ATD - Absolute encoder - EtherCAT

Manual
Absolute Encoder with
for ATD Absolute Encoder Series
Document version 1.62
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
Baumer Thalheim GmbH & Co. KG
Hessenring 17
DE-37269 Eschwege
Phone + 49 (0)5651 9239-0
Fax + 49 (0)5651 9239-80
[email protected]
www.baumer.com
05.11
Subject to modification in technic and design.
Errors and omissions excepted
Document History
Version
1.0
1.1
1.2
1.3
1.4
1.5
1.55
1.60
1.61
1.62
EtherCAT
2011-10-04/rnik
Comments
Official Release
Single turn timing differences added
Customer driven changes on error behavior
Synchronous diagnosis principle
Max resolution values changed
Update to other product codes
KPA Studio Setup
Revised version
Max resolution values changed
No scaling function control
2/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Content
1
DOCUMENT DESCRIPTION ...........................................................................................................................7
2
DEVICE OPERATION BASICS .......................................................................................................................8
2.1
POWER SUPPLY ............................................................................................................................................9
2.2
OPERATING TEMPERATURE RANGE ..............................................................................................................9
2.3
ECAT COMMUNICATION MODES ................................................................................................................. 10
2.3.1
ECAT State Machine........................................................................................................................ 10
2.3.2
Sync Manager................................................................................................................................... 11
2.3.2.1
2.3.2.2
2.3.2.3
Buffered Mode (3-Buffer Mode) ...................................................................................................................12
Mailbox Mode (1-Buffer Mode) ....................................................................................................................12
Slave Configuration (EEPROM) ..................................................................................................................12
2.4
COE COMMUNICATION ............................................................................................................................... 12
2.4.1
Object Dictionary .............................................................................................................................. 12
2.4.1.1
2.4.1.2
2.4.1.3
2.4.1.4
2.4.1.5
2.4.1.6
2.4.1.7
2.4.1.8
2.4.1.9
2.4.1.10
2.4.1.11
2.4.1.12
2.4.1.13
2.4.1.14
2.4.1.15
2.4.1.16
2.4.1.17
2.4.1.18
2.4.1.19
3
Object 0x1018 Identity..................................................................................................................................13
Product Code................................................................................................................................................14
Object 0x1C00 Sync Manager Communication Type ................................................................................14
Object 0x1C12 Sync Manager RxPDO Assign...........................................................................................14
Object 0x1C13 Sync Manager TxPDO Assign ...........................................................................................14
Object 0x1C33 Sync Manager 3 Parameter ...............................................................................................14
Object 0x6000 Operating parameters .........................................................................................................15
Object 0x6001 Units per Revolution............................................................................................................16
Object 0x6002 Total measuring range in measuring units.........................................................................16
Object 0x6003 Preset Value ....................................................................................................................16
Object 0x6004 Position Value..................................................................................................................17
Object 0x6500 Operating Status .............................................................................................................17
Object 0x6502 Number of distinguishable revolutions (Multi turn) ........................................................17
Object 0x6503 Alarms..............................................................................................................................17
Object 0x6504 Supported Alarms............................................................................................................17
Object 0x6505 Warnings..........................................................................................................................17
Object 0x6506 Supported Warnings .......................................................................................................17
Object 0x6508 Operating Time................................................................................................................18
Object 0x6509 Offset Value.....................................................................................................................18
ENCODER INITIALIZATION.......................................................................................................................... 19
3.1
ENCODER PARAMETER CHANGES .............................................................................................................. 19
3.1.1
Encoder Resolution Change Examples (multi turn)....................................................................... 19
3.1.2
Scaling Function Control Usage...................................................................................................... 19
3.1.3
Device Description File (xml Format).............................................................................................. 19
3.2
ERROR HANDLING ....................................................................................................................................... 20
3.2.1
Encoder specific errors .................................................................................................................... 20
3.2.1.1
3.2.1.2
3.2.1.3
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2.2.4
3.2.2.5
4
Device Watch Dog........................................................................................................................................20
Position Error ................................................................................................................................................20
Warnings .......................................................................................................................................................21
EtherCAT Specific Errors................................................................................................................. 21
Sync Manager Watch Dog...........................................................................................................................21
EtherCAT State Machine Synchronization Errors ......................................................................................22
AL Status Errors ...........................................................................................................................................22
Error diagnostics (RED LED).......................................................................................................................23
Working Counter...........................................................................................................................................23
ENCODER FAMILY OVERVIEW................................................................................................................... 24
4.1
DEVICE IDENTIFICATION FIELDS .................................................................................................................. 24
5
SYNC TO SM EVENT TIMING....................................................................................................................... 26
6
DC TIMING ...................................................................................................................................................... 28
6.1
6.2
6.3
CONSECUTIVE SAMPLE POINT JITTER .......................................................................................................... 28
SHIFT TIME ................................................................................................................................................. 28
CALC AND COPY TIME ................................................................................................................................ 28
EtherCAT
2011-10-04/rnik
3/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
7
SYSTEM SET UP WITH THE TWINCAT SOFTWARE ............................................................................... 31
7.1
7.2
8
SYSTEM SET UP WITH CAT STUDIO.NET SOFTWARE.......................................................................... 38
8.1
8.2
9
FREE RUN/SYNC0 INIT ............................................................................................................................... 31
DISTRIBUTED CLOCKS MODE INIT ............................................................................................................... 33
FRAME SYNCHRONOUS MODE .................................................................................................................... 38
