3030 STW7C2SA Rev4.5

Product Data Sheet
STW7C2SA – Mid-Power LED
Achieving the best system cost in Mid/High Power
Mid-Power LED – 3030 Series
STW7C2SA (Cool, Neutral)
MacAdam
3-Step
RoHS
Product Brief
Description
Features and Benefits
•
This White Colored surface-mount LED
comes in standard package dimension.
Package Size : 3.0x3.0x0.65mm
•
It has a substrate made up of a molded
plastic reflector sitting on top of a lead
frame.
•
•
•
•
•
•
•
The die is attached within the reflector
cavity and the cavity is encapsulated by
silicone.
•
Thermally Enhanced Package Design
Mid Power to High Power up to 1.4W
Max. Driving Current 200mA
Compact Package Size
High Color Quality with CRI Min. 70
RoHS compliant
Key Applications
•
•
•
•
The package design coupled with
careful selection of component
materials allow these products to
perform with high reliability.
Replacement lamps
Residential
Entertainment
Retail Display
Table 1. Product Selection Table
CCT
Part Number
Color
Min.
Typ.
Max.
Cool White
4700K
5600K
7000K
Neutral White
3700K
4500K
4700K
STW7C2SA
Rev4.5, Dec 1, 2015
1
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Table of Contents
Index
•
Product Brief
1
•
Table of Contents
2
•
Performance Characteristics
3
•
Characteristics Graph
5
•
Color Bin Structure
11
•
Mechanical Dimensions
18
•
Recommended Solder Pad
19
•
Reflow Soldering Characteristics
20
•
Emitter Tape & Reel Packaging
21
•
Product Nomenclature
23
•
Handling of Silicone Resin for LEDs
24
•
Precaution For Use
25
•
Company Information
28
Rev4.5, Dec 1, 2015
2
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Performance Characteristics
Table 2. Product Selection Guide, IF = 100mA, Tj = 25ºC, RH30%
CCT (K)
[1]
Part Number
RANK
Typ.
Luminous Intensity [2]
IV (cd)
Luminous Flux [3]
ФV (lm)
CRI
Ra
Min
Max
Min
Max
Min.
K25
25
27
78.7
85
70
K27
27
30
85
94.5
70
K25
25
27
78.7
85
70
K27
27
30
85
94.5
70
K26
26
28
81.9
88.2
70
K28
28
31.2
88.2
98.28
70
L31
31.2
34
98.28
107.1
70
K26
26
28
81.9
88.2
70
K28
28
31.2
88.2
98.28
70
L31
31.2
34
98.28
107.1
70
K26
26
28
81.9
88.2
70
K28
28
31.2
88.2
98.28
70
L31
31.2
34
98.28
107.1
70
6500
5600
5000
STW7C2SA
4500
4000
Notes :
(1) Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram.
(2) Seoul Semiconductor maintains a tolerance of 7% on Intensity and power measurements.
The luminous intensity IV was measured at the peak of the spatial pattern which may not be
aligned with the mechanical axis of the LED package.
(3) The lumen table is only for reference.
Rev4.5, Dec 1, 2015
3
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Performance Characteristics
Table 3. Characteristics, IF = 100mA, Tj = 25ºC, RH30%
Value
Parameter
Symbol
Unit
Min.
Typ.
Max.
Forward Current
IF
-
100
-
mA
Forward Voltage[1]
VF
5.6
-
6.4
V
100mA
-
29.0
-
cd
150mA
-
40.5
-
cd
Ra
70
-
-
2Θ1/2
-
120
-
Deg.
