Specifications Download

Technical Data
Cl
Ti
NICHIA
Cl
CORPORATION
Ever Researching for a Brighter World
CONTENTS
1.
2.
3.
4.
5.
6.
7.
8.
General Features
Product Guide
Solubility in Various Solvents
Solubility in Water and pH
Stability
Decomposition Mechanism
Applications (Examples)
Application in Organic Synthesis (Examples)
◆ Synthesis of Methylenation Reagent
◆ Methylenation of Aldehydes, Ketones, Esters, Lactones, and Amides
◆ Cp2TiCl2-Catalyzed Carbometalation of Alkynols
◆ π-Allyl titanium Compounds in Organic Synthesis
◆ Hydroalumination of Olefins Catalyzed by Cp2TiCl2
◆ Hydrogenolysis of Allylalcohols Catalyzed by Cp2TiCl2
◆ Isomerization Catalyzed by Cp2TiCl2
◆ Olefin Metathesis Catalyzed by Cp2TiCl2
◆ Hydrogenation of Olefins and Conjugated Diolefins Catalyzed by Cp2TiCl2
◆ Cp2TiCl2-Catalyzed Reduction Using Grignard Reagent
◆ Grignard Exchange Reactions of Alkenes, Dienes and Alkynes
◆ Preparation of Titanacyclopentenes and –pentadienes Using Cp2TiCl2
◆ Double C-C Bond Cleavage of Cyclopentadienyl Ligand
◆ Enyne Cyclization by Cp2TiCl2
◆ Reductive Opening of Epoxides
◆ Carbosilylation of Alkenes and Dienes Using Alkyl Halides and Chlorosilanes
◆ Regioselective Syn-Hydrosilation of Alkynes
9. Storage and Safety Handling etc.
1.General Features
(1) Titanocene Dichloride highly acts on the unsaturated compounds and shows
excellent effects as an active homogeneous hydrogenation catalyst under
moderate conditions.
(2) Titanocene Dichloride improves stereo regularity due to the effect of
cyclopentadienyl group.
(3) Titanocene Dichloride can be widely used for various derivatives which
become the basic materials for high performance chemical products.
(4) Consistently high/uniform quality has been realized by the
strict manufacturing process/quality control.
We have strong customer-service engineering team in our V-plant
listed on the last page. Please feel free to contact us at
the nearest Nichia sales office if you are interested in this product
or other Titanocene derivatives.
Ever Researching for a Brighter World
2.Product Guide
2-1. Physical and Chemical Properties
Chemical Name : Bis-Cyclopentadienyl Titanium Dichloride
Titanocene Dichloride
Molecular Formula : (C5H5)2TiCl2
Molecular Weight : 248.99
Appearance : Red ~ Reddish-brown crystalline powder
Melting Point : 287~293 ℃
Sublimation Point : 160 ℃ (13 Pa)
Solubility : Soluble in Halogenated Hydrocarbon,
Aromatic Hydrocarbon and Protic Solvents.
Slightly Soluble in Aliphatic Hydrocarbon.
Decomposability : Titanocene Dichloride gradually decomposes by the moisture
and the oxygen in air if left in the open air.
Titanocene Dichloride is relatively stable against heat.
2-2. Assay and Impurities
Specifications
Typical Data
Theoretical Value
Titanium (Ti)
:
≧ 19.15%
19.18%
19.24%
Chlorine (Cl)
:
≧ 28.35%
28.40%
28.48%
Iron (Fe )
:
≦
0.0005%
0.01%
Analytical Data of Titanocene Dichloride
Suppliers
Ti(%)
Cl(%)
Cl/Ti
(Molar Ratio)
Nichia
19.18
28.40
2.00
Reagent A
19.26
28.32
1.99
Crystalline Powder
Narrow PSD, Fe: 5 ppm
LC Purity: ≧99%
Crystalline Powder
Broad PSD
Reagent B
18.50
27.82
2.03
Powder
Reagent C
18.88
28.11
2.01
Reagent D
19.19
28.16
1.98
Reagent E
18.83
28.34
2.03
Reagent F
18.83
27.82
2.00
Crystalline Powder
Broad PSD
Crystalline Powder
Broad PSD, Fe: 154 ppm
Crystalline Powder
Broad PSD, Fe: 25 ppm
Crystalline Powder
Broad PSD, Fe: 32 ppm
Theoretical
Value
19.24
28.48
2.00
Notes
Ti and Cl contents were determined in Nichia.
