INTERSIL HFA1112IP

HFA1112
September 1998
850MHz, Low Distortion Programmable
Gain Buffer Amplifier
The HFA1112 is a closed loop Buffer featuring user
programmable gain and ultra high speed performance.
Manufactured on Intersil’s proprietary complementary
bipolar UHF-1 process, the HFA1112 offers a wide -3dB
bandwidth of 850MHz, very fast slew rate, excellent gain
flatness, low distortion and high output current.
A unique feature of the pinout allows the user to select a
voltage gain of +1, -1, or +2, without the use of any external
components. Gain selection is accomplished via
connections to the inputs, as described in the “Application
Information” section. The result is a more flexible product,
fewer part types in inventory, and more efficient use of board
space.
Compatibility with existing op amp pinouts provides flexibility
to upgrade low gain amplifiers, while decreasing component
count. Unlike most buffers, the standard pinout provides an
upgrade path should a higher closed loop gain be needed at
a future date.
File Number 2992.5
Features
• User Programmable for Closed-Loop Gains of +1, -1 or +2
without Use of External Resistors
• Wide -3dB Bandwidth. . . . . . . . . . . . . . . . . . . . . . 850MHz
• Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . . 2400V/µs
• Fast Settling Time (0.1%) . . . . . . . . . . . . . . . . . . . . . 11ns
• High Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 60mA
• Excellent Gain Accuracy . . . . . . . . . . . . . . . . . . . 0.99V/V
• Overdrive Recovery . . . . . . . . . . . . . . . . . . . . . . . . <10ns
• Standard Operational Amplifier Pinout
Applications
• RF/IF Processors
• Driving Flash A/D Converters
• High-Speed Communications
• Impedance Transformation
• Line Driving
This amplifier is available with programmable output limiting
as the HFA1113. For applications requiring a standard buffer
pinout, please refer to the HFA1110 datasheet. For Military
product, refer to the HFA1112/883 data sheet.
Pinout
300
1
-
• Medical Imaging Systems
Ordering Information
PART NUMBER
(BRAND)
8 NC
300
-IN
2
+IN
3
6 OUT
V-
4
5 NC
+
• Radar Systems
• Related Literature
- AN9507, Video Cable Drivers Save Board Space
HFA1112
(PDIP, SOIC)
TOP VIEW
NC
• Video Switching and Routing
7 V+
TEMP.
RANGE (oC)
PACKAGE
PKG.
NO.
HFA1112IP
-40 to 85
8 Ld PDIP
E8.3
HFA1112IB
(H1112I)
-40 to 85
8 Ld SOIC
M8.15
HFA11XXEVAL
High Speed Op Amp DIP Evaluation Board
Pin Description
NAME
PIN
NUMBER
NC
1, 5, 8
No Connection
-IN
2
Inverting Input
+IN
3
Non-Inverting Input
V-
4
Negative Supply
OUT
6
Output
V+
7
Positive Supply
DESCRIPTION
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
HFA1112
Absolute Maximum Ratings
Thermal Information
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSUPPLY
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60mA
Thermal Resistance (Typical, Note 1)
θJA (oC/W) θJC (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . .
98
N/A
SOIC Package . . . . . . . . . . . . . . . . . . .