DISTRIBUTED CLOCK MODE ....................................................................................................................... 41
ETHERCAT CONFORMANCE TEST ........................................................................................................... 42
EtherCAT
2011-10-04/rnik
4/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Tables
TABLE 1 ECAT CONNECTOR PIN OUT DESCRIPTION .....................................................................................................8
TABLE 2 POWER SUPPLY CONNECTOR PINNING ...........................................................................................................8
TABLE 3 OPERATING/STORAGE TEMPERATURE RANGE ............................................................................................. 10
TABLE 4 RUN STATE STATUS .................................................................................................................................... 11
TABLE 5 SYNC MANAGER CONFIGURATION ................................................................................................................ 12
TABLE 6 EEPROM SIZE ON SII................................................................................................................................. 12
TABLE 7 NOT SUPPORTED COE OBJECT DICTIONARY ENTRIES. ................................................................................ 12
TABLE 8 OBJECT DICTIONARY ................................................................................................................................... 13
TABLE 9 IDENTITY ...................................................................................................................................................... 14
TABLE 10 PRODUCT CODE CODIFICATION .................................................................................................................. 14
TABLE 11 SYNC MANAGER COMMUNICATION TYPE ................................................................................................... 14
TABLE 12 SYNC MANAGER RXPDO ASSIGN ............................................................................................................. 14
TABLE 13 SYNC MANAGER TXPDO ASSIGN .............................................................................................................. 14
TABLE 14 SYNC MANAGER 3 PARAMETER LIST ......................................................................................................... 15
TABLE 15 OPERATING PARAMETERS .......................................................................................................................... 15
TABLE 16 PRODUCT SPECIFIC MAXIMA UNITS PER REVOLUTION VALUE ..................................................................... 16
TABLE 17 POSITION VALUE DATA ALIGNMENT EXAMPLE (15/16 BIT) .......................................................................... 17
TABLE 18 SUPPORTED ALARMS ................................................................................................................................. 17
TABLE 19 SUPPORTED W ARNINGS ............................................................................................................................ 17
TABLE 20 MANUFACTURER SPECIFIC WARNINGS ....................................................................................................... 18
TABLE 21 ENCODER HARDWARE EMERGENCY ........................................................................................................... 21
TABLE 22 HARDWARE EMERGENCY CODE DESCRIPTION ............................................................................................ 21
TABLE 23 SYNC MANAGER W ATCHDOG INIT .............................................................................................................. 22
TABLE 24 CODIFICATION OF SM SYNCHRONIZATION ERRORS.................................................................................... 22
TABLE 25 SUPPORTED AL STATUS CODES ................................................................................................................ 22
TABLE 26 ERROR STATE STATUS .............................................................................................................................. 23
TABLE 27 ATD4 ENCODER FAMILY OVERVIEW ........................................................................................................... 24
TABLE 28 ATD2 ENCODER FAMILY OVERVIEW ........................................................................................................... 24
TABLE 29 FREE RUN TIMING SPECIFICATION FOR ST AND MT DEVICES ..................................................................... 25
TABLE 30 SYNC TO SM EVENT TIMING SPECIFICATION ............................................................................................... 27
TABLE 31 CALC AND COPY TIME ............................................................................................................................... 28
TABLE 32 DC CYCLE TIME SPECIFICATION ................................................................................................................. 29
Pictures
PICTURE 1 LINE BUS TOPOLOGY EXAMPLE ...................................................................................................................8
PICTURE 2 I/O CONNECTORS .......................................................................................................................................8
PICTURE 3 ENCODER SW LAYER DIAGRAM ..................................................................................................................9
PICTURE 4 TYPICAL ELECTRICAL POWER DISSIPATION AS FUNCTION OF INPUT VOLTAGE ..............................................9
PICTURE 5 LED ARRANGEMENT (ATD4 EXEMPLARY) ................................................................................................ 11
PICTURE 6 ENCODER SPECIFIC ERROR HANDLING ..................................................................................................... 20
PICTURE 7 ENCODER SPECIFIC ERROR CLASSIFICATION ............................................................................................ 20
PICTURE 8 ATD FAMILIES COMPARISON .................................................................................................................... 24
PICTURE 9 NON SYNC (FREE RUN) TIMING DIAGRAM FOR A MULTI TURN ENCODER .................................................... 25
PICTURE 10 SYNC TO SM EVENT SAMPLING DIAGRAM ............................................................................................... 26
PICTURE 11 SAMPLE JITTER FOR A SYNC TO SM EVENT OPERATING MULTI TURN ENCODER. ..................................... 26
PICTURE 12 TIMING DIAGRAM FOR DC OR SYNC COMMUNICATION TYPE .................................................................. 29
PICTURE 13 SAMPLE POINT (N) TO CONSECUTIVE SAMPLE (N+1) POINT JITTER ( CH1: SYNC, CH2: SAMPLE) FOR A
MULTI TURN DEVICE ............................................................................................................................................ 30
PICTURE 14 ETHERCAT CONFORMANCE TEST (BETA RELEASE) RESULT. ................................................................ 42
EtherCAT
2011-10-04/rnik
5/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Abbreviations
Abbreviation
ECAT
DC
PREOP
SAFEOP
OP
TBD
SDO
PDO
DPRAM
RAM
MT
ST
SII
Description
EtherCAT
Distributed Clock
Pre-Operational
Safe Operational
Operational
To be defined
Service Data Object
Process Data Object
Dual Port RAM
Random Access Memory
Multi turn encoder device
Single turn encoder device
Slave Information Interface
Literature
Ref
LIT[00]
LIT[01]
LIT[02]
LIT[03]
LIT[04]
LIT[05]
LIT[06]
LIT[07]
EtherCAT
2011-10-04/rnik
Literature
Data sheet ATD 4B A 4 Y11 absolute encoder with hollow shaft EtherCAT
61158-6-12/FDIS
EtherCAT Guidelines and Protocol Enhancements V01.1
CiA Draft Standard 406 Version: 3.2 Device profile for encoders
EtherCAT Indicator Specification V0.91
Documentation to EtherCAT - Distributed Clocks Version: 1.0 Date: 2008-02-11
CiA Draft Standard 301 Application Layer and Communication Profile
Data sheet ATD 2B A 4 Y26, ATD 2B B14 Y22 absolute encoder with EtherCAT
6/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
1
Document Description
This document describes how absolute encoders ATD*B***Y*** are operated in an ECAT environment. For
more device specific information about encoder physics, datasheet and ordering information please refer to
LIT[00], LIT[07] or direct to [email protected]
Software and Hardware requirements on the host side are not part of this document. Device handling and
mounting instructions for save operation are not described in this document, for more information please
refer to the Baumer homepage. All in this document provided information is related to a specific software
revision number and may change without customer notification. Please check the Software Revision data on
Table 4 Object Dictionary.
EtherCAT
2011-10-04/rnik
7/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
2
Device Operation Basics
The encoder device may be operated with a cable length of maximum 100 m between two bus devices (assumption cable CAT5e or better). Different bus topologies are possible: Line, Tree or Star configurations may
be implemented. A maximum of 65535 devices may be connected to the bus.
Picture 1 Line bus topology example
ECAT devices don’t need any hardware configuration prior connection to the bus e.g. device address.
Input and output connectors are not interchangeable, input connector should be connected towards the
ECAT master:
OUT
POWER
IN
Picture 2 I/O connectors
For the devices network connection a M12 4 poles D coded connector is used; connection schemata for the
two network ports is:
Signal name
TxD+
RxD+
TxDM12 Connector pin
1
2
3
Table 1 ECAT connector pin out description
RxD4
Power supply connector is M12 4 poles connector:
Signal name
Vdc
n.c.