Thermal resistance (J to S) [3]
RθJ-S
-
10
-
℃/W
ESD Sensitivity(HBM)
-
Luminous Intensity (5000K)[1]
Iv
CRI[1]
Viewing Angle
[2]
Class 3A JESD22-A114-E
Table 4. Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
Forward Current
IF
200
mA
Power Dissipation
PD
1.44
W
Junction Temperature
Tj
125
ºC
Operating Temperature
Topr
-40~ + 85
ºC
Storage Temperature
Tstg
-40 ~ + 100
ºC
Notes :
(1) Tolerance : VF :±0.2V, IV :±7%, Ra :±2, x,y :±0.005
(2) 2Θ1/2 is the off-axis where the luminous intensity is 1/2 of the peak intensity
(3) Thermal resistance: RthJS (Junction to Solder)
(4) A zener diode is included to protect the product from ESD.
•
•
•
LED’s properties might be different from suggested values like above and below tables if
operation condition will be exceeded our parameter range. Care is to be taken that power
dissipation does not exceed the absolute maximum rating of the product.
All measurements were made under the standardized environment of Seoul Semiconductor.
Thermal resistance can be increased substantially depending on the heat sink design/operating
condition, and the maximum possible driving current will decrease accordingly.
Rev4.5, Dec 1, 2015
4
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Characteristics Graph
Fig 1. Color Spectrum, Tj = 25ºC, RH30%, IF=100mA
Relative Emission Intensity
1.0
0.5
0.0
300
400
500
600
700
800
Wavelength [nm]
Fig 2. Viewing Angle Distribution, IF=100mA
Relative Intensity (%)
100
80
60
40
20
0
-100
-75
-50
-25
0
25
50
75
100
Angle [Degree]
Rev4.5, Dec 1, 2015
5
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Characteristics Graph
Fig 3. Forward Voltage vs. Forward Current, Tj = 25ºC
0.20
IF[A]
0.15
0.10
0.05
0.00
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
VF[V]
Fig 4. Forward Current vs. Relative Luminous Flux, Tj = 25ºC
2.0
1.8
Relative Luminous Intensity
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
20
40
60
80
100
120
140
160
180
200
Forward Current IF [mA]
Rev4.5, Dec 1, 2015
6
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Characteristics Graph
Fig 5. Forward Current vs. CIE X, Y Shift, Tj = 25ºC
(4,700K~7,000K)
0.358
0.356
0.354
20mA
0.352
y
50mA
75mA
0.350
100mA
150mA
0.348
200mA
0.346
0.344
0.342
0.338
0.339
0.340
0.341
0.342
0.343
x
(3,700K~4,700K)
0.3920
0.3915
20mA
0.3910
50mA
y
0.3905
75mA
100mA
0.3900
150mA
0.3895
200mA
0.3890
0.3885
0.3880
0.4228
0.4230
0.4232
0.4234
0.4236
0.4238
0.4240
x
Rev4.5, Dec 1, 2015
7
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Characteristics Graph
Fig 6. Relative Light Output vs. Junction Temperature, IF=100mA
Relative Luminous Intensity
1.0
0.8
0.6
0.4
0.2
0.0
30
45
60
75
90
105
120
O
Junction temperature Tj( C)
Fig 7. Junction Temperature vs. Relative Forward Voltage, IF=100mA
Relative Forward Voltage
1.0
0.8
0.6
0.4
0.2
0.0
30
45
60
75
90
105
120
O
Junction temperature Tj( C)
Rev4.5, Dec 1, 2015
8
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Characteristics Graph
Fig 8. Chromaticity Coordinate vs. Junction Temperature, IF=100mA
(4,700K~7,000K)
0.355
0.350
25 ℃
y
0.345
70 ℃
0.340
100℃
125 ℃
0.335
0.330
0.325
0.320
0.325
0.330
0.335
0.340
0.345
x
(3,700K~4,700K)
0.390
25 ℃
0.388
55 ℃
0.386
85 ℃
y
0.384
100 ℃
0.382
125 ℃
0.380
0.378
0.376
0.410
0.412
0.414
0.416
0.418
0.420
0.422
0.424
x
Rev4.5, Dec 1, 2015
9
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Characteristics Graph
Fig 9. Maximum Forward Current vs. Ambient Temperature
250
Forward Current [mA]
200
150
100
50
0
0
20
40
60
80
100
O
Ambient Temperature Ta [ C]
Rev4.5, Dec 1, 2015
10
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Color Bin Structure
Table 5. Bin Code description, IF = 100mA
Color
Chromaticity
Coordinate
Luminous Intensity (cd)
Part Number
STW7C2SA
Bin Code
Min.
