INTERSIL CA3420E

CA3420, CA3420A
TM
Data Sheet
April 2000
File Number
1320.6
0.5MHz, Low Supply Voltage, Low Input
Current BiMOS Operational Amplifiers
Features
The CA3420A and CA3420 are integrated circuit operational
amplifiers that combine PMOS transistors and bipolar
transistors on a single monolithic chip. The CA3420A and
CA3420 BiMOS operational amplifiers feature gate
protected PMOS transistors in the input circuit to provide
very high input impedance, very low input currents (less than
1pA). The internal bootstrapping network features a unique
guardbanding technique for reducing the doubling of leakage
current for every 10oC increase in temperature. The CA3420
series operates at total supply voltages from 2V to 20V
either single or dual supply. These operational amplifiers are
internally phase compensated to achieve stable operation in
the unity gain follower configuration. Additionally, they have
access terminals for a supplementary external capacitor if
additional frequency roll-off is desired. Terminals are also
provided for use in applications requiring input offset voltage
nulling. The use of PMOS in the input stage results in
common mode input voltage capability down to 0.45V below
the negative supply terminal, an important attribute for single
supply application. The output stage uses a feedback OTA
type amplifier that can swing essentially from rail-to-rail. The
output driving current of 1.5mA (Min) is provided by using
nonlinear current mirrors.
• 1pA Input Current (Typ) (Essentially Constant to 85oC)
• 2V Supply at 300µA Supply Current
• Rail-to-Rail Output Swing (Drive ±2mA into 1kΩ Load)
• Pin Compatible with 741 Operational Amplifiers
Applications
• pH Probe Amplifiers
• Picoammeters
• Electrometer (High Z) Instruments
• Portable Equipment
• Inaccessible Field Equipment
• Battery-Dependent Equipment (Medical and Military)
Functional Diagram
X1
MOS
BIPOLAR
Ordering Information
TEMP.
RANGE (oC)
PART NUMBER
PACKAGE
PKG.
NO.
CA3420AT
-55 to 125
8 Pin Metal Can
T8.C
CA3420E
-55 to 125
8 Ld PDIP
E8.3
+
MOS
BIPOLAR
HIGH GAIN
(50K)
OTA BUFFER
(X2)
X1
BUFFER AMPS;
BOOTSTRAPPED
INPUT PROTECTION
NETWORK
Pinouts
CA3420 (PDIP)
TOP VIEW
CA3420 (METAL CAN)
TOP VIEW
TAB
OFFSET NULL
1
INV.
INPUT
2
NON-INV.
INPUT
3
V-
4
8 STROBE
7 V+
+
6 OUTPUT
5 OFFSET NULL
OFFSET NULL
STROBE
8
7 V+
1
INV.
2
INPUT
NON-INV. 3
INPUT
-
6 OUTPUT
+
4
5 OFFSET NULL
V-
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000
CA3420, CA3420A
Absolute Maximum Ratings
Thermal Information
Supply Voltage (V+ to V-). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15V
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . (V+ + 8V) to (V- -0.5V)
Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1mA
Output Short Circuit Duration (Note 1). . . . . . . . . . . . . . . . Indefinite
Thermal Resistance (Typical, Note 2)
θJA (oC/W) θJC (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . .
105
N/A
Metal Can Package . . . . . . . . . . . . . . .
165
80
Maximum Junction Temperature (Metal Can Package). . . . . . . 175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Short circuit may be applied to ground or to either supply.
2. θJA is measured with the component mounted on an evaluation PC board in free air.
