INTERSIL HUF75842P3

HUF75842P3, HUF75842S3S
Data Sheet
December 1999
File Number
4815
43A, 150V, 0.042 Ohm, N-Channel,
UltraFET Power MOSFET
Packaging
Features
JEDEC TO-220AB
JEDEC TO-263AB
DRAIN
(FLANGE)
SOURCE
DRAIN
GATE
GATE
SOURCE
DRAIN
(FLANGE)
• Ultra Low On-Resistance
- rDS(ON) = 0.042Ω, VGS = 10V
• Simulation Models
- Temperature Compensated PSPICE® and SABER™
Electrical Models
- Spice and SABER Thermal Impedance Models
- www.intersil.com
• Peak Current vs Pulse Width Curve
HUF75842P3
HUF75842S3S
• UIS Rating Curve
Ordering Information
Symbol
D
G
PART NUMBER
PACKAGE
BRAND
HUF75842P3
TO-220AB
75842P
HUF75842S3S
TO-263AB
75842S
NOTE: When ordering, use the entire part number. Add the suffix T
to obtain the variant in tape and reel, e.g., HUF75842S3ST.
S
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
HUF75842P3
UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
150
V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
150
V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
±20
V
Drain Current
Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
43
30
Figure 4
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS
Figures 6, 14, 15
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
230
1.53
W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
-55 to 175
oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
300
260
oC
oC
NOTES:
1. TJ = 25oC to 150oC.
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
4-1
CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures.
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.
SABER™ is a trademark of Analogy, Inc. 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999.
HUF75842P3, HUF75842S3SS
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
150
-
-
V
VDS = 140V, VGS = 0V
-
-
1
µA
VDS = 135V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±20V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
BVDSS
IDSS
IGSS
ID = 250µA, VGS = 0V (Figure 11)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 10)
2
-
4
V
Drain to Source On Resistance
rDS(ON)
ID = 43A, VGS = 10V (Figure 9)
-
0.035
0.042
Ω
TO-220
-
-
0.65
oC/W
-
-
62
oC/W
-
-
100
ns
-
13
-
ns
-
53
-
ns
td(OFF)
-
47
-
ns
tf
-
34
-
ns
tOFF
-
-
120
ns
-
144
175
nC
-
77
90
nC
-
5.6
6.7
nC
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to
Ambient
RθJA
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
VDD = 75V, ID = 43A
VGS = 10V,
RGS = 3.9Ω
(Figures 18, 19)
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 20V
Gate Charge at 10V
Qg(10)
VGS = 0V to 10V
Threshold Gate Charge
Qg(TH)
VGS = 0V to 2V
VDD = 75V,
ID = 43A,
Ig(REF) = 1.0mA
(Figures 13, 16, 17)
Gate to Source Gate Charge
Qgs
-
12
-
nC
Gate to Drain "Miller" Charge
Qgd
-
30
-
nC
-
2730
-
pF
-
660
-
pF
-
230
-
pF
MIN
TYP
MAX
UNITS
ISD = 43A
-
-
1.25
V
ISD = 22A
-
-
1.00
V
trr
ISD = 43A, dISD/dt = 100A/µs
-
-
190
ns
QRR
ISD = 43A, dISD/dt = 100A/µs
-
-
1.08
µC
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
Reverse Recovery Time
Reverse Recovered Charge
4-2
VSD
TEST CONDITIONS
HUF75842P3, HUF75842S3S
Typical Performance Curves
50
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
40
VGS = 10V
30
20
10
0.2
0
0
25
50
75
100
150
125
0
175
TC , CASE TEMPERATURE (oC)
25
50
75
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
IDM, PEAK CURRENT (A)
600
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - TC
I = I25
150
100
VGS = 10V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
30
10-5
10-4
10-3
10-2
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
4-3
10-1
100
101
HUF75842P3, HUF75842S3S
Typical Performance Curves