GND
M12 Connector pin
1
2
3
Table 2 Power supply connector pinning
n.c.
4
The encoder supports the CANopen over EtherCAT (CoE) data transfer protocol, the Service Data Objects
are transferred via Mailbox services.
EtherCAT
2011-10-04/rnik
8/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
The ECAT controller state machine has four possible states: INIT, PREOP, SAFEOP and OP mode. Those
states and the transition between states are managed via AL Control/Status register.
Picture 3 Encoder SW layer diagram
2.1
Power supply
Power consumption depends on the input voltage; the following diagram shows this dependency for MT devices:
P(Uin)@20°C, DC Mode
1,7
1,6
P[w]
1,5
1,4
1,3
1,2
10
12
14
16
18
20
22
24
26
28
30
Uin[V]
Picture 4 Typical electrical power dissipation as function of input voltage
Typical current consumption values are 129 mA @10V and 51 mA @ 30V.
2.2
Operating Temperature Range
Device operating temperature range is limited by the chip temperature of the data sampling block. Continuous exceeding of the upper temperature limit may lead to an over temperature warning message. Ignoring
the over or under temperature warning may lead to consecutive fault e.g. position error.
Short time violations of operating temperature limits may not lead to a device overheating and thus are not
detected by the system.
The mechanical setup (hollow shaft, bearing, IP protection level, etc) of the encoder determines the temperature operation limits.
EtherCAT
2011-10-04/rnik
9/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
min temperature
max temperature
-20°C
85°C1
Table 3 Operating/Storage Temperature Range
2.3
ECAT Communication modes
The encoder supports three communication modes:
Asynchronous (Free run)
Synchronous to SM Read event
DC Sync
Communication mode heavily impacts the encoder real time capability, system timing behavior and the system resource workload of the Masters. For systems with high real time requirements such as for closed loop
applications the DC sync mode may be used. For position information systems with low real time requirements Free Run or Sync mode may be used instead.
Communication modes management takes place via XML file. The user may check the actual operating
mode by reading out the 0x1C33:01 object dictionary entry, this entry reflects the ECAT operating mode
(Please refer to Table 14 Sync Manager 3 Parameter List).
2.3.1 ECAT State Machine
The ECAT slave state machine reflects the system communication and operation state via the AL Control/Status registers, there are four possible supported states:
INIT state, is the default device state after power up AND OR without communication link.
In the PREOP State the Mailbox (SDO) communication on the Application Layer is enabled and
Process Data communication is disabled.
In the SAFEOP Mode the Master may configure encoder parameters using the Mailbox service data
transfer mechanism. The Process Data communication is enabled. DC timing characteristic e.g. jitter
does not fully reach the values as specified for OP mode.
In the OP Mode the encoder behaves as in SAFEOP with restrictions regarding encoder parameter
changes. DC timing characteristic are fully reached.
The encoder State Machine operating status is signalized via the RUN State LED and via AL Status Register.
LED arrangement is showed by the next picture, this arrangement is common for the whole EtherCAT encoder family (please refer to Chapter 4 Encoder Family Overview):
1
Operation on max temperature may degrade the max RPM, please refer to LIT[01], LIT[07]
EtherCAT
2011-10-04/rnik
10/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Link/Activity
OUT
(gelb)
ERROR
(rot)
RUN
(grün)
Link/Activity
IN
(gelb)
Picture 5 LED arrangement (ATD4 exemplary)
The RUN State LED behaves according to LIT[04] for devices with Input data only:
RUN STATE
State description
OFF
INIT State
Blinking
PREOP State
Single Flash
SAFE Operational State
ON
OPERATIONAL State
Table 4 Run State Status
The AL Status register contains four Information Blocks:
AL State: contains the AL state of the device (INIT, PREOP, SAFEOP, OP)
Error Indication: gives the information if an error is detected
State Info: application specific information set by the slave (not supported by this encoder)
AL status code: this parameter indicates the actual state of slave device, the encoder supports partially error codes acc. LIT[01], please refer to Chapter 3.2.2.3.
2.3.2
Sync Manager
Sync Manager is responsible for the data transfer synchronization between ESC and Master. Data transfer
between master and ESC is done via DPRAM. The encoder supports two kind of Sync Manager buffer
modes:
3-Buffer Mode
1-Buffer Mode
The encoder manages the initialization of the Sync Manager operating Modes via XML file ob by the data
supplied by the encoders SII himself2:
Configuration Name
ATD4 asynchronous
ATD4 synchronous
ATD2 asynchronous
2
Product / Revision
Number
0x0001 0001
0x0001 0002
0x0002 0001
Operating Mode
3-Buffer Mode
1-Buffer Mode
3-Buffer Mode
For Encoders with a 1024 Bytes EEPROM.
EtherCAT
2011-10-04/rnik
11/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
ATD2 synchronous
0x0002 0002
Table 5 Sync Manager configuration
1-Buffer Mode
2.3.2.1 Buffered Mode (3-Buffer Mode)
In this mode both sides, ECAT master and ESC are able to access the buffer at the same time. The consumer (master) gets always the latest consistent dataset from the producer (slave). In this mode consumer
and producer may access the buffer all the time without timing restrictions. This mode is used for the Free
Run mode because this is an unsynchronized mode.
2.3.2.2 Mailbox Mode (1-Buffer Mode)
In this mode the producer first writes to the buffer and after this is completely done the consumer may read
out data. During the time the producer writes the buffer the consumer is not able to read. This mode is used
for the DC and Sync to SM event modes.
2.3.2.3 Slave Configuration (EEPROM)
Slave communication configuration (Sync Manager Configuration, Addresses, etc) may be determined
through XML file or from the encoders EEPROM. For encoders with 128 bytes EEPROM the XML file is
needed for configuration, else the PREOP state will not be passed.
The user may diagnose if a small or large EEPROM is used by checking the Object 0x1009 (Hardware Version):
Device Name
ATD4B***Y***
Hardware Version
< V02.00
> V02.00
ATD2B***Y***
< V02.00
> V02.00
Table 6 EEPROM Size on SII
2.4
SII EEPROM
128 Bytes
512 Bytes
128 Bytes
512 Bytes
CoE Communication
The object dictionary is based on the CiA Draft Standards. Some mandatory objects for Class 2 Encoders
(according LIT[03]) are not supported directly. But those object entries are reflected in other dictionary entries. Back-up feature is automatically implemented for object 0x6000, 0x6001, 0x6002 and 0x6009. This
means changes made to those objects are automatically saved non volatile into devices EEPROM.