170
N/A
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
VSUPPLY = ±5V, AV = +1, RL = 100Ω, Unless Otherwise Specified
TEMP (oC)
MIN
TYP
MAX
UNITS
25
-
8
25
mV
Full
-
-
35
mV
Output Offset Voltage Drift
Full
-
10
-
µV/oC
PSRR
25
39
45
-
dB
Full
35
-
-
dB
PARAMETER
TEST CONDITIONS
INPUT CHARACTERISTICS
Output Offset Voltage
Input Noise Voltage (Note 3)
100kHz
25
-
9
-
nV/√Hz
Non-Inverting Input Noise Current (Note 3)
100kHz
25
-
37
-
pA/√Hz
25
-
25
40
µA
Full
-
-
65
µA
Non-Inverting Input Resistance
25
25
50
-
kΩ
Inverting Input Resistance (Note 2)
25
240
300
360
Ω
Input Capacitance
25
-
2
-
pF
Input Common Mode Range
Full
±2.5
±2.8
-
V
25
0.980
0.990
1.02
V/V
Full
0.975
-
1.025
V/V
25
1.96
1.98
2.04
V/V
Full
1.95
-
2.05
V/V
AV = +2, ±2V Full Scale
25
-
0.02
-
%
AV = -1
25
±3.0
±3.3
-
V
Full
±2.5
±3.0
-
V
25, 85
50
60
-
mA
-40
35
50
-
mA
25
-
0.3
-
Ω
Supply Voltage Range
Full
±4.5
-
±5.5
V
Supply Current (Note 3)
25
-
21
26
mA
Full
-
-
33
mA
Non-Inverting Input Bias Current
TRANSFER CHARACTERISTICS
Gain
AV = +1, VIN = +2V
Gain
AV = +2, VIN = +1V
DC Non-Linearity (Note 3)
OUTPUT CHARACTERISTICS
Output Voltage (Note 3)
Output Current (Note 3)
RL = 50Ω
Closed Loop Output Impedance
DC, AV = +2
POWER SUPPLY CHARACTERISTICS
2
HFA1112
Electrical Specifications
VSUPPLY = ±5V, AV = +1, RL = 100Ω, Unless Otherwise Specified (Continued)
TEMP (oC)
MIN
TYP
MAX
UNITS
AV = -1
25
450
800
-
MHz
AV = +1
25
500
850
-
MHz
AV = +2
25
350
550
-
MHz
AV = -1
25
1500
2400
-
V/µs
AV = +1
25
800
1500
-
V/µs
AV = +2
25
1100
1900
-
V/µs
AV = -1
25
-
300
-
MHz
AV = +1
25
-
150
-
MHz
AV = +2
25
-
220
-
MHz
AV = -1
25
-
±0.02
-
dB
AV = +1
25
-
±0.1
-
dB
AV = +2
25
-
±0.015
±0.04
dB
AV = -1
25
-
±0.05
-
dB
AV = +1
25
-
±0.2
-
dB
AV = +2
25
-
±0.036
±0.08
dB
Gain Flatness
(to 100MHz, Notes 2, 3)
AV = -1
25
-
±0.10
-
dB
AV = +2
25
-
±0.07
±0.22
dB
Linear Phase Deviation
(to 100MHz, Note 3)
AV = -1
25
-
±0.13
-
Degrees
AV = +1
25
-
±0.83
-
Degrees
AV = +2
25
-
±0.05
-
Degrees
AV = -1
25
-
-52
-
dBc
AV = +1
25
-
-57
-
dBc
AV = +2
25
-
-52
-45
dBc
AV = -1
25
-
-71
-
dBc
AV = +1
25
-
-73
-
dBc
AV = +2
25
-
-72
-65
dBc
AV = -1
25
-
-47
-
dBc
AV = +1
25
-
-53
-
dBc
AV = +2
25
-
-47
-40
dBc
AV = -1
25
-
-63
-
dBc
AV = +1
25
-
-68
-
dBc
AV = +2
25
-
-65
-55
dBc
AV = -1
25
-
-41
-
dBc
AV = +1
25
-
-50
-
dBc
AV = +2
25
-
-42
-35
dBc
AV = -1
25
-
-55
-
dBc
AV = +1
25
-
-49
-
dBc
AV = +2
25
-
-62
-45
dBc
PARAMETER
TEST CONDITIONS
AC CHARACTERISTICS
-3dB Bandwidth
(VOUT = 0.2VP-P, Notes 2, 3)
Slew Rate
(VOUT = 5VP-P, Note 2)
Full Power Bandwidth
(VOUT = 5VP-P, Note 3)
Gain Flatness
(to 30MHz, Notes 2, 3)
Gain Flatness
(to 50MHz, Notes 2, 3)
2nd Harmonic Distortion
(30MHz, VOUT = 2VP-P, Notes 2, 3)
