Polymeric Resettable Fuses

NTE16000−ECG thru NTE16022−ECG
Polymeric Positive Temperature Coefficient (PTC)
Resettable Fuses
Features:
• Radial Leaded, High Hold Current, Solid State
• Operation Current: 100mA∼9A
• Maximum Voltage: 30V
• Temperature Range: −40°C to +85°C
• Cured, Flame Retardant Epoxy Polymer
Insulating Material Meets UL 94V−0
Applications:
• Computers & Peripherals
• Security and Fire Alarm Systems
• General Electronics
• Loud Speakers
• Automotive Applications
• Power Transformers
ELECTRICAL CHARACTERISTICS
IHold
Diag.
No.
NTE Type No.
16000−ECG
629
16001−ECG
629
16002−ECG
629
16003−ECG
629
16004−ECG
629
16005−ECG
629
16006−ECG
629
16007−ECG
629
16008−ECG
629
16009−ECG
629
16010−ECG
630
16011−ECG
629
16012−ECG
629
16013−ECG
629
16014−ECG
629
16015−ECG
630
16016−ECG
630
16017−ECG
630
16018−ECG
630
16019−ECG
630
16020−ECG
630
16021−ECG
630
16022−ECG
630
* Tested at 40 Amps.
V max.
Volts
I max.
Amps
60
60
60
60
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
ITrip
Amperes at 235C
Hold
0.10
0.17
0.20
0.25
0.30
0.40
0.50
0.65
0.75
0.90
0.90
1.10
1.35
1.60
1.85
2.50
3.00
4.00
5.00
6.00
7.00
8.00
9.00
Initial resistance
1 Hour (R1)
Post−Trip
Resistance
Max. Time
To Trip at 5*lh
Tripped Power
Dissipation
Ohms at 235C
Ohms at 235C
Seconds at 235C
Watts at 235C
Trip
Min.
Max
0.20
0.34
0.40
0.50
0.60
0.80
1.00
1.30
1.50
1.80
1.80
2.20
2.70
3.20
3.70
5.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
2.50
2.00
1.50
1.00
0.76
0.52
0.41
0.27
0.18
0.14
0.07
0.10
0.065
0.055
0.04
0.025
0.02
0.01
0.01
0.005
0.005
0.005
0.005
4.50
3.20
2.84
1.95
1.36
0.86
0.77
0.48
0.40
0.31
0.12
0.18
0.115
0.105
0.07
0.048
0.05
0.03
0.03
0.02
0.02
0.02
0.01
Max.
7.50
8.00
4.40
3.00
2.10
1.29
1.17
0.72
0.60
0.47
0.22
0.27
0.17
0.15
0.11
0.07
0.08
0.05
0.05
0.04
0.03
0.03
0.02
4.0
3.0
2.2
2.5
3.0
3.8
4.0
5.3
6.3
7.2
5.9
6.6
7.3
8.0
8.7
10.3
10.8
12.7
14.5
16.0
17.5
18.8
*20.0
TECHNICAL DATA
Operating/Storage Temperature
−40°C to +85°C
Maximum Device Surface Temperature
in Tripped State
+125°C
Passive Aging
+85°C, 1000 Hours
±5% Typical Resistance Change
Humidity Aging
+85°C, 85% R.H. 1000 Hours
±5% Typical Resistance Change
Thermal Shock
+125°C/−40°C 10 Times
±10% Typical Resistance Change
Mechanical Shock
MIL−STD−202, Method 213,
Condition 1 (100g, 6 Seconds)
No Resistance Change
Solvent Resistance
MIL−STD−202, Method 215
No Change
Vibration
MIL−STD−883C, Method 2007.1, Condition A
No Change
0.38
0.48
0.40
0.45
0.50
0.55
0.75
0.90
0.90
1.00
0.60
0.70
0.80
0.90
1.00
1.20
2.00
2.50
3.00
3.50
3.80
4.00
4.20
TEST PROCEDURES AND REQUIREMENTS
Test
Test Condition
Accept/Reject Criteria
Visual/Mechanical
Verify Dimensions and Materials
Per PF Physical Description
Resistance
In Still Air @ +23°C
Rmin ≤ R ≤ Rmax
Time to Trip
5 Times IHold, Vmax, +23°C
T ≤ Max. Time to Trip (Seconds)
Hold Current
30 Min. at IHold
No trip
Trip Cycle Life
Vmax, Imax, 100 Cycles
No Arcing or Burning
Trip Endurance
Vmax, 48 Hours
No Arcing or Burning
Solvent Resistance
MIL−STD−202, Method 215
No Change
Vibration
MIL−STD−883C, Method 2007.1, Condition A
No Change
Time to Trip (Seconds)
TYPICAL TIME TO TRIP AT +235
100
10
1
0.1
0.0
1
0.001
0.1
1
10
100
Fault Current (Amps)
THERMAL DERATING CHART − IHOLD (Amps) *
Ambient Operating Temperature
NTE Type No.