2.4.1
Object Dictionary
Even though the following entries are listed as mandatory objects, they are not supported by the encoder:
Object Description
Reason
0x6005 Linear encoder measuring step setNot applicable for single sensor device
tings
0x6010 Preset value for multi-sensor devices
Not applicable for single sensor device
0x6020 Position value for multi-sensor devices Not applicable for single sensor device
0x6507 Profile and software version
Not supported, because same data as Object
0x100A
0x650A Module identification
Not supported
0x650B Serial number
Not supported, because same data as Object
0x1018:04
Table 7 Not supported CoE Object Dictionary entries.
EtherCAT
2011-10-04/rnik
12/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Index
SubIndex
1000
Name
Type
Deafult Value
Device Type
U32 / R
1008
Device Name
U32 / R
1009
100A
1018 : 00
01
02
Hardware Version
Software Version
Identity
Vendor Id
Product Code
U32 / R
U32 / R
U8 / R
U32 / R
U32 / R
03
04
1A00 : 00
01
1C00 : 00
01
02
03
04
1C12
1C13 : 00
01
1C33 : 00
01
02
03
04
05
06
6000
6001
6002
6003
6004
6500
6501
6502
Revision Number
Serial Number
Transmit PDO Mapping
Sub Index 002
Sync Manager Communication Type
Sub Index 001
Sub Index 002
Sub Index 003
Sub Index 004
Sync Manager RxPDO Assign
Sync Manager TxPDO Assign
Sub Index 001
Sync Manager 3 Parameter
Synchronization Type
Cycle Time
Shift Time
Synchronization Types supported
Minimum Cycle Time
Cal and Copy Time
Operating parameters
Measuring units per revolution
Total measuring range in measuring units
Preset value
Position value
Operating status
Single turn resolution
Number of distinguishable revolutions
U32 / R
U32 / R
U8 / R
U32 / R
U8 / R
U8 / R
U8 / R
U8 / R
U8 / R
U8 / RW
U8 / RW
U16 / RW
U8 / R
U16 / RW
U32 / RW
U32 / R
U16 / R
U32 / R
U32 / R
U16 / RW
U32 / RW
U32 / RW
U32 / RW
U32 / R
U16 / R
U32 / R
U16 / R
0x0002 0196 : MT
0x0001 0196 : ST
ATD*B***Y*****/**ECM12 : MT
ATD*B***Y*****ECM12 : ST
V**.**
*.**
0x04
0x0000 0204
0x**** 0001 : MT
0x**** 0002 : ST
0x0000 ****
0x**** ****
0x01
0x6004:00, 32
0x04
0x01
0x02
0x03
0x04
0x00
0x01
0x1A00
0x05
0x0000 0000
0x0000 0000
0x0000 1004
0x0007
0x0000 C350
0x0000 6E8C
0x0004
0x0000 8000
0x**** ****
0x0000 0000
0x**** ****
0x0004
0x0000 8000
0x**** : MT
0x0000 : ST
0x0000
0x0001
0x0000
0xD010
0x0000 0000
0x0000 0000
6503
Errors
6504
Supported Errors
6505
Warnings
6506
Supported warnings
6508
Operating Time
6509
Offset Value
Table 8 Object Dictionary
U16 / R
U16 / R
U16 / R
U16 / R
U32 / R
U32 / R
2.4.1.1 Object 0x1018 Identity
This object data shows the encoder identity:
EtherCAT
2011-10-04/rnik
13/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Sub
Description
Index
01
Vendor Id for Baumer Thalheim GmbH & Co KG
02
Product Cod for ATD*B***Y*****/**ECM12
03
Revision Number of Device Modules (B,S)
04
Serial Number
Table 9 Identity
Value
0x0000 0204
0x**** ****
0x0000 ****
0x**** ****
2.4.1.2 Product Code
Product Code
Encoder Type
0x0001 0001
ATD4B***Y***15/16ECM12
0x0001 0002
ATD4B***Y***17ECM12
0x0002 0001
ATD2B***Y***14/16ECM12
0x0002 0002
ATD2B***Y***17ECM12
Table 10 Product Code codification
2.4.1.3 Object 0x1C00 Sync Manager Communication Type
The 0x1C00 object data indicates the sync manager communication Type (acc. to LIT[01])
Sub
Description
Index
00
Number of used Sync Manager channels
01
Communication Type Sync Manager
02
Communication Type Sync Manager
03
Communication Type Sync Manager
04
Communication Type Sync Manager
Table 11 Sync Manager Communication Type
Value
0x04
0x00 (mailbox receive)
0x01 (mailbox send)
0x02 (PDO output)
0x03 (PDO input)
2.4.1.4 Object 0x1C12 Sync Manager RxPDO Assign
The 0x1C12 object data shows the sync manager 2 (Rx PDO output) communication Type (acc to LIT[01])
Sub
Description
Index
00
Number of assigned Rx PDO
Table 12 Sync Manager RxPDO Assign
Value
0x00 (no output PDO)
2.4.1.5 Object 0x1C13 Sync Manager TxPDO Assign
The 0x1C13 object data shows the sync manager 3 (Tx PDO Input) communication Type (acc. to LIT[02])
Sub
Description
Index
00
Number of assigned TxPDO
01
PDO Mapping object index of assigned TxPDO
Table 13 Sync Manager TxPDO Assign
Value
0x01 (one input PDO)
0x1A00
2.4.1.6 Object 0x1C33 Sync Manager 3 Parameter
The 0x1C313 object data shows the sync manager 3 parameters (acc. to LIT[02]).
EtherCAT
2011-10-04/rnik
14/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Encoders devices does not support dynamic object dictionary. Some of the values under this object are dependent of the encoder operation mode (Sync or DC) and also dependent of the resolution. This means timing data is only true for:
1. Scaling Function Control disabled SFC=0
2. Distributed Clock mode operation
Sub
Index
01
02
03
04
05
06
Description
Value
Synchronization Type:
0: Free Run (not synchronized)
1: Sync – synchronized with SM3 Event
2: DC Sync0 – synchronized with Sync0 Event
Cycle Time :
Free Run (Synchronization Type = 0) time between two local timer events
in ns.
Sync with SM2 (Synchronization Type = 1) Minimum time between two
SM2 events in ns.
DC Sync0 (Synchronization Type = 2) Sync0 Cycle Time (Register 0x9A00x9A3) in ns.
Shift Time:
Time between related event and the associated action (inputs latched from
hardware) in ns.
Synchronization Types supported:
Bit 0: Free Run supported
Bit 1: Sync supported
Bit 2: DC Sync0 supported
Bit 5:4 No input shift supported
Minimum cycle time supported of the slave (maximum duration time of the
local cycle) in ns.