3rd Harmonic Distortion
(30MHz, VOUT = 2VP-P, Notes 2, 3)
2nd Harmonic Distortion
(50MHz, VOUT = 2VP-P, Notes 2, 3)
3rd Harmonic Distortion
(50MHz, VOUT = 2VP-P, Notes 2, 3)
2nd Harmonic Distortion
(100MHz, VOUT = 2VP-P, Notes 2, 3)
3rd Harmonic Distortion
(100MHz, VOUT = 2VP-P, Notes 2, 3)
3
HFA1112
Electrical Specifications
VSUPPLY = ±5V, AV = +1, RL = 100Ω, Unless Otherwise Specified (Continued)
PARAMETER
TEST CONDITIONS
TEMP (oC)
MIN
TYP
MAX
UNITS
3rd Order Intercept
(AV = +2, Note 3)
100MHz
25
-
28
-
dBm
300MHz
25
-
13
-
dBm
1dB Compression
(AV = +2, Note 3)
100MHz
25
-
19
-
dBm
300MHz
25
-
12
-
dBm
Reverse Isolation
(S12, Note 3)
40MHz
25
-
-70
-
dB
100MHz
25
-
-60
-
dB
600MHz
25
-
-32
-
dB
AV = -1
25
-
500
800
ps
AV = +1
25
-
480
750
ps
AV = +2
25
-
700
1000
ps
AV = -1
25
-
0.82
-
ns
AV = +1
25
-
1.06
-
ns
AV = +2
25
-
1.00
-
ns
AV = -1
25
-
12
30
%
AV = +1
25
-
45
65
%
AV = +2
25
-
6
20
%
0.1% Settling Time (Note 3)
VOUT = 2V to 0V
25
-
11
-
ns
0.05% Settling Time
VOUT = 2V to 0V
25
-
15
-
ns
Overdrive Recovery Time
VIN = 5VP-P
25
-
8.5
-
ns
Differential Gain
AV = +1, 3.58MHz, RL = 150Ω
25
-
0.03
-
%
AV = +2, 3.58MHz, RL = 150Ω
25
-
0.02
-
%
AV = +1, 3.58MHz, RL = 150Ω
25
-
0.05
-
Degrees
AV = +2, 3.58MHz, RL = 150Ω
25
-
0.04
-
Degrees
TRANSIENT CHARACTERISTICS
Rise Time
(VOUT = 0.5V Step, Note 2)
Rise Time
(VOUT = 2V Step)
Overshoot
(VOUT = 0.5V Step, Input tR/tF = 200ps,
Notes 2, 3, 4)
Differential Phase
NOTES:
2. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
3. See Typical Performance Curves for more information.
4. Overshoot decreases as input transition times increase, especially for AV = +1. Please refer to Typical Performance Curves.
Application Information
Closed Loop Gain Selection
The HFA1112 features a novel design which allows the user
to select from three closed loop gains, without any external
components. The result is a more flexible product, fewer part
types in inventory, and more efficient use of board space.
This “buffer” operates in closed loop gains of -1, +1, or +2, and
gain selection is accomplished via connections to the ±inputs.
Applying the input signal to +IN and floating -IN selects a gain
of +1, while grounding -IN selects a gain of +2. A gain of -1 is
obtained by applying the input signal to -IN with +IN grounded.
4
The table below summarizes these connections:
CONNECTIONS
GAIN
(ACL)
+INPUT (PIN 3)
-INPUT (PIN 2)
-1
GND
Input
+1
Input
NC (Floating)
+2
Input
GND
HFA1112
The frequency response of this amplifier depends greatly on
the amount of care taken in designing the PC board. The
use of low inductance components such as chip
resistors and chip capacitors is strongly recommended,
while a solid ground plane is a must!