Typical Values Intended Only for Design Guidance, VSUPPLY = ±10V, TA = 25oC
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
CA3420A
CA3420
UNITS
Input Resistance
RI
150
150
TΩ
Input Capacitance
CI
4.9
4.9
pF
Output Resistance
RO
300
300
Ω
Equivalent Input Noise Voltage
eN
62
62
nV/√Hz
38
38
nV/√Hz
mA
f = 1kHz
RS = 100Ω
f = 10kHz
Short-Circuit Current
Source
IOM+
2.6
2.6
To Opposite Supply
Sink
IOM-
2.4
2.4
mA
fT
0.5
0.5
MHz
Gain Bandwidth Product
Slew Rate
SR
Transient Response
Current from Terminal 8
0.5
0.5
V/µs
0.7
0.7
µs
OS
15
15
%
To V-
I8+
20
20
µA
To V+
I8-
2
2
mA
Rise Time
tR
Overshoot
RL = 2kΩ, CL = 100pF
For Equipment Design, At VSUPPLY = ±1V, TA = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
Input Offset Voltage
Input Offset Current (Note 3)
Input Current (Note 3)
TEST
CONDITIONS
CA3420A
TYP
MAX
MIN
TYP
MAX
UNITS
|VIO|
-
5
10
-
2
5
mV
|IIO|
-
0.01
4
-
0.01
4
pA
|II|
Large Signal Voltage Gain
CA3420
MIN
AOL
RL = 10kΩ
-
1
5
-
0.02
5
pA
10
100
-
20
100
-
kV/V
80
100
-
86
100
-
dB
Common Mode Rejection Ratio
CMRR
-
560
1800
-
560
1000
µV/V
55
65
-
60
65
-
dB
Common Mode Input Voltage Range
VlCR+
0.2
0.5
-
0.2
0.5
-
V
VlCR-
-
-1.3
-
-1
-1.3
-
V
100
1000
-
32
320
µV/V
Power Supply Rejection Ratio
PSRR
∆VIO/∆V
60
80
-
70
90
-
dB
Max Output Voltage
VOM+
RL = ∞
0.90
0.95
-
0.90
0.95
-
V
VOM-
-0.85
-0.91
-
-0.85
-0.91
-
V
I+
-
350
650
-
350
650
µA
PD
-
0.7
1.1
-
0.7
1.1
mW
∆VlO/∆T
-
4
-
-
4
-
µV/oC
Supply Current
Device Dissipation
Input Offset Voltage Temperature Drift
NOTE:
3. The maximum limit represents the levels obtainable on high speed automatic test equipment. Typical values are obtained under laboratory conditions.
2
CA3420, CA3420A
For Equipment Design, at VSUPPLY = ±10V, TA = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST
CONDITIONS
CA3420
MIN
CA3420A
TYP
MAX
MIN
TYP
MAX
UNITS
mV
|VIO|
-
5
10
-
2
5
Input Offset Current (Note 4)
|IIO|
-
0.03
4
-
0.03
4
pA
Input Current (Note 4)
|II|
-
0.05
5
-
0.05
5
pA
10
100
-
20
100
-
kV/V
80
100
-
86
100
-
dB
100
320
-
100
320
µV/V
dB
Input Offset Voltage
Large Signal Voltage Gain
AOL
RL = 10kΩ
Common Mode Rejection Ratio
CMRR
70
80
-
70
80
-
Common Mode Input Voltage Range
VlCR+
8.5
9.3
-
9.0
9.3
-
V
VlCR-
-10
-10.3
-
-10
-10.3
-
V
-
32
320
-
32
320
µV/V
70
90
-
70
90
-
dB
V
Power Supply Rejection Ratio
PSRR
VOM+
Max Output Voltage
Supply Current
Device Dissipation
Input Offset Voltage Temperature Drift
∆VIO/∆V
RL = ∞
9.7
9.9
-
9.7
9.9
-
VOM-
-9.7
-9.85
-
-9.7
-9.85
-
V
I+
-
450
1000
-
450
1000
µA
PD
-
9
14
-
9
14
mW
∆VlO/∆T
-
4
-
-
4
-
µV/oC
NOTE:
4. The maximum limit represents the levels obtainable on high speed automatic test equipment. Typical values are obtained under laboratory conditions.
Typical Applications
10GΩ
10pF
+1.5V
Picoammeter Circuit
The exceptionally low input current (typically 0.2pA) makes
the CA3420 highly suited for use in a picoammeter circuit.