Calc and Copy Time
0x00003
0x0000 00004
TBD
0x0007
0x**** ****5
0x**** ****
Table 14 Sync Manager 3 Parameter List
2.4.1.7 Object 0x6000 Operating parameters
This object indicates the function for code sequence control.
Code sequence: The code sequence defines, whether increasing or decreasing position values are output, in
case the encoder shaft rotates clockwise or counter clockwise as seen from the point of view of the shaft.
15 14
13
12
11
10
Table 15 Operating parameters
cs =
Code Sequence
0 : CW
1 : CCW
sfc =
Scaling Function Control
0 : disabled
1 : enabled
9
-
8
-
7
-
6
-
5
-
4
-
3
-
2
1
1
-
0
cs
3
The value 0x0000 is the default value (Free Run mode)
Cycle Time data is only supported for DC mode.
5
Please check Chapter 6DC Timing.
4
EtherCAT
2011-10-04/rnik
15/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
This object data will be stored non-volatile after any change. This register may only be changed in case of
ECAT state PREOP or SAFEOP.
2.4.1.8 Object 0x6001 Units per Revolution
This object indicates the number of distinguishable steps per revolution.
The 0x6001 object is a RW register that may be changed if sfc is enabled. The default value gives the Encoder single turn resolution (e.g. 215 = 0x8000).
Resolutions of:
2n with n = nST
8 < nST < Product Code specific resolution
Value ranges are
Product Code
Encoder Type
Units per Revolution
0x0001 0001
ATD4B***Y***15/16ECM12
0x0000 8000
0x0001 0002
ATD4B***Y***17ECM12
0x0008 0000
0x0002 0001
ATD2B***Y***14/16ECM12
0x0000 4000
0x0002 0002
ATD2B***Y***17ECM12
0x0008 0000
Table 16 Product specific maxima Units per Revolution value
This object data will be stored non-volatile into the encoder memory immediately after any change. This register may only be changed in case of ECAT state PREOP or SAFEOP.
2.4.1.9 Object 0x6002 Total measuring range in measuring units6
This object indicates the number of distinguishable steps over the total measuring range.
The 0x6002 object is a RW register that may be changed if sfc is enabled. The default value gives the Encoder maxima single turn resolution (e.g. 215 = 0x8000) plus a multi turn maxima resolution (e.g. 216 -1 =
0xFFFF).Reducing this value always removes multi turn resolution bits keeping the single turn at it maxima
the value set up under object 0x6001. This register may only be changed in case of ECAT state PREOP or
SAFEOP.
Total measuring range in measuring units is:
2n with n = nMT
(8 + nST) < nMT < (16 + nST)
The total measuring range can be calculated by the following formula:
= Single turn resolution (0x6001) x Number of distinguishable revolutions (0x6502)
= nST + nMT
In case of an ST this Object is a mirror of the 0x6001 Object.
This object data will be stored non-volatile into the encoder.
2.4.1.10 Object 0x6003 Preset Value
This object indicates the preset value for the output position value. The 0x6003 object is a RW register in
case of ECAT state PREOP or SAFEOP, this means in OP state changes are not allowed. The device quits
changes during OP state with the SDO message “Abort ('Attempt to write a read only object', 0x06010002)”.
This object data shows a volatile (non back up) data default value is 0x00000000, true encoder offset value
is given by Object 0x6509.
6
For Multi Turn devices only
EtherCAT
2011-10-04/rnik
16/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
2.4.1.11 Object 0x6004 Position Value
This object gives the Encoder Position Value and reflects the process data:
31
30
16
15
0
216 Multi turn position value
215 Single turn position value
Table 17 Position Value data alignment example (15/16 Bit)
0
2.4.1.12 Object 0x6500 Operating Status
This object provides the operating status of the encoder. It gives information on the encoder internal programmed parameters. It reflects the object 0x6000
2.4.1.13 Object 0x6502 Number of distinguishable revolutions (Multi turn)
According to LIT[03] this object provides the number of distinguishable revolutions of the encoder. For a
multi-turn encoder the number of distinguishable revolutions and the single-turn resolution gives the measuring range. For a ST device this object is 0x0000.
This value plus the Single Turn Resolution gives the Total Measuring Range of the encoder.
2.4.1.14 Object 0x6503 Alarms
This register shows error information, according to the object 0x6504.
2.4.1.15 Object 0x6504 Supported Alarms
The 0x6503 object supports the following alarm information:
15
14
13
12
11
Table 18 Supported Alarms
pe =
10
-
9
-
8
-
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
pe
4
7
bc
3
-
2
-
1
-
0
-
1 : Position Error detected
0 : No Position Error detected
2.4.1.16 Object 0x6505 Warnings
This register shows error information, according to the object 0x6506.
2.4.1.17 Object 0x6506 Supported Warnings
The 0x6505 object supports the following warnings:
15
14
13
12
11
10
9
8
msw msw msw msw Table 19 Supported Warnings
bc =
7
-
6
-
5
-
1 : Low Battery Charge
0 : Battery Charge OK
msw = Manufacturer Specific Warnings (according to Table 20 Manufacturer specific warnings):
MSW Nibble
0x0
0x1
7
Description
No warning
Light source error
For multi turn devices only
EtherCAT
2011-10-04/rnik
17/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
0x2
0x4
Optic chip (ADC, EEPROM, SI)
0x8
Temperature error (over / under)
Table 20 Manufacturer specific warnings
2.4.1.18 Object 0x6508 Operating Time
This object provides the devices operating time. It will be incremented in steps of 0.1 h. Operating time periods of less than 0.1h are not counted.
2.4.1.19 Object 0x6509 Offset Value
This object provides the offset value. The offset value is calculated via the preset object input data (0x6003)
and shifts the position value with the calculated value. This object data is stored non-volatile immediately
after any change to the Object Preset Value.
EtherCAT
2011-10-04/rnik
18/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
3
Encoder Initialization
Encoder initialization may differ from encoder version to version however general customizing steps are
common for all variants.
3.1
Encoder Parameter Changes
If the encoder output resolution should be changed the bit sfc in the object 0x6000 must be enabled. Else
changes in the resolution e.g. total resolution or single turn resolution are not accepted by the Encoder.
Minimum system cycle time performance in DC mode decreases if sfc is enabled. This behavior should be
considered if lowest cycle time in DC mode is desired.