Attention should be given to decoupling the power supplies.
A large value (10µF) tantalum in parallel with a small value
(0.1µF) chip capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the
input and output of the device. Capacitance directly on the
output must be minimized, or isolated as discussed in the
next section.
For unity gain applications, care must also be taken to
minimize the capacitance to ground seen by the amplifier’s
inverting input. At higher frequencies this capacitance will
tend to short the -INPUT to GND, resulting in a closed loop
gain which increases with frequency. This will cause
excessive high frequency peaking and potentially other
problems as well.
An example of a good high frequency layout is the
Evaluation Board shown in Figure 2.
overdamped response, while points below or left of the curve
indicate areas of underdamped performance.
RS and CL form a low pass network at the output, thus
limiting system bandwidth well below the amplifier
bandwidth of 850MHz. By decreasing RS as CLincreases
(as illustrated in the curves), the maximum bandwidth is
obtained without sacrificing stability. Even so, bandwidth
does decrease as you move to the right along the curve.
For example, at AV = +1, RS = 50Ω, CL = 30pF, the overall
bandwidth is limited to 300MHz, and bandwidth drops to
100MHz at AV = +1, RS = 5Ω, CL = 340pF.
RS (Ω)
PC Board Layout
50
45
40
35
30
25
20
15
10
5
0
AV = +1
AV = +2
0
40
80
120 160 200 240 280 320
LOAD CAPACITANCE (pF)
360 400
FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs
LOAD CAPACITANCE
Driving Capacitive Loads
Evaluation Board
Capacitive loads, such as an A/D input, or an improperly
terminated transmission line will degrade the amplifier’s
phase margin resulting in frequency response peaking and
possible oscillations. In most cases, the oscillation can be
avoided by placing a resistor (RS) in series with the output
prior to the capacitance.
The performance of the HFA1112 may be evaluated using
the HFA11XX Evaluation Board, slightly modified as follows:
Figure 1 details starting points for the selection of this
resistor. The points on the curve indicate the RS and CL
combinations for the optimum bandwidth, stability, and
settling time, but experimental fine tuning is recommended.
Picking a point above or to the right of the curve yields an
∞ (AV = +1)
or 0Ω (AV = +2)
10µF
1. a. For AV = +1 evaluation, remove the 500Ω gain setting
resistor (R1), and leave pin 2 floating.
b. For AV = +2, replace the 500Ω gain setting resistor with
a 0Ω resistor to GND.
The layout and modified schematic of the board are shown
in Figure 2.
To order evaluation boards (part number HFA11XXEVAL),
please contact your local sales office.
TOP LAYOUT
VH
VH
R1
1
8
50Ω
2
7
IN
1. Remove the 500Ω feedback resistor (R2), and leave the
connection open.
0.1µF
10µF
3
6
OUT
4
5
VL
-5V
GND
GND
0.1µF
1
+5V
50Ω
+IN
OUT V+
VL VGND
FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT
5
BOTTOM LAYOUT
HFA1112
Typical Performance Curves
VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified
200
2.0
AV = +2
AV = +2
1.5
100
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (mV)
150
50
0
-50
-100
-150
1.0
0.5
0
-0.5
-1.0
-1.5
-200
-2.0
TIME (5ns/DIV.)
TIME (5ns/DIV.)
FIGURE 3. SMALL SIGNAL PULSE RESPONSE
FIGURE 4. LARGE SIGNAL PULSE RESPONSE
200
1.5
100
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (mV)
150
2.0
AV = +1
50
0
-50
-100
-150
AV = +1
1.0
0.5
0
-0.5
-1.0
-1.5
-200
-2.0
TIME (5ns/DIV.)
TIME (5ns/DIV.)
FIGURE 5. SMALL SIGNAL PULSE RESPONSE
FIGURE 6. LARGE SIGNAL PULSE RESPONSE
200
1.5
100
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (mV)
150
2.0
AV = -1
50
0
-50
-100
AV = -1
1.0
0.5
0
-0.5
-1.0
-1.5
-150
-2.0
-200
TIME (5ns/DIV.)