NTE16000−ECG
NTE16001−ECG
NTE16002−ECG
NTE16003−ECG
NTE16004−ECG
NTE16005−ECG
NTE16006−ECG
NTE16007−ECG
NTE16008−ECG
NTE16009−ECG
NTE16010−ECG
NTE16011−ECG
NTE16012−ECG
NTE16013−ECG
NTE16014−ECG
NTE16015−ECG
NTE16016−ECG
NTE16017−ECG
NTE16018−ECG
NTE16019−ECG
NTE16020−ECG
NTE16021−ECG
NTE16022−ECG
* ITrip = 2 • IHold
−405C
0.16
0.26
0.31
0.39
0.47
0.62
0.78
1.01
1.16
1.40
1.40
1.60
1.96
2.32
2.68
3.63
4.35
5.80
7.25
8.70
10.15
11.60
13.05
−205C
0.14
0.23
0.27
0.34
0.41
0.54
0.68
0.88
1.02
1.22
1.22
1.43
1.76
2.08
2.41
3.25
3.90
5.20
6.50
7.80
9.10
10.40
11.70
05C
0.12
0.20
0.24
0.30
0.36
0.48
0.60
0.77
0.89
1.07
1.07
1.27
1.55
1.84
2.13
2.88
3.45
4.60
5.75
6.90
8.05
9.20
10.35
+235C
0.10
0.17
0.20
0.25
0.30
0.40
0.50
0.65
0.75
0.90
0.90
1.10
1.35
1.60
1.85
2.50
3.00
4.00
5.00
6.00
7.00
8.00
9.00
+405C
0.08
0.14
0.16
0.20
0.24
0.32
0.41
0.53
0.61
0.73
0.73
0.91
1.12
1.33
1.54
2.08
2.49
3.32
4.15
4.98
5.81
6.64
7.47
+505C
0.07
0.12
0.14
0.18
0.22
0.29
0.36
0.47
0.54
0.65
0.65
0.85
1.04
1.23
1.42
1.93
2.31
3.08
3.85
4.62
5.39
6.16
6.39
+605C
0.06
0.11
0.13
0.16
0.19
0.25
0.32
0.41
0.47
0.57
0.57
0.75
0.92
1.09
1.26
1.70
2.04
2.72
3.40
4.08
4.76
5.44
6.12
+705C
0.05
0.09
0.11
0.14
0.16
0.22
0.27
0.35
0.41
0.49
0.49
0.67
0.82
0.98
1.13
1.53
1.83
2.44
3.05
3.66
4.27
4.88
5.49
+855C
0.04
0.07
0.08
0.10
0.12
0.16
0.20
0.26
0.30
0.36
0.36
0.57
0.70
0.83
0.96
1.30
1.56
2.08
2.60
3.12
3.64
4.16
4.68
DIMENSIONAL OUTLINE DRAWINGS
Diagram 629
Diagram 630
A
E
A
E
B
B
D
D
C
C
NOTE:
Shape changes from round to square starting
with NTE16016−ECG.
PRODUCT DIMENSIONS (Dimensions are in inches(mm))
A
B
D
E
NTE Type No.
NTE16000−ECG
Max.
Max.
Nom.
C
Tol. +
Min.
Max.
Diag. No.
Physical Characteristice
Lead Dia.
.290 (7.4)
.500 (12.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/NiCu
NTE16001−ECG
.290 (7.4)
.500 (12.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/CuFe
NTE16002−ECG
.290 (7.4)
.500 (12.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/CuFe
NTE16003−ECG
.290 (7.4)
.500 (12.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/CuFe
NTE16004−ECG
.290 (7.4)
.530 (13.4)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/CuFe
NTE16005−ECG
.290 (7.4)
.540 (13.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/CuFe
NTE16006−ECG
.310 (7.9)
.540 (13.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/Cu
NTE16007−ECG
.380 (9.7)
.600 (15.2)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/Cu
NTE16008−ECG
.410 (10.4)
.630 (16.0)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/Cu
NTE16009−ECG
.460 (11.7)
.660 (16.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/Cu
NTE16010−ECG
.290 (7.4)
.480 (12.2)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.020 (0.51)
Sn/Cu
Material
NTE16011−ECG
.350 (8.9)
.550 (14.0)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
629
.020 (0.51)
Sn/Cu
NTE16012−ECG
.350 (8.9)
.750 (18.9)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
629
.020 (0.51)
Sn/Cu
NTE16013−ECG
.400 (10.2)
.660 (16.8)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
629
.020 (0.51)
Sn/Cu
NTE16014−ECG
.470 (12.0)
.720 (18.4)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
629
.020 (0.51)
Sn/Cu
NTE16015−ECG
.470 (12.0)
.720 (18.3)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16016−ECG
.470 (12.0)
.720 (18.3)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16017−ECG
.570 (14.4)
.970 (24.8)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16018−ECG
.690 (17.4)
.980 (24.9)
.400 (10.2)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16019−ECG
.760 (19.3)
1.260 (31.9)
.400 (10.2)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16020−ECG
.870 (22.1)
1.170 (29.8)
.400 (10.2)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16021−ECG
.960 (24.2)
1.300 (32.9)
.400 (10.2)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16022−ECG
.960 (24.2)
1.300 (32.9)
.400 (10.2)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
RESETTABLE CIRCUIT PROTECTION
When it comes to Polymeric Positive Temperature
Coefficient (PPTC) circuit protection, you now have a
choice.