Max.
K25
25
K27
L30
Typical Forward Voltage (VF)
Bin Code
Min.
Max.
27
Z56
5.6
5.8
27
30
Z58
5.8
6.0
30
33
Z60
6.0
6.2
Z62
6.2
6.4
K26
26
28
K28
28
31.2
L31
31.2
34
Refer to page.12
Table 6 . Intensity rank distribution
CCT
4,700K~7,000K
3,700K~4,700K
Available ranks
CIE
Refer to
page.12
IV Rank
K25
K27
L30
K26
K28
L31
*Notes :
All measurements were made under the standardized environment of SSC.
In order to ensure availability, single color rank will not be orderable.
Rev4.5, Dec 1, 2015
11
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Color Bin Structure
CIE Chromaticity Diagram, Tj = 25℃, IF = 100mA
0.42
0.40
E
CIE coord.(Y)
0.38
D
0.36
C
B
0.34
A
0.32
0.30
MACADAM 3STEP Rank
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
CIE coord.(X)
• Energy Star binning applied to all 2600~7000K.
• Measurement Uncertainty of the Color Coordinates : ± 0.005
Rev4.5, Dec 1, 2015
12
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Color Bin Structure
<IF = 100mA, Tj = 25℃>
6000K
0.35
A41
6500K
0.34
A31
CIE Y
7000K
0.33
A21
A11
A32
A22
A12
A43
A33
A23
A13
0.32
A42
A44
A34
A24
A14
0.31
0.300
0.305
0.310
0.315
0.320
0.325
CIE X
A11
A21
A31
A41
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3028
0.3304
0.3072
0.3349
0.3115
0.3393
0.3160
0.3437
0.3038
0.3256
0.3080
0.3299
0.3123
0.3342
0.3166
0.3384
0.3080
0.3299
0.3123
0.3342
0.3166
0.3384
0.3209
0.3426
0.3349
0.3115
0.3393
0.3160
0.3437
0.3205
0.3072
A12
A22
A32
0.3481
A42
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3038
0.3256
0.3080
0.3299
0.3123
0.3342
0.3166
0.3384
0.3048
0.3209
0.3089
0.3249
0.3131
0.3290
0.3172
0.3331
0.3089
0.3249
0.3131
0.3290
0.3172
0.3331
0.3213
0.3371
0.3080
0.3299
0.3123
0.3342
0.3166
0.3384
0.3209
0.3426
A13
A23
A33
A43
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3048
0.3209
0.3089
0.3249
0.3131
0.3290
0.3172
0.3331
0.3058
0.3161
0.3098
0.3200
0.3138
0.3239
0.3178
0.3277
0.3098
0.3200
0.3138
0.3239
0.3178
0.3277
0.3217
0.3316
0.3089
0.3249
0.3131
0.3290
0.3172
0.3331
0.3213
0.3371
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3058
0.3161
0.3098
0.3200
0.3138
0.3239
0.3178
0.3277
0.3068
0.3113
0.3107
0.3150
0.3146
0.3187
0.3184
0.3224
0.3107
0.3150
0.3146
0.3187
0.3184
0.3224
0.3221
0.3261
0.3098
0.3200
0.3138
0.3239
0.3178
0.3277
0.3217
0.3316
A14
A24
Rev4.5, Dec 1, 2015
A34
13
A44
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Color Bin Structure
<IF = 100mA, Tj = 25℃>
5300K
0.36
5600K
B41
B31
0.35 6000K
B42
B21
CIE Y
B32
B11
0.34
B43
B22
B33
B12
B44
B23
B34
B13
B24
0.33
0.32
0.320
B14
0.325
0.330
0.335
0.340
CIE X
B11
B21
B31
B41
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3207
0.3462
0.3250
0.3501
0.3292
0.3539
0.3334
0.3578
0.3211
0.3407
0.3252
0.3444
0.3293
0.3481
0.3333
0.3518
0.3252