Following encoder parameters may be changed by user via SDO:
counting direction e.g. CW or CCW
measuring units per revolution from 256 to 32.768
total measuring units 65.536 to 2.147.483.647 this means a multi turn counting range of 255 to
65.535
Preset value from 0 to 2.147.483.647
3.1.1
Encoder Resolution Change Examples (multi turn)
Default setup MAX single turn, MAX Multi turn resolution with PDO Data for 0x6002 = 0x8000 0000 and
0x6001 = 0x0000 8000
31
30
16
15
0
216 Multi turn position value
215 Single turn position value
MIN single turn, MAX Multi turn resolution with PDO Data for 0x6002 = 0x0100 0000 and 0x6001 = 0x0000
0100:
31
23
216 Multi turn position value
8
7
0
28 ST position value
MAX single turn, MIN Multi turn resolution with PDO Data for 0x6002 = 0x0080 0000 and 0x6001 = 0x0000
8000:
31
22
15
14
28 Multi turn position value
0
215 Single turn position value
MIN single turn, MIN Multi turn resolution with PDO Data for 0x6002 = 0x0001 0000 and 0x6001 = 0x000
0100:
31
15
8
28 MT position value
3.1.2
7
0
28 ST position value
Scaling Function Control Usage
Using the Scaling Function Control degrades the Minimum Cycle Time of the encoder slightly because the
encoder has to calculate and shift real physical data from the optic block to fit user resolution values.
3.1.3
Device Description File (xml Format)
The “ATD 4B A 4 Y11.xml” file contains Vendor and Device specific information and is provided at the Baumer home page for download.
EtherCAT
2011-10-04/rnik
19/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
3.2
Error handling
All errors and warnings are forwarded by the encoder via emergency messages. Those messages are dispatched by the encoder automatically. System warnings are such, but not exclusive like listed under 2.4.1.17.
Also ECAT specific communication (e.g. SM init mismatch, etc) errors are forwarded via the mailbox emergency message.
Encoder Hardware
Error Handler
Hardware error
detected?
N
N
Alarm?
(warning)
Set corresponding
warning bits (0x6505)
Set corresponding
alarm bits (0x6503)
Clear warning and alarm
(0x6503 and 0x6505)
Send ECAT MBOX
message (No Error)
State = OP
Y
Send EMCY(Error Code)
end
Picture 6 Encoder specific error handling
3.2.1
Encoder specific errors
This encoder supports hardware and software error detection.
Error (Generic)
Alarm
Position
Warning
Battery
Temperature
Internal ADC
Light source
Picture 7 Encoder specific error classification
3.2.1.1 Device Watch Dog
Device Watchdog error is a fatal error. This error may happen in case of a non-predictable problem in software, hardware, operating environment, etc that leads to system crash. In this case the encoders own WD
generates a system reset. This event will be forwarded to the master system via ERROR Status LED. The AL
Status register is than set to ALSTATUSCODE_WAITFORCOLDRESET, please refer to Chapter 3.2.2.3.
3.2.1.2 Position Error
This bit is set whenever a mayor internal communication error happens in such case the position value is not
valid any more.
EtherCAT
2011-10-04/rnik
20/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
3.2.1.3 Warnings
The encoder supports four classes of warnings:
Low Battery: The internal battery charge is checked one time after power up, if the capacity is low
this warning bit will be set.
High/Low-Temperature: This warning bit will be set if the temperature of the ADC exceeds the data
specified under 2.2. Short time exceeding is not registered by this system. Continuous temperature overrun may lead to position errors.
Internal ADC: This warning bit may be set if an internal serial interface error happen.
Light source: This bit reflects the light intensity of the light source. Light intensity decreases proportional to life time and rotation speed of the system. Continuous low light intensity may lead to position errors.
The Emergency Error Message data formatting partially according to IEC 61158-6-12 is:
Error Code Field Data Type
Description
Error Code
Word
0x5000 (Device Hardware Error)
EtherCAT State
Byte
1 : INIT
2 : PREOP
4 : SAFEOP
8 : OP
Error Description Byte[5]
[0] : 0x50
[1] : Encoder Hardware Emergency Code
[2] : 0x00
[3] : 0x00
[4] : 0x00
Table 21 Encoder hardware emergency
Encoder Hardware Emergency Code codification:
Byte Code Hardware Emergency Code
Qualification
0x80
Opto chip over temperature
Warning
0x40
Low battery8
Warning
0x20
Internal ADC
Warning
0x10
0x08
0x04
Position Error
Error
0x02
0x01
Light source
Warning
0x00
No Error
Info
Table 22 Hardware emergency code description
3.2.2
EtherCAT Specific Errors
ECAT specific errors are such configuration or communication errors that are communicated via AL Status
register and emergency messages.
3.2.2.1 Sync Manager Watch Dog
The SM Watchdog may be enabled if necessary. Watchdog enable/disable mechanism may be controlled by
the XML file. The XML description file has different device <device> <RevisionNo>, those revision numbers
are usable to configure the Sync Manger with enabled/disabled Watch Dog. Please refer to Table 5 Sync
Manager configuration.
8
For multi turn devices only
EtherCAT
2011-10-04/rnik
21/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
In case that the Sync Manager is enabled the values for the Watchdog register are as follows:
ESC Register Name
ESC Register Address
Init Values
Watchdog divider
0x0400
2498
Watchdog Time Process Data
0x0420
1000
Table 23 Sync Manager Watchdog Init
The Watchdog divider gives the number of 25 MHz tics (minus 2) that represents the basic watchdog increment (2498 = 100 µs). A Sync Manager Watchdog failure results in an ALSTATUSCODE_SMWATCHDOG
(please refer to Table 25 Supported AL Status codes) this follows a state change to SAFEOP.
The Sync Manager Watchdog function is only warranted for Sync operating modes but not for DC mode. In
Distributed Clock Mode the Sync Watchdog will be triggered by the ESC internally and does not reflect real
master operation.
3.2.2.2 EtherCAT State Machine Synchronization Errors
EtherCAT synchronization errors are defined under LIT[01]:
Error Code
Field
Error Code
Data Type
Description
Word
0xA000 (ESM Transition Error PREOP to SAFEOP not successful)
0xA001 (ESM Transition Error SAFEOP to OP not successful)
EtherCAT State Byte
1 : INIT
2 : PREOP
4 : SAFEOP
8 : OP
Error DescripByte[5]
[0] to [4]
tion
Please refer to LIT[01] for Diagnostic Data
Table 24 Codification of SM Synchronization errors
3.2.2.3 AL Status Errors
State changes requested by the master are communicated to the slave via the AL control register, the slave
(device) responds to the change in the AL control register through a local AL Status write after successful or
a failed state change.
