INTERSIL HRF3205S

HRF3205, HRF3205S
Data Sheet
100A, 55V, 0.008 Ohm, N-Channel, Power
MOSFETs
These are N-Channel enhancement mode silicon gate
power field effect transistors. They are advanced power
MOSFETs designed, tested, and guaranteed to withstand a
specified level of energy in the breakdown avalanche mode
of operation. All of these power MOSFETs are designed for
applications such as switching regulators, switching
converters, motor drivers, relay drivers, and drivers for high
power bipolar switching transistors requiring high speed and
low gate drive power. These types can be operated directly
from integrated circuits.
NOTE: Calculated continuous current based on maximum
allowable junction temperature. Package limited to 75A
continuous, see Figure 9.
June 1999
PACKAGE
4447.4
Features
• 100A, 55V (See Note)
• Low On-Resistance, rDS(ON) = 0.008Ω
• Temperature Compensating PSPICE® Model
• Thermal Impedance SPICE Model
• UIS Rating Curve
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
D
Ordering Information
PART NUMBER
File Number
G
BRAND
HRF3205
TO-220AB
HRF3205
HRF3205S
TO-263AB
HRF3205S
S
NOTE: When ordering, use the entire part number. Add the suffix T
to obtain the TO-263AB variant in tape and reel, e.g., HRF3205ST.
Packaging
JEDEC TO-220AB
JEDEC TO-263AB
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
DRAIN
(FLANGE)
GATE
SOURCE
4-29
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
HRF3205, HRF3205S
TC = 25oC, Unless Othewise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS
Drain Current
Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
Absolute Maximum Ratings
55
55
±20V
V
V
V
100
390
Figure 10
175
1.17
-55 to 175
A
A
W
W/oC
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V
55
-
-
V
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA
2
-
4
V
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
Breakdown Voltage Temperature
Coefficient
Drain to Source On Resistance
Turn-On Delay Time
VDS = 55V, VGS = 0V
-
-
25
µA
VDS = 44V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±20V
-
-
100
nA
∆V(BR)DSS/
∆TJ
Reference to 25oC, ID = 250µA
-
0.057
-
V
rDS(ON)
ID = 59A, VGS = 10V (Figure 4)
-
0.0065
0.008
Ω
VDD = 28V, ID ≅ 59A,
RL = 0.47Ω, VGS = 10V,
RGS = 2.5Ω
-
14
-
ns
IDSS
IGSS
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Total Gate Charge
-
100
-
ns
td(OFF)
-
43
-
ns
tf
-
70
-
ns
-
-
170
nC
-
-
32
nC
-
-
74
nC
-
4000
-
pF
-
1300
-
pF
-
480
-
pF
-
7.5
-
nH
-
4.5
-
nH
-
-
0.85
oC/W
TO-220
-
-
62
oC/W
TO-263 (PCB Mount, Steady State)
-
-
40
oC/W
Qg
Gate to Source Charge
Qgs
Gate to Drain “Miller” Charge
Qgd
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDD = 44V, ID ≅ 59A,
VGS = 10V, Ig(REF) = 3mA
(Figure 6)
VDS = 25V, VGS = 0V,
f = 1MHz (Figure 5)
Internal Source Inductance
LS
Measured From the Contact
Modified MOSFET
Screw on Tab to Center of Die Symbol Showing the
Internal Devices InMeasured From the Drain
ductances
Lead, 6mm (0.25in) From
D
Package to Center of Die
Internal Drain Inductance
LD
Measured From the Source
Lead, 6mm (0.25in) From Header to Source Bonding Pad
LD
G
LS
S
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to
Ambient
RθJA
4-30
HRF3205, HRF3205S
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Continuous Source to Drain Current
MIN
TYP
MAX
UNITS
-
-
100
(Note 1
A
-
-
390
A
ISD = 59A (Note 4)
-
-
1.3
V
trr
ISD = 59A, dISD/dt = 100A/µs (Note 4)
-
110
170
ns
QRR
ISD = 59A, dISD/dt = 100A/µs (Note 4)
-
450
680
nC
ISD
Pulsed Source to Drain Current (Note 2)
ISDM
TEST CONDITIONS
MOSFET
Symbol Showing
The Integral
Reverse P-N
Junction Diode
D
G
S
Source to Drain Diode Voltage
VSD
Reverse Recovery Time
Reverse Recovered Charge
NOTE:
2. Repetitive rating; pulse width limited by maximum junction temperature (See Figure 11)
Typical Performance Curves
1000
ID, DRAIN TO SOURCE CURRENT (A)
ID, DRAIN TO SOURCE CURRENT (A)
1000
VGS IN DECENDING ORDER
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
100 4.5V
20µs PULSE WIDTH
TC = 25oC
10
0.1
1.0
10
100
VGS IN DECENDING ORDER
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
100 4.5V
10
0.1
VDS, DRAIN TO SOURCE VOLTAGE (V)
1
10
100
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 1. OUTPUT CHARACTERISTICS
FIGURE 2. OUTPUT CHARACTERISTICS
1000
2.5
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
ID, DRAIN TO SOURCE CURRENT(A)
20µs PULSE WIDTH
TC = 175oC
TJ = 25oC
100
TJ = 175oC
10
VDS = 25V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
1
3
4.5
6
7.5
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 3. TRANSFER CHARACTERISTICS
4-31
9
2.0
ID = 98A, VGS = 10V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
1.5
1.0
0.5
0
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 4. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