0.3444
0.3293
0.3481
0.3333
0.3518
0.3374
0.3554
0.3501
0.3292
0.3539
0.3334
0.3578
0.3376
0.3250
B12
B22
B32
0.3616
B42
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3211
0.3407
0.3252
0.3444
0.3293
0.3481
0.3333
0.3518
0.3215
0.3353
0.3254
0.3388
0.3293
0.3423
0.3332
0.3458
0.3254
0.3388
0.3293
0.3423
0.3332
0.3458
0.3371
0.3493
0.3252
0.3444
0.3293
0.3481
0.3333
0.3518
0.3374
0.3554
B13
B23
B33
B43
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3215
0.3353
0.3254
0.3388
0.3293
0.3423
0.3332
0.3458
0.3218
0.3298
0.3256
0.3331
0.3294
0.3364
0.3331
0.3398
0.3256
0.3331
0.3294
0.3364
0.3331
0.3398
0.3369
0.3431
0.3254
0.3388
0.3293
0.3423
0.3332
0.3458
0.3371
0.3493
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3218
0.3298
0.3256
0.3331
0.3294
0.3364
0.3331
0.3398
0.3222
0.3243
0.3258
0.3275
0.3294
0.3306
0.3330
0.3338
0.3258
0.3275
0.3294
0.3306
0.3330
0.3338
0.3366
0.3369
0.3256
0.3331
0.3294
0.3364
0.3331
0.3398
0.3369
0.3431
B14
B24
Rev4.5, Dec 1, 2015
B34
14
B44
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Color Bin Structure
<IF = 100mA, Tj = 25℃>
0.38
4700K
5000K
0.37
C41
C31
CIE Y
5300K
0.36
C42
C21
C11
C32
C22
C43
C12
C33
C23
0.35
C44
C13
C34
C24
0.34
0.335
C14
0.340
0.345
0.350
0.355
CIE X
C11
C21
C31
C41
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3376
0.3616
0.3420
0.3652
0.3463
0.3687
0.3507
0.3724
0.3374
0.3554
0.3415
0.3588
0.3457
0.3622
0.3500
0.3657
0.3415
0.3588
0.3457
0.3622
0.3500
0.3657
0.3542
0.3692
0.3652
0.3463
0.3687
0.3507
0.3724
0.3551
0.3420
C12
C22
C32
0.3760
C42
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3374
0.3554
0.3415
0.3588
0.3457
0.3622
0.3500
0.3657
0.3371
0.3493
0.3411
0.3525
0.3452
0.3558
0.3492
0.3591
0.3411
0.3525
0.3452
0.3558
0.3492
0.3591
0.3533
0.3624
0.3415
0.3588
0.3457
0.3622
0.3500
0.3657
0.3542
0.3692
C13
C23
C33
C43
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3371
0.3493
0.3411
0.3525
0.3452
0.3558
0.3492
0.3591
0.3369
0.3431
0.3407
0.3462
0.3446
0.3493
0.3485
0.3524
0.3407
0.3462
0.3446
0.3493
0.3485
0.3524
0.3523
0.3555
0.3411
0.3525
0.3452
0.3558
0.3492
0.3591
0.3533
0.3624
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3369
0.3431
0.3407
0.3462
0.3446
0.3493
0.3485
0.3524
0.3366
0.3369
0.3403
0.3399
0.3440
0.3428
0.3477
0.3458
0.3403
0.3399
0.3440
0.3428
0.3477
0.3458
0.3514
0.3487
0.3407
0.3462
0.3446
0.3493
0.3485
0.3524
0.3523
0.3555
C14
C24
Rev4.5, Dec 1, 2015
C34
15
C44
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Color Bin Structure
<IF = 100mA, Tj = 25℃>
4200K
0.39
4500K
0.38
4700K
CIE Y
D41
D31
D21
D42
D11
0.37
D32
D22
D12
D43
D33
D23
0.36
D13
D44
D34
D24
D14
0.35
0.34
0.350
0.355
0.360
0.365
0.370
0.375
CIE X
D11
D21
D31
D41
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3548