With only a single 10GΩ resistor, this circuit covers the range
from ±1.5pA. Higher current ranges are possible with suitable
switching techniques and current scaling resistors. Input
transient protection is provided by the 1MΩ resistor in series
with the input. Higher current ranges require that this resistor
be reduced. The 10MΩ resistor connected to pin 2 of the
CA3420 decouples the potentially high input capacitance
often associated with lower current circuits and reduces the
tendency for the circuit to oscillate under these conditions.
2
1MΩ
The meter is placed in series with the gain network, thus
eliminating the meter temperature coefficient error term.
Supply current in the standby position with the meter
undeflected is 300µA. At full-scale deflection this current
rises to 800µA. Carbon-zinc battery life should be in excess
of 1,000 hours.
500-0-500
µA
7
-
6
CA3420
3
+
M
±50pA
4
5
BATTERY
RETURNS
1
1.5kΩ
±15pA
1.5kΩ, 1%
±5pA
430Ω, 1%
±1.5pA
150Ω, 1%
11kΩ
68Ω
1%
1kΩ
10kΩ
-1.5V
High Input Resistance Voltmeter
Advantage is taken of the high input impedance of the CA3420
in a high input resistance DC voltmeter. Only two 1.5V “AA”
type penlite batteries power this exceedingly high-input
resistance (>1,000,000MΩ) DC voltmeter. Full-scale deflection
is ±500mV, ±150mV, and ±15mV. Higher voltage ranges are
easily added with external input voltage attenuator networks.
10MΩ
FIGURE 1. PICOAMMETER CIRCUIT
+1.5V
3
22MΩ
10MΩ
6
CA3420
100pF
2
-
M
±500mV
4
5
1
500-0-500
µA
7
+
BATTERY
RETURNS
10kΩ
±150mV
1.5kΩ
1.5kΩ, 1%
1kΩ
±50mV
430Ω, 1%
-1.5V
±15mV
1.1kΩ
150Ω, 1%
68Ω
1%
FIGURE 2. HIGH INPUT RESISTANCE VOLTMETER
3
CA3420, CA3420A
1.0
OUTPUT STAGE TRANSISTOR SATURATION
VOLTAGE, Q19 (mV)
INPUT & OUTPUT VOLTAGE EXCURSIONS FROM THE
POSITIVE AND NEGATIVE SUPPLY VOLTAGE (V)
Typical Performance Curves
TA = 25oC
RL = 100kΩ
0.8
0.6
0.4
0.2
VO-
0
-0.2
VO+
-0.4
VICR-
-0.6
VICR+
-0.8
1
5
10
TA = 25oC
V- = 0V
V+ = 2V
V+ = 5V
V+ = 10V
V+ = 20V
100
1000
0.01
-1.0
0
10
15
0.1
SUPPLY VOLTAGE (V)
OUTPUT STAGE TRANSISTOR SATURATION
VOLTAGE, Q17 (mV)
TA = 25oC
V+ = 0V
V- = -20V
V- = -10V
V- = -5V
V- = -2V
100
10
0.01
0.1
1
10
1000
100
10
1
101
102
103
105
TA = 25oC
VS = ±5V
RL = 10kΩ
CL = 0pF
0
-45
80
-90
60
-135
-180
40
OPEN LOOP PHASE (DEGREES)
FIGURE 6. INPUT NOISE VOLTAGE vs FREQUENCY
100
OPEN LOOP VOLTAGE GAIN (dB)
104
FREQUENCY (Hz)
FIGURE 5. OUTPUT VOLTAGE vs LOAD SINKING CURRENT
20
0
101
102
103
104
105
106
FREQUENCY (Hz)
FIGURE 7. OPEN LOOP GAIN AND PHASE SHIFT RESPONSE
4
TA = 25oC
VS = ±10V
VS = ±5V
VS = ±1V
LOAD (SINKING) CURRENT (mA)
1
10
FIGURE 4. OUTPUT VOLTAGE vs LOAD SOURCING CURRENT
EQUIVALENT INPUT NOISE VOLTAGE (nV/√Hz)
FIGURE 3. OUTPUT VOLTAGE SWING AND COMMON MODE
INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE
1000
1