200
HRF3205, HRF3205S
Typical Performance Curves
(Continued)
20
8000
7000
C, CAPACITANCE (pF)
6000
VGS, GATE TO SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGS
5000
CISS
4000
3000
COSS
2000
CRSS
1000
VDS = 28V
16
VDS = 11V
12
VDS = 44V
8
4
0
0
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
1
1000
1
1.0
1.5
100
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10
VDSS(MAX) = 55V
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
60
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
100
30
CURRENT LIMITED
BY PACKAGE
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 9. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
4-32
100
FIGURE 8. FORWARD BIAS SAFE OPERATING AREA
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
90
1ms
10ms
1
1000
120
75
180
100µs
1
2.0
FIGURE 7. SOURCE TO DRAIN DIODE FORWARD VOLTAGE
50
144
10µs
VSD, SOURCE TO DRAIN VOLTAGE (V)
0
25
108
FIGURE 6. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
ID, DRAIN CURRENT (A)
TJ = 25oC
0.5
72
1000
TJ = 175oC
10
36
Qg , GATE CHARGE (nC)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
100
0
100
FIGURE 5. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
ISD, REVERSE DRAIN CURRENT(A)
ID = 59A
STARTING TJ = 25oC
STARTING TJ = 150oC
10
0.01
0.1
1
10
tAV, TIME IN AVALANCHE (ms)
FIGURE 10. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
100
HRF3205, HRF3205S
Typical Performance Curves
(Continued)
ZθJC, NORMALIZED
THERMAL IMPEDANCE
10
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
1
PDM
0.1
t1
0.01
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
10-5
10-4
10-3
10-2
10-1
t, RECTANGULAR PULSE DURATION (s)
100
101
FIGURE 11. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 12. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 13. UNCLAMPED ENERGY WAVEFORMS
VDD
VDS
RL
Qg(TOT)
Qgd
VGS
Qgs
VGS
+
VDD
VDS
DUT
0
IG(REF)
IG(REF)
0
FIGURE 14. GATE CHARGE TEST CIRCUIT
4-33
FIGURE 15. GATE CHARGE WAVEFORM
HRF3205, HRF3205S
Test Circuits and Waveforms
(Continued)
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
-
VDD
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 16. SWITCHING TIME TEST CIRCUIT
4-34
10%
50%
50%
PULSE WIDTH
FIGURE 17. RESISTIVE SWITCHING WAVEFORMS
HRF3205, HRF3205S
PSPICE Electrical Model
SUBCKT HRF3205P3 2 1 3 ;
rev 7/25/97
CA 12 8 4.9e-9
CB 15 14 4.9e-9
CIN 6 8 3.45e-9
LDRAIN
DPLCAP
DRAIN
2
5
10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
-
EBREAK 11 7 17 18 57
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
EVTHRES
+ 19 8
+
LGATE
GATE
1
11
+
17
EBREAK 18
-
50
EVTEMP
RGATE +
18 22
9
20
21
16
DBODY
MWEAK
6
MMED
MSTRO
RLGATE
LDRAIN 2 5 1e-9
LGATE 1 9 2.6e-9
LSOURCE 3 7 1.1e-9
K1 LGATE LSOURCE 0.0085
ESLC
RDRAIN
6
8
ESG
DBREAK
+
RSLC2
5
51
IT 8 17 1
RLDRAIN
RSLC1
51
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
RLSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 3.5e-4
RGATE 9 20 0.36
RLDRAIN 2 5 10
RLGATE 1 9 26
RLSOURCE 3 7 11
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 4.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
S1A
12
S2A
13
8
S1B
CA
RBREAK
15
14
13
17
18
RVTEMP
S2B
13
CB
6
8
VBAT
5
8
EDS
-
IT
14
+
+
EGS
19
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*550),3))}
.MODEL DBODYMOD D (IS = 4.25e-12 RS = 1.8e-3 TRS1 = 2.75e-3 TRS2 = 5e-6 CJO = 5.95e-9 TT = 4e-7 M = 0.55)
.MODEL DBREAKMOD D (RS = 0.06 IKF = 30 TRS1 = -3e-3 TRS2 = 3e-6)
.MODEL DPLCAPMOD D (CJO = 4.45e-9 IS = 1e-30 N = 1 M = 0.88 VJ = 1.45)
.MODEL MMEDMOD NMOS (VTO = 2.93 KP = 9.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1)
.MODEL MSTROMOD NMOS (VTO = 3.23 KP = 150 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.35 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10)
.MODEL RBREAKMOD RES (TC1 = 8e-4 TC2 = 4e-6)
.MODEL RDRAINMOD RES (TC1 = 8e-2 TC2 = 5e-6)
.MODEL RSLCMOD RES (TC1 = 1e-4 TC2 = 1.05e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-4 TC2 = 1.5e-5)
.MODEL RVTHRESMOD RES (TC1 = -2.3e-3 TC2 = -1.2e-5)
.MODEL RVTEMPMOD RES (TC1 = -2.2e-3 TC2 = -7e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -9 VOFF= -4)
VON = -4 VOFF= -9)
VON = 0 VOFF= 2.5)
VON = 2.5 VOFF= 0)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
4-35
HRF3205, HRF3205S
SPICE Thermal Model
7
JUNCTION
REV 25 July 97
HRF3205
CTHERM1 7 6 2.53e-5
CTHERM2 6 5 1.38e-3
CTHERM3 5 4 7.00e-3
CTHERM4 4 3 2.50e-2
CTHERM5 3 2 1.33e-1
CTHERM6 2 1 5.75e-1
RTHERM1
RTHERM1 7 6 7.78e-4
RTHERM2 6 5 8.55e-3
RTHERM3 5 4 3.00e-2
RTHERM4 4 3 1.42e-1
RTHERM5 3 2 2.65e-1
RTHERM6 2 1 2.33e-1
RTHERM2
CTHERM1
6
CTHERM2
5
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
1
CASE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
4-36
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029