Ever Researching for a Brighter World
3. Solubility in Various Solvents
N,N-Dimethylformamide
Acetone, THF, CHCl3 , CH2 Cl2
40
450
solubility(g/l)
solubility(g/l)
500
400
350
CH2 Cl2
THF
30
300
CH3 Cl
250
20
200
Acetone
150
10
100
50
0
0
0
20
40
60
80
100 120
140
temperature(℃)
0
10
20
30
50
60
70
temperature(℃)
Alcohols
Toluene, Xylene, n-Hexane
8
solubility(g/l)
20
solubility(g/l)
40
15
Toluene
7
Methanol
6
5
4
10
3
Xylene
5
Isopropanol
2
Ethanol
1
n-Hexane
0
0
0
20
40
60
80
100
0
120
10
20
30
40
50
60
temperature(℃)
temperature(℃)
Solubility (g/l)
4. Solubility in Water and pH
60
50
40
Conspicuous
Hydrolysis
30
Solubility
20
10
Temperature (℃)
0
0
10
20
30
40
50
-10
0.5
pH
1.0
-20
1.5
-30
pH
Conspicuous
Hydrolysis
2.0
-40
Ever Researching for a Brighter World
5. Stability
(1) Titanocene Dichloride is stable in nitrogen atomosphere under 50℃ and its purity
will not deteriorate.
purity(%)
Nitrogen
100
99
≦50℃
98
≦100℃
97
≦150℃
96
≦200℃
95
94
0
2
4
6
8
10
12
14
16
day
(2) In open air its quality will deteriorate due to hydrolysis and influence of oxygen.
purity(%)
Air (humidity 25%)
100
15℃
99
98
40℃
97
96
95
94
0
2
4
6
8
10
12
14
16
day
(3) Its quality will deteriorate under the influence of ultraviolet rays.
purity(%)
Ultraviolet rays
100
99
98
30℃
97
96
95
94
0
2
4
6
8
10
12
14
16
day
Ever Researching for a Brighter World
6.Decomposition Mechanism
1. Hydrolysis
H2O
Cp2 TiCl2
HCl
nH2O
Cp2 Ti(OH)Cl
※1
Cp + H Cl
Cp3Ti2Cl(OH)
Ti O2 ・ m H 2 O
※1: G. Wilkinson, F.A. Cotton, Progress in Inorganic Chemistry,1, 1-124 (1959)
2. Photolysis and Pyrolysis
Ray & Heat
Cp2 TiCl2
・Cp + ・Cp Ti Cl2
Atmosphere
Pyrolysis (Heating)
- ( Cp & Cl )
Ti O2
: Identified Substances
540℃…All Anatase Type
750℃…Anatase Type and Rutile Type Mixtures
950℃…All Rutile Type
Ever Researching for a Brighter World
7. Applications ( Examples )
Cp 2 TiCl 2
Polymerization Catalysts
( PE ・ PP etc)
1)~6)
Hydrogenation Catalysts
(Unsaturated Compounds)
7)~13)
Alko xyl an d
Alkyl C o m po u n ds
Organic Synthesis Catalysts
(Pharmaceutical Intermediates etc)
14)~23)
Curing Agents
(Photopolymerization/Adhesives)
24)~28)
Azo
C o m po u n ds
Electronic Materials
(Optical Device ・ Semiconductor)
29)~33)
References of Applications
1)J. Polym. Sci., 3,1729 (1965) 2)Polym. Sci. Technol., 37,239 (1988)
3)JP 01282214 A 4)DD 237671 A1 5)DD 282013 A5 6)JPH 8-12716 A
7)Am.Chem. Soc. Div. Pet. Chem. 27,816 (1982) 8)J. Am. Chem. Soc. 85 , 4014 (1965)
9)JPH 7-90017 A
10)JPH 11-071426 A 11) J. Organomet. Chem. 382,69 (1990)
12)J. Organomet. Chem. 384,C17-20 (1990) 13)USP-529807 (1990)
14)Angew. Chem. Int Ed Eng 18,477 (1979) 15)J. Organomet. Chem. 302,281(1986)
16)Huaxua Xuebao 46,703 (1988) 17)J. Am. Chem. Soc. 110,8561 (1988)
18)Tetrahedron. Lett 31,3105 (1990) 19)Can. J. Chem. 68,471 (1990)
20)J. Am. Chem. Soc. 113,5093 (1991)
21)J. Chem. Soc. Chem. Commun., 13,941 (1992)
22)J. Am. Chem. Soc., 114,2276 (1992)
23)EP 407804 A1 24)Proceadings of Conference on Radiation Curing Asia 461 (1988)