0.3736
0.3595
0.3770
0.3641
0.3804
0.3689
0.3839
0.3539
0.3668
0.3584
0.3701
0.3628
0.3733
0.3674
0.3767
0.3584
0.3701
0.3628
0.3733
0.3674
0.3767
0.3720
0.3800
0.3770
0.3641
0.3804
0.3689
0.3839
0.3736
0.3595
D12
D22
D32
0.3874
D42
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3539
0.3668
0.3584
0.3701
0.3628
0.3733
0.3674
0.3767
0.3530
0.3601
0.3573
0.3632
0.3616
0.3663
0.3659
0.3694
0.3573
0.3632
0.3616
0.3663
0.3659
0.3694
0.3703
0.3726
0.3584
0.3701
0.3628
0.3733
0.3674
0.3767
0.3720
0.3800
D13
D23
D33
D43
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3530
0.3601
0.3573
0.3632
0.3616
0.3663
0.3659
0.3694
0.3520
0.3533
0.3562
0.3562
0.3603
0.3592
0.3645
0.3622
0.3562
0.3562
0.3603
0.3592
0.3645
0.3622
0.3687
0.3652
0.3573
0.3632
0.3616
0.3663
0.3659
0.3694
0.3703
0.3726
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3520
0.3533
0.3562
0.3562
0.3603
0.3592
0.3645
0.3622
0.3511
0.3465
0.3551
0.3493
0.3590
0.3521
0.3630
0.3550
0.3551
0.3493
0.3590
0.3521
0.3630
0.3550
0.3670
0.3578
0.3562
0.3562
0.3603
0.3592
0.3645
0.3622
0.3687
0.3652
D14
D24
Rev4.5, Dec 1, 2015
D34
16
D44
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Color Bin Structure
<IF = 100mA, Tj = 25℃>
0.41
3700K
0.40
E41
4000K
E31
0.39
4200K
E42
E21
E32
CIE Y
E11
E22
0.38
E12
E43
E33
E23
E13
0.37
E44
E34
E24
E14
0.36
0.35
0.36
0.37
0.38
0.39
0.40
CIE X
E11
E21
E31
E41
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3736
0.3874
0.3804
0.3917
0.3871
0.3959
0.3939
0.4002
0.3720
0.3800
0.3784
0.3841
0.3849
0.3881
0.3914
0.3922
0.3784
0.3841
0.3849
0.3881
0.3914
0.3922
0.3979
0.3962
0.3917
0.3871
0.3959
0.3939
0.4002
0.4006
0.3804
E12
E22
E32
0.4044
E42
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3720
0.3800
0.3784
0.3841
0.3849
0.3881
0.3914
0.3922
0.3703
0.3726
0.3765
0.3765
0.3828
0.3803
0.3890
0.3842
0.3765
0.3765
0.3828
0.3803
0.3890
0.3842
0.3952
0.3880
0.3784
0.3841
0.3849
0.3881
0.3914
0.3922
0.3979
0.3962
E13
E23
E33
E43
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3703
0.3726
0.3765
0.3765
0.3828
0.3803
0.3890
0.3842
0.3687
0.3652
0.3746
0.3689
0.3806
0.3725
0.3865
0.3762
0.3746
0.3689
0.3806
0.3725
0.3865
0.3762
0.3925
0.3798
0.3765
0.3765
0.3828
0.3803
0.3890
0.3842
0.3952
0.3880
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3687
0.3652
0.3746
0.3689
0.3806
0.3725
0.3865
0.3762
0.3670
0.3578
0.3727
0.3613
0.3784
0.3647
0.3841
0.3682
0.3727
0.3613
0.3784
0.3647
0.3841
0.3682
0.3898
0.3716
0.3746
0.3689
0.3806
0.3725
0.3865
0.3762
0.3925
0.3798
E14
E24
Rev4.5, Dec 1, 2015
E34
17
E44
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Mechanical Dimensions
Bottom View
Top View
Cathode
Mark (-)
Cathode
Side View
Circuit
Cathode
Anode
1
2
Zener Diode
(1) All dimensions are in millimeters.