(Continued)
300
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
100
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
300
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
STARTING TJ = 25oC
STARTING TJ = 150oC
10ms
10
0.001
1
1
100
10
0.01
300
VDS, DRAIN TO SOURCE VOLTAGE (V)
0.1
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
80
80
ID, DRAIN CURRENT (A)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
60
40
TJ = 175oC
20
TJ = -55oC
VGS = 10V
VGS = 6V
60
VGS =5V
40
20
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
TJ = 25oC
0
0
2
3
4
5
VGS, GATE TO SOURCE VOLTAGE (V)
0
6
FIGURE 7. TRANSFER CHARACTERISTICS
3.0
1
2
3
VDS, DRAIN TO SOURCE VOLTAGE (V)
4
FIGURE 8. SATURATION CHARACTERISTICS
1.2
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = VDS, ID = 250µA
2.5
NORMALIZED GATE
THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
1
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
ID, DRAIN CURRENT (A)
100
2.0
1.5
1.0
1.0
0.8
0.5
VGS = 10V, ID = 43A
0.6
0
-80
-40
160
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4-4
200
-80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
HUF75842P3, HUF75842S3S
Typical Performance Curves
(Continued)
7000
VGS = 0V, f = 1MHz
ID = 250µA
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.2
1.1
1.0
CISS = CGS + CGD
1000
COSS ≅ CDS + CGD
CRSS = CGD
100
0.9
-80
-40
0
40
80
160
120
50
0.1
200
TJ , JUNCTION TEMPERATURE (oC)
1.0
10
100
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
VGS , GATE TO SOURCE VOLTAGE (V)
10
VDD = 75V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 43A
ID = 22A
2
0
20
0
40
60
Qg, GATE CHARGE (nC)
80
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
4-5
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
HUF75842P3, HUF75842S3S
Test Circuits and Waveforms
(Continued)
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 20V
VGS
Qg(10)
+
VDD
VGS = 10V
VGS
DUT
VGS = 2V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORMS
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
VDD
-
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT
4-6
10%
50%
50%
PULSE WIDTH
FIGURE 19. SWITCHING TIME WAVEFORM
HUF75842P3, HUF75842S3S
PSPICE Electrical Model
.SUBCKT HUF75842 2 1 3 ;
rev 13 October 1999
CA 12 8 4.10e-9
CB 15 14 4.10e-9
CIN 6 8 2.50e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
LDRAIN
DPLCAP
DRAIN
2
5
10
5
51
ESLC
11
-
RDRAIN
6
8
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
+
17
EBREAK 18
50
-
IT 8 17 1
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 2.72e-2
RGATE 9 20 0.73
RLDRAIN 2 5 10
RLGATE 1 9 48.6
RLSOURCE 3 7 20.1
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 3.58e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
DBREAK
+
RSLC2
ESG
LDRAIN 2 5 1.0e-9
LGATE 1 9 4.86e-9
LSOURCE 3 7 2.01e-9
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 157.5
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RLSOURCE
S2A
S1A
12
S1B
CA
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
VBAT
5
8
EDS
-
-
IT
14
+
+
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
RBREAK
15
14
13
13
8
-
+
8
22
RVTHRES
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*88),3.5))}
.MODEL DBODYMOD D (IS = 2.25e-12 RS = 2.45e-3 IFK=14 XTI = 5 TRS1 = 2.7e-3 TRS2 = 0 CJO = 2.60e-9 TT = 1.22e-7 M = 0.55)
.MODEL DBREAKMOD D (RS = 6.50e-1 TRS1 = 1e-3 TRS2 = 1e-6)
.MODEL DPLCAPMOD D (CJO = 3.30e-9 IS = 1e-30 M = 0.82)
.MODEL MMEDMOD NMOS (VTO = 3.20 KP = 6 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.73)
.MODEL MSTROMOD NMOS (VTO = 3.63 KP = 86 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.78 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 7.30 )