25)JPS 63-41484 A (or CHP 3101/86-2) 26)JPH 4-47680 B
27)JPH 6-65549 A 28)EP 401166 A2 29)J. Organometal Chem.111,297 (1976)
30)Appl. Phys. Lett., 43,992 (1983)
31)Proc Int Conf Chem Vapor Deposition., 11,703 (1990)
32)JPH 6-65549 A 33)JPH 4-235994A
Ever Researching for a Brighter World
8.Application of Cp2TiCl2 in Organic Synthesis
Synthesis of Methylenation Reagent
〇 Tebbe Reagent
Cp2Ti
AlMe2
Cl
Tebbe Reagent
Cp2TiCl2 + 2Me3Al
〇 Petasis Reagent
+ Me2 AlCl
+ CH4
J. Am. Chem. Soc., 100, 3611 (1978)
Me
Cp2TiCl2 +
2 MeMgCl
+
Cp2Ti
2 MgCl2
Me
Petasis Reagent
〇 Titanacyclobutane
Cp2Ti
J. Am. Chem. Soc., 112, 6392 (1990)
R1
R1
AlMe2
Cp2Ti
+
Cl
R2
R2
Tebbe reagent
Titanacyclobutane
J. Am. Chem. Soc., 102, 6876 (1980)
Methylenation of Aldehydes, Ketones, Esters, Lactones, and Amides
OTBS OBn
OTBS O
OTBS
EtO
OBn
OTBS
H
O
OTBS OBn
OTBS
EtO
H
82%
O
OBn
OTBS
O
Tebbe Reagent
Petasis Reagent
Titanacyclobutane
65%
O
Cp2Ti
OTBS
O
O
OEt
CH2
O
O
87%
OEt
O
O
85%
O
O
Me
N
Ph
Ph
Me
97%
Me
N
Me
J. Am. Chem. Soc., 114, 2524 (1992)
J. Am. Chem. Soc., 100, 3611 (1978)
J. Am. Chem. Soc., 102, 3270 (1980)
J. Org. Chem., 50, 1212 (1985)
Ever Researching for a Brighter World
Cp2TiCl2-Catalyzed Carbometalation of Alkynols
OH
HC
+ 2 Et2AlCl
Cp2TiCl2(10 mol%)
OH
H
H
OH
+
AlEtCl
Et
ClEtAl
:
1
Et
1
J. Org. Chem., 44, 3457 (1979)
π-Allyltitanium Compounds in Organic Synthesis
Cp2TiCl2
+
2
MgBr
THF
Ti
Cp
Cp
π -Allyltitanium Compounds
J. Organometal. Chem., 8, 115 (1967)
Reaction Scheme
MgBr
Cp2TiCl2
Cp2Ti
(Ⅳ )
Cp2Ti
(Ⅳ )
MgBr
Cl
Cl
(Ⅲ)
Cp2Ti
Ti
(Ⅲ)
Cp
(Ⅲ)
Cp
π -Allyltitanium Compounds
○ Insertion Reactions
R
C R'
O
R
Cp2Ti
O
R
1) 4 N-HCl
OH
1) 4 N-HCl
COOH
R'
CO2
Cp2Ti
Ti
Cp
O
O
Cp
RC
π-Allyltitanium Compounds
C
R' + Cp2TiCl2
2) air
2) air
+ Cp2TiCl2
O
N
Cp2Ti
N
C
R
1) 4 N-HCl
2) air
R
+ Cp2TiCl2
J. Chem. Soc., Chem. Commun., 342 (1981)
Tetrahedron Lett., 22, 243 (1981)
J. Chem. Soc., Chem. Commun., 180 (1981)
Ever Researching for a Brighter World
Hydroalumination of Olefins Catalyzed by Cp2TiCl2
cat.Cp2TiCl2 (5 mol%)
NaAlH4 + 4RCH=CH2
NaAl(CH2CH2R)4
J. Org. Chem., 45, 1035 (1980)
Hydrogenolysis of Allylalcohols Catalyzed by Cp2TiCl2
OH
+ LiAlH4
cat.Cp2TiCl2 (5 mol%)
Chem. Lett., 103 (1980)
Isomerization Catalyzed by Cp2TiCl2
cat.Cp2TiCl2 (0.4 mol%)
LiAlH4 (1.6 mol%)
Tetrahedron Lett., 21, 637 (1980)
Olefin Metathesis Catalyzed by Cp2TiCl2
CH3(CH2)7CH=CH(CH2)7COOEt
WCl6 (10 mol%)
Cp2TiMe2 (12 mol%)
EtO2C(CH2)7CH=CH(CH2)7COOEt +
CH3(CH2)7CH=CH(CH2)7CH3
Tetrahedron Lett., 21, 2955 (1980)
Hydrogenation of Olefins and Conjugated Diolefins Catalyzed by Cp2TiCl2
cat.Cp2TiCl2 + Et3Al
J. Am. Chem. Soc., 85, 4014 (1963)
cat.Cp2TiCl2 + n-BuLi or PhMgBr
J. Org. Chem., 33, 1689 (1968)
Ever Researching for a Brighter World
Cp2TiCl2-Catalyzed Reduction Using Grignard Reagent
○ Cp2TiCl2-Catalyzed Reduction of Ketones and Aldehydes
Cp2TiCl2 (3 mol%)
+ RMgBr
O
H2O
OH
(R=propyl, iso-propyl,2-methylbutyl, hexyl etc.)