(2) Scale : none
(3) Undefined tolerance is ±0.2mm
Rev4.5, Dec 1, 2015
18
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Recommended Solder Pad
Notes :
(1) All dimensions are in millimeters.
(2) Scale : none
(3) This drawing without tolerances are for reference only
(4) Undefined tolerance is ±0.1mm
Rev4.5, Dec 1, 2015
19
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Reflow Soldering Characteristics
IPC/JEDEC J-STD-020
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
Average ramp-up rate (Tsmax to Tp)
3° C/second max.
3° C/second max.
Preheat
- Temperature Min (Tsmin)
- Temperature Max (Tsmax)
- Time (Tsmin to Tsmax) (ts)
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-180 seconds
Time maintained above:
- Temperature (TL)
- Time (tL)
183 °C
60-150 seconds
217 °C
60-150 seconds
Peak Temperature (Tp)
215℃
260℃
Time within 5°C of actual Peak
Temperature (tp)2
10-30 seconds
20-40 seconds
Ramp-down Rate
6 °C/second max.
6 °C/second max.
Time 25°C to Peak Temperature
6 minutes max.
8 minutes max.
Caution
(1) Reflow soldering is recommended not to be done more than two times. In the case of more than
24 hours passed soldering after first, LEDs will be damaged.
(2) Repairs should not be done after the LEDs have been soldered. When repair is unavoidable,
suitable tools must be used.
(3) Die slug is to be soldered.
(4) When soldering, do not put stress on the LEDs during heating.
(5) After soldering, do not warp the circuit board.
Rev4.5, Dec 1, 2015
20
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Emitter Tape & Reel Packaging
( Tolerance: ±0.2, Unit: mm )
(1) Quantity : Max 4,500pcs/Reel
(2) Cumulative Tolerance : Cumulative Tolerance/10 pitches to be ±0.2mm
(3) Adhesion Strength of Cover Tape
Adhesion strength to be 0.1-0.7N when the cover tape is turned off from the carrier tape
at the angle of 10˚ to the carrier tape.
(4) Package : P/N, Manufacturing data Code No. and Quantity to be indicated on a damp proof Package.
Rev4.5, Dec 1, 2015
21
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Emitter Tape & Reel Packaging
Reel
Aluminum Bag
Outer Box
Rev4.5, Dec 1, 2015
22
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Product Nomenclature
Table 7. Part Numbering System : X1X2X3X4X5X6X7X8
Part Number Code
Description
Part Number
Value
X1
Company
S
X2
Top View LED series
T
X3X4
Color Specification
W7
CRI 70
X5
Package series
C
C series
X6X7
Characteristic code
2S
X8
Revision
A
Tabl 8. Lot Numbering System :Y1Y2Y3Y4Y5Y6Y7Y8Y9Y10–Y11Y12Y13Y14Y15Y16Y17
Lot Number Code
Description
Y1Y2
Year
Y3
Month
Y4Y5
Day
Y6
Top View LED series
Y7Y8Y9Y10
Mass order
Y11Y12Y13Y14Y15Y16Y17
Internal Number
Rev4.5, Dec 1, 2015
Lot Number
23
Value
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Handling of Silicone Resin for LEDs
(1) During processing, mechanical stress on the surface should be minimized as much as possible.