FIGURE 7. SMALL SIGNAL PULSE RESPONSE
6
TIME (5ns/DIV.)
FIGURE 8. LARGE SIGNAL PULSE RESPONSE
HFA1112
VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued)
6
AV = +1
GAIN
AV = -1
AV = +2
-6
0
PHASE
-90
AV = +2
AV = -1
AV = +1
-180
-270
0.3
1
10
FREQUENCY (MHz)
100
0.3
RL = 100Ω
-360
1000
RL = 1kΩ
0
GAIN
-3
RL = 100Ω
RL = 50Ω
-9
-90
RL = 100Ω
-180
RL = 50Ω
RL = 1kΩ
1
10
100
FREQUENCY (MHz)
-270
-360
1000
180
PHASE
90
0
RL = 50Ω
RL = 1kΩ
0.3
FIGURE 11. FREQUENCY RESPONSE FOR VARIOUS LOAD
RESISTORS
6
1VP-P
AV = +2
GAIN (dB)
6
GAIN
3
4.0VP-P
2.5VP-P
PHASE
0
2.5VP-P
1VP-P
10
100
FREQUENCY (MHz)
-180
-270
-360
1000
FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS OUTPUT
VOLTAGES
7
-180
1000
AV = +1
0
GAIN
-3
VOUT = 4VP-P
VOUT = 2.5VP-P
-6
-90
4.0VP-P
10
100
FREQUENCY (MHz)
3
PHASE (DEGREES)
0
1
-90
FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS LOAD
RESISTORS
9
1
RL = 100Ω
PHASE (DEGREES)
PHASE
0.3
AV = -1, VOUT = 200mVP-P
-6
RL = 50Ω
0
12
10
100
FREQUENCY (MHz)
3
-9
0.3
1
-270
FIGURE 10. FREQUENCY RESPONSE FOR VARIOUS LOAD
RESISTORS
0
-6
-180
RL = 50Ω
RL = 1kΩ
RL = 1kΩ
GAIN
-90
RL = 100Ω
GAIN (dB)
GAIN (dB)
0
PHASE
6
AV = +1, VOUT = 200mVP-P
3
-3
RL = 50Ω
RL = 100Ω
RL = 1kΩ
0
1000
FIGURE 9. FREQUENCY RESPONSE
6
GAIN
3
PHASE (DEGREES)
-9
6
VOUT = 1VP-P
0
PHASE
-90
VOUT = 4VP-P
VOUT = 2.5VP-P
VOUT = 1VP-P
0.3
1
10
100
FREQUENCY (MHz)
-180
-270
-360
PHASE (DEGREES)
-3
GAIN (dB)
0
-360
GAIN (dB)
AV = +2, VOUT = 200mVP-P
9
PHASE (DEGREES)
VOUT = 200mVP-P
3
NORMALIZED PHASE (DEGREES)
NORMALIZED GAIN (dB)
Typical Performance Curves
1000
FIGURE 14. FREQUENCY RESPONSE FOR VARIOUS OUTPUT
VOLTAGES
HFA1112
Typical Performance Curves
AV = -1
15
VOUT = 2.5VP-P
VOUT = 4VP-P
3
GAIN
0
9
VOUT = 1VP-P
-3
-6
180
90
VOUT = 4VP-P
0
VOUT = 2.5VP-P
-90
VOUT = 1VP-P
-180
1
10
100
FREQUENCY (MHz)
PHASE (DEGREES)
PHASE
0.3
VOUT = 5VP-P
12
NORMALIZED GAIN (dB)
GAIN (dB)
6
VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued)
6
3
0
-3
AV = -1
AV = +2
-6
AV = +1
-9
-12
-15
0.3
1000
FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS OUTPUT
VOLTAGES
10
FREQUENCY (MHz)
100
1000
FIGURE 16. FULL POWER BANDWIDTH
900
0.35
AV = +1
800
0.30
NORMALIZED GAIN (dB)
850