Catalytic Cycle
O
Cp2TiH
olefin
R1
R2
(Ⅲ)
R1
Cp2TiCl2 + 2 RMgX
Cp2Ti
(Ⅳ )
R
Cp2Ti
(Ⅲ)
R1
XMg
O
O
H
H
R2
(Ⅲ)
RMgX
R2
Tetrahedron Lett., 21, 2171 (1980)
○ Cp2TiCl2-Catalyzed Reduction of Esters Using Polymethylhydrosiloxane as the Stoichiometoric Reductant
2~5 mol% (Cp2TiCl2 /2 n-BuLi or 2 EtMgBr)
R1CO2R2
workup
R3SiH(2.5 eq)
THF
R1CH2OH
R3SiH ; poly-(methylhydrosiloxane)
Ester
Product
mol% Cat
n-BuLi
or EtMgBr
Time(h)
Yield(%)
PhCO2Me
PhCH2OH
2
EtMgBr
1.5
94
5
n-BuLi
1
65
5
EtMgBr
5
88
5
EtMgBr
17.5
92
CO2Me
CH2OH
CO2Et
CH2OH
CO2Et
S
CH2OH
S
J. Org. Chem., 59, 4323 (1994)
Ever Researching for a Brighter World
○ Distribution of The Cp2TiCl2-Catalyzed Grignard Reaction Products
R in RMgBr
C2H5
mol% of Cp2TiCl2
CH3CH2CH2
(CH3)2CHCH2
H
H
Cp2TiCl2
C2H5COOCH3 + 2 RMgBr
+ C2H5 C R
C H
OH
OH
1
2
R
C2H5
+
C R
OH
3
Product Distribution(%)
Total Yield(%)
1
2
3
0
4
0
96
99
1
9
90
1
97
4
50
50
0
96
8
78
22
0
98
0
0
60
36
86
0.13
4
96
0
92
1
73
27
0
99
2
96
4
0
94
○ The Yields of Secondary Alcohols from The Cp2TiCl2-Catalyzed Grignard Reactions with Esters
H
Cp2TiCl2
R1COOCH3 + 2 R2MgBr
C R2
R1
OH
Secondary Alcohol
Starting Material
Catalyst Content
Ester
Grignard Reagent
R1 in R1COOCH3
R2 in R2MgBr
C6H13
*
Yield of R1R2CHOH
(mol%)
(%)
CH3
1
*
C6H13
CH3CH2
1
*
C2H5
CH3CH2CH2
1
83
C6H13
1
81
(CH3)2CH
1
75
C6H5CH2
1
88
C2H5
(CH3)2CH
0.4
74
C2H5
(CH3)2CHCH2
0.13
85
CH3
C6H13
1
91
C2H5
C6H5
1
*
No secondary alcohol was obtained.