Supported AL Status Code definition:
AL Status Codes
ALSTATUSCODE_NOERROR
ALSTATUSCODE_INVALIDALCONTROL
ALSTATUSCODE_UNKNOWNALCONTROL
ALSTATUSCODE_BOOTNOTSUPP
ALSTATUSCODE_INVALIDMBXCFGINPREOP
ALSTATUSCODE_INVALIDSMOUTCFG
ALSTATUSCODE_INVALIDSMINCFG
ALSTATUSCODE_INVALIDWDCFG
ALSTATUSCODE_SMWATCHDOG
ALSTATUSCODE_WAITFORCOLDRESET
ALSTATUSCODE_BACKGROUNDWATCHDOG
ALSTATUSCODE_DCINVALIDSYNCCFG
ALSTATUSCODE_DCINVALIDSYNCCYCLETIME
Table 25 Supported AL Status codes
EtherCAT
2011-10-04/rnik
Values
0x0000
0x0011
0x0012
0x0013
0x0016
0x001D
0x001E
0x001F
0x001B
0x0020
0x002A
0x0030
0x0035
22/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
3.2.2.4 Error diagnostics (RED LED)
Generic encoder errors or state transition errors are signalized to the user via ERROR State LED, supported
LED states are:
ERROR STATE State description
OFF
No Error
Blinking
Invalid Configuration
Single Flash
Unsolicited state change
ON
Watchdog
Table 26 Error State Status
3.2.2.5 Working Counter
In 1-Buffer mode (please refer to 2.3.2.2) the master may check the working counter value. This value will be
incremented by +1 if the encoder internal application controller was able to successfully write process data
into the ECAT controller. This mechanism enables the master to detect encoder freezing in a PDO transmission synchronous manner.
EtherCAT
2011-10-04/rnik
23/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
4
Encoder Family Overview
Proper identification of product may be done via evaluation of the Device Name string (Object 0x1008). Another possibility is to read out the Device Type, Product Code and Resolution Data fields to have an exact
device description.
4.1
Device identification fields
15ECM12
0x0001 ****
0x0001 ****
8…15
-
17ECM12
0x0001 ****
0x0001 ****
16…17
-
ATD 2 ***Y***
14/16ECM12
17/12ECM12
Product Code
0x0002****
0x0002****
Device Type
0x0002 ****
0x0002 ****
ST Resolution
8…14
16…17
MT Resolution 8…16
8…12
Table 28 ATD2 encoder family overview
14CM12
0x0002****
0x0001 ****
8…14
-
17ECM12
0x0002****
0x0001 ****
16…17
-
Multi Turn Resolution
ATD 4B ***Y*** 15/16ECM12
17/12ECM12
Product Code
0x0001 ****
0x0001 ****
Device Type
0x0002 ****
0x0002 ****
ST Resolution
8…15
16…17
MT Resolution 8…16
8…12
Table 27 ATD4 encoder family overview
ATD2B Family
8...12
8...16
16...17
8...15
8...16
16...17
8...14
8...14
16...17
ATD4B Family
8...12
8...15
16...17
Single Turn Resolution
Device classification via CoE Product Code (0x1018:02) and Device Type (0x1000):
Picture 8 ATD Families comparison
EtherCAT
2011-10-04/rnik
24/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Asynchronous Timing
In Asynchronous (Free Run) mode the encoder position data will be sampled asynchronous to the ECAT
frame. In this mode the encoder data sampling frequency (fs) is about 11 kHz. The position data sample
point may have a typical total jitter of 92µs.
The following diagram shows the relationship between data read accesses to DPRAM (from the master point
of view) at the ECAT controller and data sample and update to DPRAM from the slave (encoder).
Cyclic read
by master
Frame n
Frame n+1
Cylce time
(PLC Task)
Data sampling
process at slave
fs
t
Picture 9 Non sync (Free Run) timing diagram for a multi turn encoder
At Operating temperature = 20°C, State = OP
Name
Min
Typ
Max
Jitter (J)
0
100
Cycle Time (sfc = 0/1)
1.000
64.000
Table 29 Free Run timing specification for ST and MT devices
µs
µs
In free run mode the minimum cycle time should be larger than the maximum jitter, else the data jitter to cycle time relation is poor for usual RT requirements.
EtherCAT
2011-10-04/rnik
25/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
5
Sync to SM event Timing
In the this operating mode the process data will be sampled and copied subsequently into the Sync Manager
buffer every time the data has been read out by the master, this means that the sampled data is synchronous
to the read out events of the master. One disadvantage of this mode is that for large cycle times the data
may be relative old for a RT system; however data is synchronized to the masters readout event.
Cyclic read
by master
Frame n
Frame n+1
Cylce time
Min cylce time
1C33:05
t
Sample +
Cal & copy
Sample +
Cal & copy
Data sampling
process at slave
SM3 Event
Tj
1C33:03
Picture 10 Sync to SM event sampling diagram
Picture 11 Sample jitter for a Sync to SM event operating multi turn encoder.
CH3 not_SM event trigger signal
CH1 Sample + Calc & Copy Signal
EtherCAT
2011-10-04/rnik
26/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
At Operating temperature = 20°C, State = OP
Name
Min
Jitter (J)
0
Cycle Time (sfc = 0/1)
62,50
Table 30 Sync to SM event timing specification
EtherCAT
2011-10-04/rnik
Typ
6,90
27/42
Max
10
64.000
µs
µs
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
6
DC Timing
The exact data sampling time while DC mode depends on the sum of the two parameters: 0x1C33:3 (= Shift
Time) and Tjs (Jitter on sampling time). The minimum cycle time depends on the setting of the Scaling Function Control bit.
The time the encoder needs (from the SYNC0 signal point) to be able to put process data into the DPRAM
can be estimated by adding the Shift Time and the Calc and Copy Time (Table 31 Calc and Copy Time).
6.1
Consecutive sample point jitter
For the system designer there one value of interest: the absolute jitter between two consecutive sampling
points (Jitter) J. This value includes all device systematic jitter sources. Please refer to Table 32.
6.2
Shift Time
Shift time is defined to be the time the encoder needs to start sampling data. This time information plus the
absolute system time gives the time stamp of the actual sample value. This means the sampled position data
has a fix relationship to the DC clock of the network.
6.3
Calc and Copy Time
The time the slave controller need for calculate and copy the sampled data to the SM data buffer (e.g. into
Ethernet Frame) strongly depends on the SFC bit.