BANDWIDTH (MHz)
1
AV = -1
750
700
650
600
AV = +2
0.25
0.20
AV = -1
AV = +1
0.15
0.10
0.05
0
-0.05
550
AV = +2
-0.10
500
-0.15
-50
-25
0
25
50
75
100
125
1
10
TEMPERATURE (oC)
100
FREQUENCY (MHz)
FIGURE 17. -3dB BANDWIDTH vs TEMPERATURE
FIGURE 18. GAIN FLATNESS
4
AV = +2, VOUT = 2V
0.6
2
1
AV = -1
0
-1
AV = +2
-2
AV = +1
-3
-4
SETTLING ERROR (%)
DEVIATION (DEGREES)
3
0.4
0.2
0.1
0
-0.1
-0.2
-0.4
-0.6
-5
-6
0
15
30
45
60
75
90
105
120
135 150
FREQUENCY (MHz)
FIGURE 19. DEVIATION FROM LINEAR PHASE
8
-2
3
8
13
18
23
28
33
38
TIME (ns)
FIGURE 20. SETTLING RESPONSE
43
48
HFA1112
VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued)
-24
235
-30
180
PHASE
-36
45
-24
-54
AV = +2
AV = -1
AV = -1
-72
-78
AV = +2
AV = +2
0
20
40
60
0
GAIN
-36
AV = +1
-42
AV = -1
-48
-54
-84
80
100
120 140
160
180
-60
100 190
200
280 370
FREQUENCY (MHz)
FIGURE 21. LOW FREQUENCY REVERSE ISOLATION (S12)
460 550 640 730
FREQUENCY (MHz)
820
910 1000
FIGURE 22. HIGH FREQUENCY REVERSE ISOLATION (S12)
20
30
2 - TONE
18
16
INTERCEPT POINT (dBm)
OUTPUT POWER AT 1dB COMPRESSION (dBm)
AV = +2
-30
-60
GAIN (dB)
GAIN (dB)
-48
-66
AV = -1
14
12
10
8
AV = +2
AV = +1
6
AV = -1
20
AV = +2
AV = +1
10
4
2
0
100
200
300
FREQUENCY (MHz)
400
0
100
500
-20
AV = +2
-30
-40
-40
DISTORTION (dBc)
-30
-50
100MHz
300
400
FIGURE 24. 3rd ORDER INTERMODULATION INTERCEPT vs
FREQUENCY
-20
-60
200
FREQUENCY (MHz)
FIGURE 23. 1dB GAIN COMPRESSION vs FREQUENCY
DISTORTION (dBc)
90
AV = +1
AV = -1
AV = +1
-42
30MHz
50MHz
-70
AV = +2
-50
-60
-70
-80
-80
-90
-90
30MHz
50MHz
100MHz
-100
-100
-6
-3
0
PHASE (DEGREES)
Typical Performance Curves
3
6
9
12
OUTPUT POWER (dBm)
FIGURE 25. 2nd HARMONIC DISTORTION vs POUT
9
15
-6
-3
0
3
6
9
12
15
OUTPUT POWER (dBm)
FIGURE 26. 3rd HARMONIC DISTORTION vs POUT
18
HFA1112
Typical Performance Curves
VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued)
-20
-20
AV = +1
-30
-30
-40
-40
DISTORTION (dBc)
DISTORTION (dBc)
AV = +1
-50
-60
-70
50MHz
100MHz
30MHz
-50
-60
-70
100MHz
-80
-80
-90
-90
-100
-6
-100
-6
-3
0
3
6
9
OUTPUT POWER (dBm)
12
15
FIGURE 27. 2nd HARMONIC DISTORTION vs POUT
-3
30MHz
0
3
6
9
OUTPUT POWER (dBm)
12
15
FIGURE 28. 3rd HARMONIC DISTORTION vs POUT
-20
-20
AV = -1