LOAD (SOURCING) CURRENT (mA)
106
CA3420, CA3420A
Dual-In-Line Plastic Packages (PDIP)
E8.3 (JEDEC MS-001-BA ISSUE D)
N
8 LEAD DUAL-IN-LINE PLASTIC PACKAGE
E1
INDEX
AREA
1 2 3
INCHES
N/2
-B-
-AD
E
BASE
PLANE
-C-
A2
SEATING
PLANE
A
L
D1
e
B1
D1
A1
eC
B
0.010 (0.25) M
C A B S
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
-
0.210
-
5.33
4
A1
0.015
-
0.39
-
4
A2
0.115
0.195
2.93
4.95
-
B
0.014
0.022
0.356
0.558
-
C
L
B1
0.045
0.070
1.15
1.77
8, 10
eA
C
0.008
0.014
0.204
C
D
0.355
0.400
9.01
D1
0.005
-
0.13
-
5
E
0.300
0.325
7.62
8.25
6
E1
0.240
0.280
6.10
7.11
5
eB
NOTES:
1. Controlling Dimensions: INCH. In case of conflict between
English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the “MO Series Symbol List” in Section
2.2 of Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated
in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch
(0.25mm).
6. E and eA are measured with the leads constrained to be perpendicular to datum -C- .
7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions.
Dambar protrusions shall not exceed 0.010 inch (0.25mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3,
E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch
(0.76 - 1.14mm).
5
MILLIMETERS
e
0.100 BSC
eA
0.300 BSC
eB
-
L
0.115
N
8
0.355
10.16
5
2.54 BSC
-
7.62 BSC
6
0.430
-
0.150
2.93
8
10.92
7
3.81
4
9
Rev. 0 12/93
CA3420, CA3420A
Metal Can Packages (Can)
T8.C MIL-STD-1835 MACY1-X8 (A1)
REFERENCE PLANE
A
8 LEAD METAL CAN PACKAGE
e1
L
L2
L1
INCHES
ØD2
4.19
4.70
-
0.019
0.41
0.48
1
Øb1
0.016
0.021
0.41
0.53
1
N
Øb2
0.016
0.024
0.41
0.61
-
ØD
0.335
0.375
8.51
9.40
-
α
ØD1
0.305
0.335
7.75
8.51
-
ØD2
0.110
0.160
2.79
4.06
-
k
C
L
e
BASE AND
SEATING PLANE
Q
BASE METAL
Øb1
NOTES
0.185
1
F
MAX
0.016
k1
β
MIN
0.165
Øe
Øb1
Øb
MAX
A
A
2
MIN
Øb
A
ØD ØD1
MILLIMETERS
SYMBOL
LEAD FINISH
Øb2
SECTION A-A
NOTES:
1. (All leads) Øb applies between L1 and L2. Øb1 applies between
L2 and 0.500 from the reference plane. Diameter is uncontrolled
in L1 and beyond 0.500 from the reference plane.
0.200 BSC
5.08 BSC
-
e1
0.100 BSC
F
-
0.040
-
2.54 BSC
1.02
-
k
0.027
0.034
0.69
0.86
-
k1
0.027
0.045
0.69
1.14
2
12.70
19.05
1
1.27
1
L
0.500
0.750
L1
-
0.050
L2
0.250
-
6.35
-
1
Q
0.010
0.045
0.25
1.14
-
α
-
β
45o BSC
45o BSC
45o BSC
45o BSC
N
8
8
2. Measured from maximum diameter of the product.
3
3
4
Rev. 0 5/18/94
3. α is the basic spacing from the centerline of the tab to terminal 1
and β is the basic spacing of each lead or lead position (N -1
places) from α, looking at the bottom of the package.
4. N is the maximum number of terminal positions.
5. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
6. Controlling dimension: INCH.
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
6
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029