Product
Device Name
Code
ATD4 B ***Y*** 15/16EC 0x0001****
ATD4 B ***Y*** 17/12EC 0x0001****
ATD4 B ***Y*** 15EC
0x0001****
ATD4 B ***Y*** 17EC
0x0001****
ATD2 B ***Y*** 14/16EC 0x0002****
ATD2 B ***Y*** 17/12EC 0x0002****
ATD2 B ***Y*** 14EC
0x0002****
ATD2 B ***Y*** 17EC
0x0002****
Table 31 Calc and Copy Time
Device
Type
0x0002 ****
0x0002 ****
0x0001 ****
0x0001 ****
0x0002 ****
0x0002 ****
0x0001 ****
0x0001 ****
Calc and Copy Time [µs]
SFC=0
SFC=19 SFC=110
26,4
29,8
41,0
41,8
41,9
42,0
23,5
23,9
28,1
33,7
33,8
36,8
28,6
30,8
40,4
42,8
42,9
43,0
23,5
23,9
28,1
34,7
34,8
37,8
For a full information about relationship between shift time, calc and copy time, Ethernet Frame length and
SYNC0 generation please refer to LIT[05].
9
Value is given for Scaling Function Control enabled and default encoder resolution
Value is given for Scaling Function Control enabled and lowest encoder specific resolution value.
10
EtherCAT
2011-10-04/rnik
28/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
CycleTime
1C33:02
SYNC0 event (n)
SYNC0 event (n+x)
MIN CycleTime
1C33:05
D
Um
Master
Slave
S
J
C&C
PD sampling
Shift Time
1C33:03
Picture 12 Timing Diagram for DC or Sync Communication type
D
Um
S
J
C&C
: Delay time of the EtherCAT slave to transfer data (approx. 600n + 5ns x L[m])
: Shift time that is adjusted internally by the master.
: Fixed Slave Shift time until data acquisition is started (0x1C33:3)
: Slave Jitter is the time the slave needs to start sampling data
: Calc and copy time for data transfer ADC to DPRAM.
At Operating temperature = 20°C, State = OP
Name
Min
Shift Time (S)
Jitter (J)
0
Cycle Time (SFC = 1)
62,5
Table 32 DC cycle time specification
11
Typ
11
4,880
65
Max
12
100
32.000
µs
ns
µs
Firmware Version > 1.07
12
Device jitter may is dependent of many factors, an estimation of this jitter may be done by adding the
SYNC0 Jitter (max = 40ns for ET1100) + optics sampling point jitter (max = 25ns)
EtherCAT
2011-10-04/rnik
29/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
n
n+1
Picture 13 Sample point (n) to consecutive sample (n+1) point jitter ( CH1: SYNC, CH2: SAMPLE) for a
multi turn device
Upper scope window:
CH1: not_DC_Sync0 signal
CH2: Sample + Calc & Copy signal.
Lower scope window:
Zoom of upper window in the area marked by the two gray bars [] on Upper.
EtherCAT
2011-10-04/rnik
30/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
7
System Set up with the TwinCAT Software
In this chapter a short introduction for encoder device operation within a generic office PC environment is
described.
System setup
standard 3 GHz DELL office PC
D-Link Fast Ethernet Adapter
TwinCAT V2.10.00 (Build 1313)
7.1
Free Run/Sync0 Init
STEP A Start the TwinCAT System Manager software:
Press F5 Key. and confirm the next message :
Choose your EtherCAT dedicated network card from the List:
HINT : If no network card is available you have to install one, this is possible under
Options -> Show Real Time Ethernet Compatible Devices -> Install “Compatible devices”. After this you
your network card should move from “Compatible devices” to “Installed and ready to use devices”.
Confirm dialog with OK
EtherCAT
2011-10-04/rnik
31/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Confirm dialog with OK
STEP B:
Choose CoE – Online
Choose: Online – via SDO Information, All Objects, Confirm.
If the *.xml is stored under \\TwinCAT\Io\EtherCAT\xxx.xml the: Offline - from Device Description it is also
possible to get the encoder Dictionary offline. This step is necessary only for SII memory <= 128 Bytes
EtherCAT
2011-10-04/rnik
32/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
7.2
Distributed Clocks Mode Init
All initialization points described in the previous chapter have to be done before starting this Init
EtherCAT
2011-10-04/rnik
33/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
STEP C : Choose DC -> Advanced Settings
Choose Smart View -> Write E2PROM
EtherCAT
2011-10-04/rnik
34/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Choose sync mode (content depends on XML File that is used and may differ from picture):
Confirm with OK
Reset encoder (Power on / off 10 sec min)
Repeat STEP A
Change Operation Mode to Distributed Clock
EtherCAT
2011-10-04/rnik
35/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Set Up Cycle Time
Confirm with OK
EtherCAT
2011-10-04/rnik
36/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Append a PLC Project (*.tpy file)
Attach Variable
From the Menu Actions choose Activate Configuration
Confirm the next three dialogs
EtherCAT
2011-10-04/rnik
37/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Start the PLC Task.
HINT : If no PLC Task is started the TwinCAT System Manager will start cyclic data transfer e.g. Position
Values will not be updated by the encoder.
8
System Set up with CAT Studio.NET Software
In this chapter a short description of device operation with a generic office PC environment using the KPA
ECAT Studio.NET and the ECAT Master Win 32 software follows.
System setup:
standard 3 GHz DELL office PC
D-Link Fast Ethernet Adapter
EtherCAT Studio Version 1.9.16.0 with internal Master 1.3.41.0
8.1
Frame Synchronous Mode
On start Window Press Shift+M to create anew Master
After this right mouse click on Master icon: choose Attach master.
EtherCAT
2011-10-04/rnik
38/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
On the following Window choose Accept
After this step Master should be running at INIT state.
Choose State on Master and change to Operational
EtherCAT
2011-10-04/rnik
39/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
Process Data can be seen under Slave>Variables
CoE Online Data may be checked under Slave>CoE-Online
Possible Encoder errors are showed under the Emergency register
EtherCAT
2011-10-04/rnik
40/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
8.2
Distributed Clock Mode
For Distributed Clock Setup the Master and Slave have to be detached.
After this:
1)The Distributed Clock at Master has to be enabled
2)The Distributed Clock at the Slave has to be enabled (please refer to following picture)
After this State Change may be done following the prior state change procedure.
EtherCAT
2011-10-04/rnik
41/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany
9
EtherCAT Conformance Test
The EtherCAT Encoder Family was subjected to a EtherCAT Conformance Test (Version 1.20.0.0), the result
was satisfactory.
Picture 14 EtherCAT Conformance Test (Version 1.20.0.0) result.
EtherCAT
2011-10-04/rnik
42/42
Baumer Thalheim GmbH & Co. KG
Eschwege, Germany