AV = -1
-30
-30
-40
-40
DISTORTION (dBc)
DISTORTION (dBc)
50MHz
-50
-60
100MHz
-70
50MHz
30MHz
-50
-60
-70
-80
-80
-90
-90
50MHz
30MHz
100MHz
-100
-100
-6
-3
0
3
6
9
OUTPUT POWER (dBm)
12
-6
15
-3
0
3
6
9
12
15
OUTPUT POWER (dBm)
FIGURE 29. 2nd HARMONIC DISTORTION vs POUT
FIGURE 30. 3rd HARMONIC DISTORTION vs POUT
60
0.04
VOUT = 0.5V
OVERSHOOT (%)
PERCENT ERROR (%)
50
0.02
0
AV = +1
40
30
20
AV = -1
-0.02
10
AV = +2
0
-0.04
-3.0
-2.0
-1.0
0
1.0
INPUT VOLTAGE (V)
2.0
FIGURE 31. INTEGRAL LINEARITY ERROR
10
3.0
100
300
500
700
900
1100
INPUT RISE TIME (ps)
FIGURE 32. OVERSHOOT vs INPUT RISE TIME
1300
HFA1112
Typical Performance Curves
VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued)
60
60
VOUT = 2V
VOUT = 1V
50
OVERSHOOT (%)
OVERSHOOT (%)
50
40
AV = +1
30
20
40
AV = +1
30
20
AV = +2
AV = -1
10
10
AV = -1
AV = +2
0
100
300
500
700
900
1100
0
100
1300
300
INPUT RISE TIME (ps)
900
1100
1300
FIGURE 34. OVERSHOOT vs INPUT RISE TIME
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
25
24
23
SUPPLY CURRENT (mA)
22
21
20
19
18
17
16
15
5
6
7
8
9
-50
10
FIGURE 35. SUPPLY CURRENT vs SUPPLY VOLTAGE
AV = -1
+VOUT (RL= 100Ω)
3.3
3.2
NOISE VOLTAGE (nV/√Hz)
+VOUT (RL= 50Ω)
3.4
|-VOUT| (RL= 100Ω)
3.1
3.0
2.9
2.8
0
25
50
75
100
125
FIGURE 36. SUPPLY CURRENT vs TEMPERATURE
3.6
3.5
-25
TEMPERATURE (oC)
TOTAL SUPPLY VOLTAGE (V+ - V-, V)
|-VOUT| (RL= 50Ω)
50
130
40
110
30
90
20
70
ENI
50
10
INI
2.7
2.6
0
-50
-25
0
25
50
75
TEMPERATURE (oC)
100
125
FIGURE 37. OUTPUT VOLTAGE vs TEMPERATURE
11
0.1
1
10
FREQUENCY (kHz)
30
100
FIGURE 38. INPUT NOISE CHARACTERISTICS
NOISE CURRENT (pA/√Hz)
SUPPLY CURRENT (mA)
700
INPUT RISE TIME (ps)
FIGURE 33. OVERSHOOT vs INPUT RISE TIME
OUTPUT VOLTAGE (V)
500
HFA1112
Die Characteristics
DIE DIMENSIONS:
PASSIVATION:
63 mils x 44 mils x 19 mils
1600µm x 1130µm 483µm
Type: Nitride
Thickness: 4kÅ ±0.5kÅ
METALLIZATION:
TRANSISTOR COUNT:
Type: Metal 1: AlCu (2%)/TiW
Thickness: Metal 1: 8kÅ ±0.4kÅ
52
SUBSTRATE POTENTIAL (Powered Up):
Type: Metal 2: AlCu (2%)
Thickness: Metal 2: 16kÅ ±0.8kÅ
Floating (Recommend Connection to V-)
Metallization Mask Layout
HFA1112
NC
+IN
V-
-IN
NC
NC
NC
V+
OUT
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
12