Sharp objects of all types should not be used to pierce the sealing compound.
(2) In general, LEDs should only be handled from the side. By the way, this also applies to LEDs
without a silicone sealant, since the surface can also become scratched.
(3) When populating boards in SMT production, there are basically no restrictions regarding the form
of the pick and place nozzle, except that mechanical pressure on the surface of the resin must be
prevented. This is assured by choosing a pick and place nozzle which is larger than the LED’s
reflector area.
(4) Silicone differs from materials conventionally used for the manufacturing of LEDs. These
conditions must be considered during the handling of such devices. Compared to standard
encapsulants, silicone is generally softer, and the surface is more likely to attract dust.
As mentioned previously, the increased sensitivity to dust requires special care during processing.
In cases where a minimal level of dirt and dust particles cannot be guaranteed, a suitable cleaning
solution must be applied to the surface after the soldering of components.
(5) SSC suggests using isopropyl alcohol for cleaning. In case other solvents are used, it must be
assured that these solvents do not dissolve the package or resin.
Ultrasonic cleaning is not recommended. Ultrasonic cleaning may cause damage to the LED.
(6) Please do not mold this product into another resin (epoxy, urethane, etc) and do not handle this.
product with acid or sulfur material in sealed space.
Rev4.5, Dec 1, 2015
24
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Precaution for Use
(1) Storage
To avoid the moisture penetration, we recommend store in a dry box with a desiccant.
The recommended storage temperature range is 5℃ to 30℃ and a maximum humidity of
RH50%.
(2) Use Precaution after Opening the Packaging
Use proper SMT techniques when the LED is to be soldered dipped as separation of the lens may
affect the light output efficiency.
Pay attention to the following:
a. Recommend conditions after opening the package
- Sealing
- Temperature : 5 ~ 30℃ Humidity : less than RH60%
b. If the package has been opened more than 4 week(MSL_2a) or the color of the desiccant
changes, components should be dried for 10-24hr at 65±5℃
(3) Do not apply mechanical force or excess vibration during the cooling process to normal
temperature after soldering.
(4) Do not rapidly cool device after soldering.
(5) Components should not be mounted on warped (non coplanar) portion of PCB.
(6) Radioactive exposure is not considered for the products listed here in.
(7) Gallium arsenide is used in some of the products listed in this publication.
These products are dangerous if they are burned or shredded in the process of disposal.
It is also dangerous to drink the liquid or inhale the gas generated by such products when
chemically disposed of.
(8) This device should not be used in any type of fluid such as water, oil, organic solvent and etc.
When washing is required, IPA (Isopropyl Alcohol) should be used.
(9) When the LEDs are in operation the maximum current should be decided after measuring
the package temperature.
.
Rev4.5, Nov 26, 2015
25
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Precaution for Use
(10) The appearance and specifications of the product may be modified for improvement without
notice.
(11) Long time exposure of sunlight or occasional UV exposure will cause lens discoloration.
(12) VOCs (Volatile organic compounds) emitted from materials used in the construction of fixtures
can penetrate silicone encapsulants of LEDs and discolor when exposed to heat and photonic
energy. The result can be a significant loss of light output from the fixture. Knowledge of the
properties of the materials selected to be used in the construction of fixtures can help prevent
these issues.
(13) Attaching LEDs, do not use adhesives that outgas organic vapor.
(14) The driving circuit must be designed to allow forward voltage only when it is ON or OFF.
If the reverse voltage is applied to LED, migration can be generated resulting in LED damage.
(15) Similar to most Solid state devices;
LEDs are sensitive to Electro-Static Discharge (ESD) and Electrical Over Stress (EOS).