.MODEL RBREAKMOD RES (TC1 =1.02e-3 TC2 = 0)
.MODEL RDRAINMOD RES (TC1 = 9.40e-3 TC2 = 2.70e-5)
.MODEL RSLCMOD RES (TC1 = 4.10e-3 TC2 = 4.00e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -2.57e-3 TC2 = -7.05e-6)
.MODEL RVTEMPMOD RES (TC1 = -2.85e-3 TC2 =9.00e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -5.8 VOFF= -2.4)
VON = -2.4 VOFF= -5.8)
VON = -1.8 VOFF= 0.5)
VON = 0.5 VOFF= -1.8)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
4-7
HUF75842P3, HUF75842S3S
SABER Electrical Model
REV 13 October 1999
template huf75842 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 2.25e-12, cjo = 2.60e-9, tt = 1.22e-7, xti = 5, m = 0.55)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 3.30e-9, is = 1e-30, m = 0.82)
m..model mmedmod = (type=_n, vto = 3.20, kp = 6, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.63, kp = 86, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.78, kp = 0.10, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.8, voff = -2.4)
DPLCAP
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.4, voff = -5.8)
10
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.8, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.8)
c.ca n12 n8 = 4.10e-9
c.cb n15 n14 = 4.10e-9
c.cin n6 n8 = 2.50e-9
LDRAIN
DRAIN
2
5
RSLC1
51
RLDRAIN
RDBREAK
RSLC2
72
ISCL
EVTHRES
+ 19 8
+
i.it n8 n17 = 1
LGATE
GATE
1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 4.86e-9
l.lsource n3 n7 = 2.01e-9
RDRAIN
6
8
ESG
EVTEMP
RGATE + 18 22
9
20
16
MWEAK
DBODY
EBREAK
+
17
18
MSTRO
CIN
71
11
MMED
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
-
8
LSOURCE
7
RSOURCE
RLSOURCE
S1A
12
S2A
13
8
S1B
CA
RBREAK
15
14
13
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/88))** 3.5))
}
}
-
IT
14
+
+
spe.ebreak n11 n7 n17 n18 = 157.5
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
4-8
21
6
RLGATE
res.rbreak n17 n18 = 1, tc1 = 1.02e-3, tc2 = 0
res.rdbody n71 n5 = 2.45e-3, tc1 = 2.70e-3, tc2 = 0
res.rdbreak n72 n5 = 6.50e-1, tc1 = 1.0e-3, tc2 = 1.0e-6
res.rdrain n50 n16 = 2.72e-2, tc1 = 9.40e-3, tc2 = 2.70e-5
res.rgate n9 n20 = 0.73
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 48.6
res.rlsource n3 n7 = 20.1
res.rslc1 n5 n51 = 1e-6, tc1 = 4.10e-3, tc2 = 4.00e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 3.58e-3, tc1 = 1e-3, tc2 = 1e-6
res.rvtemp n18 n19 = 1, tc1 = -2.85e-3, tc2 = 9.00e-7
res.rvthres n22 n8 = 1, tc1 = -2.57e-3, tc2 = -7.05e-6
DBREAK
50
-
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
RDBODY
VBAT
5
8
EDS
-
+
8
22
RVTHRES
SOURCE
3
HUF75842P3, HUF75842S3S
SPICE Thermal Model
th
JUNCTION
REV 13 October 1999
HUF75842T
CTHERM1 th 6 5.20e-3
CTHERM2 6 5 2.40e-2
CTHERM3 5 4 2.00e-2
CTHERM4 4 3 1.80e-2
CTHERM5 3 2 2.40e-2
CTHERM6 2 tl 1.80e-1
RTHERM1
RTHERM1 th 6 1.00e-2
RTHERM2 6 5 2.00e-2
RTHERM3 5 4 6.40e-2
RTHERM4 4 3 1.00e-1
RTHERM5 3 2 1.56e-1
RTHERM6 2 tl 1.65e-1
RTHERM2
CTHERM1
6
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
SABER thermal model HUF75842T
4
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 5.20e-3
ctherm.ctherm2 6 5 = 2.40e-2
ctherm.ctherm3 5 4 = 2.00e-2
ctherm.ctherm4 4 3 = 1.80e-2
ctherm.ctherm5 3 2 = 2.40e-2
ctherm.ctherm6 2 tl = 1.80e-1
RTHERM4
CTHERM4
3
RTHERM5
rtherm.rtherm1 th 6 = 1.00e-2
rtherm.rtherm2 6 5 = 2.00e-2
rtherm.rtherm3 5 4 = 6.40e-2
rtherm.rtherm4 4 3 = 1.00e-1
rtherm.rtherm5 3 2 = 1.56e-1
rtherm.rtherm6 2 tl = 1.65e-1
}
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7143
FAX: (321) 724-7240
4-9
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029