Polymeric fuses are made from a conductive plastic
formed into thin sheets, with electrodes attached to either
side. The conductive plastic is manufactured from a non−
conductive crystalline polymer and a highly conductive
carbon balck. The electrodes ensure even distribution of
power through the device, and provide a surface for leads
to be attached or for custom mounting.
The phenomenon that allows conductive plastic materials to be used for resettable overcurrent protection devices is that they exhibit a very large non−linear Positive
Temperature Coefficient (PTC) effect when heated. PTC
is a characteristic that many materials exhibit whereby resistance increases with temperature. What makes the
polymeric conductive plastic material unique is the magnitude of its resistance increase. At a specific transition temperature, the increase is resistance is so great that it is typically expressed on a log scale.
107
106
LOG R OHMS
105
104
103
102
101
100
0
20
40
60
80
TEMPERATURE °C
100
120
140
HOW POLYMERIC RESETTABLE
OVERCURRENT PROTECTORS WORK
The conductive carbon black filler material in the polymeric device is dispersed in a polymer that has a crystalline structure. The crystalline structure densely packs the
carbon particles into its crystalline boundry so they are
close enough together to allow current to flow through the
polymer insulator via these carbon “chains”.
When the conductive plastic material is at normal room
temperature, there are numerous carbon chains forming
conductive paths through the material.
Under fault conditions, excessive current flows through
the polymeric device. I2R heating causes the conductive
plastic material’s temperature to rise. As this self heating
continues, the material’s temperature continues to rise
until it exceeds its phase transformation temperature. As
the material passes through this phase transformation
temperature, the densely packed crystalline polymer matrix changes to an amorphous structure. This phase
change is accompanied by a small expansion. As the conductive particles move apart from each other, most of
them no longer conduct current and the resistance of the
device increases sharply.
The material will stay “hot”, remaining in this high resistance state as long as the power is applied. The device will
remain latched, providing continuous protection, until the
fault is cleared and the power is removed. Reversing the
phase transformation allows the carbon chains to re−form
as the polymer re−crystallizes. The resistance quickly returns to its original value.
PRODUCT SELECTION
To select the correct polymeric circuit protection device,
complete the imformation listed below for application, and
then refer to thwe resettable overcurrent protector data
sheets.
1. Determine the nromal operating current:
__________ amps
2. Determine the maximum circuit voltage (Vmax):
__________ volts
3. Determine the fault current (Imax):
__________ amps
4. Determine the operating temperature range:
Minimum Temperature: __________ °C
Maximum Temperature: __________ °C
5. Select a product family so that the maximum rating for
Vmax and Imax is higher than the maximum circuit voltage and fault current in the application.
6. Using the IHold vs. Temperature Table on the product
family data sheet, select the polymeric device at the
maximum operating temperature with an IHold greater
than or equal to the normal operating current.
7. Verify that the selected device will trip under fault conditions by checking in the ITrip table that the fault current is greater than ITrip for the selected device, at the
lowest operating temperature.
8. Order samples and test in application.
APPLICATIONS
The benefits of polymeric Resettable Overcurrent Protectors are being recognized by more and more design
engineers, and new applications are being discovered every day.
The use of polymeric types of devices have been widely
accepted in the following applications and industries:
D
D
D
D
D
D
D
D
D
D
D
D
D
D
Personal computers
Laptop computers
Personal digital assistants
Transformers
Small and medium electric motors
Audio equipment and speakers
Test and measurement equipment
Security and fire alarm systems
Personal care products
Point−of−sale equipment
Industrial controls
Automotive electronics and harness protection
Marine electronics
Battery−operated toys