STD-202, method 213, condition I, 100 g peak
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
Resistance
to soldering heat
MIL-STD-202, method 210, condition J (leadbearing
capacitors) and K (lead (Pb)-free capacitors), one heat cycle
Capacitance change
Dissipation factor
Leakage current
Solderability
MIL-STD-202, method 208, ANSI/J-STD-002,
test B (leadbearing) and B1 (lead (Pb)-free).
Preconditioning per category C (category E - optional).
Does not apply to gold terminations.
Lead (Pb)-free and leadbearing capacitors are backward
and forward compatible
Solder coating of all capacitors shall meet specified
requirements.
Resistance to
solvents
MIL-STD-202, method 215
There shall be no mechanical or visual damage to
capacitors post-conditioning. Body marking shall
remain legible.
Flammability
Encapsulation materials meet UL 94 V-0 with an oxygen
index of 32 %
Revision: 26-Feb-15
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Document Number: 40209
3
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000