Below is a list of suggestions that Seoul Semiconductor purposes to minimize these effects.
a. ESD (Electro Static Discharge)
Electrostatic discharge (ESD) is the defined as the release of static electricity when two objects come
into contact. While most ESD events are considered harmless, it can be an expensive problem in
many industrial environments during production and storage. The damage from ESD to an LEDs may
cause the product to demonstrate unusual characteristics such as:
- Increase in reverse leakage current lowered turn-on voltage
- Abnormal emissions from the LED at low current
The following recommendations are suggested to help minimize the potential for an ESD event.
One or more recommended work area suggestions:
- Ionizing fan setup
- ESD table/shelf mat made of conductive materials
- ESD safe storage containers
One or more personnel suggestion options:
- Antistatic wrist-strap
- Antistatic material shoes
- Antistatic clothes
Environmental controls:
- Humidity control (ESD gets worse in a dry environment)
Rev4.5, Nov 26, 2015
26
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Precaution for Use
b. EOS (Electrical Over Stress)
Electrical Over-Stress (EOS) is defined as damage that may occur when an electronic device is
subjected to a current or voltage that is beyond the maximum specification limits of the device.
The effects from an EOS event can be noticed through product performance like:
- Changes to the performance of the LED package
(If the damage is around the bond pad area and since the package is completely encapsulated
the package may turn on but flicker show severe performance degradation.)
- Changes to the light output of the luminaire from component failure
- Components on the board not operating at determined drive power
Failure of performance from entire fixture due to changes in circuit voltage and current across total
circuit causing trickle down failures. It is impossible to predict the failure mode of every LED exposed
to electrical overstress as the failure modes have been investigated to vary, but there are some
common signs that will indicate an EOS event has occurred:
- Damaged may be noticed to the bond wires (appearing similar to a blown fuse)
- Damage to the bond pads located on the emission surface of the LED package
(shadowing can be noticed around the bond pads while viewing through a microscope)
- Anomalies noticed in the encapsulation and phosphor around the bond wires
- This damage usually appears due to the thermal stress produced during the EOS event
c. To help minimize the damage from an EOS event Seoul Semiconductor recommends utilizing:
- A surge protection circuit
- An appropriately rated over voltage protection device
- A current limiting device
Rev4.5, Nov 26, 2015
27
www.seoulsemicon.com
Product Data Sheet
STW7C2SA – Mid-Power LED
Company Information
Published by
Seoul Semiconductor © 2013 All Rights Reserved.
Company Information
Seoul Semiconductor (SeoulSemicon.com) manufacturers and packages a wide selection of light
emitting diodes (LEDs) for the automotive, general illumination/lighting, appliance, signage and back
lighting markets. The company is the world’s fifth largest LED supplier, holding more than 10,000
patents globally, while offering a wide range of LED technology and production capacity in areas such
as “nPola”, deep UV LEDs, "Acrich", the world’s first commercially produced AC LED, and "Acrich
MJT - Multi-Junction Technology" a proprietary family of high-voltage LEDs. The company’s broad
product portfolio includes a wide array of package and device choices such as Acrich, high-brightness
LEDs, mid-power LEDs, side-view LEDs, through-hole type LED lamps, custom displays, and sensors.
The company is vertically integrated from epitaxial growth and chip manufacture in it’s fully owned
subsidiary, Seoul Viosys, through packaged LEDs and LED modules in three Seoul Semiconductor
manufacturing facilities. Seoul Viosys also manufactures a wide range of unique deep-UV
wavelength devices.
Legal Disclaimer
Information in this document is provided in connection with Seoul Semiconductor products. With
respect to any examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Seoul Semiconductor hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party. The appearance and specifications of the product can be changed
to improve the quality and/or performance without notice.
Rev4.5, Dec 1, 2015
28
www.seoulsemicon.com