Tetrahedron Lett., 21, 2175 (1980)
Ever Researching for a Brighter World
Grignard Exchange Reactions of Alkenes, Dienes and Alkynes
〇 Cp2TiCl2-Catalyzed Carbomagnesation
1) cat.Cp2TiCl2 (1 mol%)
+
2) BF3・OEt2
3) H2O2, NaOH
MgCl
OH
J. Am. Chem. Soc., 97, 6870 (1975)
Ph
H+
Ph
Ph
cat.Cp2TiCl2 (5 mol%)
+ tBu-Cl
Ph
n
BuMgCl
in THF, 0 ℃, 2 h
Ph
t
Ph
t
Bu
H
Bu
MgCl
Br
Ph
Ph
t
Bu
J. Org. Chem., 69, 573 (2004)
〇 Cp2TiCl2-Catalyzed Hydromagnesation
+ PrMgBr
CH3COCH3
cat.Cp2TiCl2 (1 mol%)
OH
MgBr
95%
Tetrahedron Lett., 21, 365 (1980)
Catalytic Cycle
Cp2TiH
olefin
(Ⅲ)
Cp2TiCl2 + 2 PrMgBr
(Ⅳ )
Cp2Ti
Pr
(Ⅲ)
(Ⅲ)
PrMgBr
CH3COCH3
OH
R
C
C
Ar
+
TiCp2
MgBr
n
BuMgCl
cat.Cp2TiCl2 (3 mol%)
Ar
R
C
H
C
MgCl
Tetrahedron Lett., 22, 85 (1981)
Ever Researching for a Brighter World
Preparation of titanacyclopentenes and -pentadienes using Cp2TiCl2
○ Preparation of titanacyclopentenes using Cp2TiCl2
2 eq EtMgBr
Cp2TiCl2
2 eq EtMgBr
Cp2TiCl2
R2
Alkyne
Cp2TiEt2
THF, -78 ℃,1 h
R1
Cp2Ti
-30 ℃,3 h
Cp2TiEt2
Cp2Ti
EtH
R1
R1
R2
R1
R2
Cp2Ti
R2
Cp2Ti
○ Preparation of titanacyclopentadienes using Cp2TiCl2
Cp2TiCl2
2 eq nBuLi
Cp2TinBu2
THF, -78 ℃,1 h
R
R
Alkyne
Cp2Ti
-10 ℃,1 h
R
R
Et
Cp2TiCl2
2 eq nBuLi
Cp2TiBu2
Cp2Ti
BuH
R
R
R
R
R
R
R
Cp2Ti
R
R
R
Cp2Ti
Cp2Ti
R
R
R
R
Et
J. Organometal. Chem., 633, 18 (2001)
Double C-C bond Cleavage of Cyclopentadienyl Ligand
Et
Et
Et
Et
Et
PhCN (2.0 eq)
Cp2Ti
+
THF, 50 ℃, 12 h
Et
Et
Ph
Et
N
Ph
D
D
D
D
N
Ph
Et
Et
Ti
D D
Et
D Et
D
D
46%
Not Obtained
Et
Et
D
Et
D
Et
PhCN (2.0 eq)
THF, 50 ℃, 12 h
Et
Et
62%
D
Et
Et
59%
D
D
D
+
Ph
N
Ph
49%
J. Am. Chem. Soc., 125, 9568 (2003)
Ever Researching for a Brighter World
Enyne Cyclization by Cp2TiCl2
Me
O
Cp2Ti(PMe3)2
Me
Cp2Ti
or
Cp2TiCl2 / 2 EtMgBr
CO
O
CHCl3
R
R
R3SiCN
benzene or toluene
argon
45 ℃, 18~24 h
O
HOAc / NaOAc(1:1)
THF, 0 ℃, 2~4 h
10 mol% Cp2Ti(PMe3)2
X
O
N
R
X or sat.aq.CuSO4, THF, r.t., 3~5 h
O
X
R3Si
Catalytic Cycle
R
R
N
X
"Cp2Ti"
X
(Ⅱ)
R'
R
X
Cp2Ti
R
O
(Ⅳ )
X
(Ⅳ )
R
Cp2Ti
R'CN
X
N
R'NC
R'
Starting Material
Cyanide
Yield(%)
Product
Ph
Ph
Ph
O
Me3SiCN
O
80
Ph
N
Me3SiCN
O
Ph
Me
O
N-Ph
44
Me
N
BOC
Et3SiCN
O
CO2tBu
43
CO2tBu
J. Am. Chem. Soc., 116, 8593 (1994)
Ever Researching for a Brighter World
Reductive Opening of Epoxides
CO2Et
CO2Et
O
CO2Et
cat.Cp2TiCl2 (5 mol%)
HO
THF
30 h
CO2Et
78%
cat.Cp2TiCl2 (5 mol%)
Zn
O
OH
THF
30 h
76%
Angew. Chem. Int. Ed., 37, (1/2), 101 (1998)
Carbosilylation of Alkenes and Dienes Using Alkyl Halides and Chlorosilanes
R
+
R'-Br
+
R
cat.Cp2TiCl2 (5 mol%)
R"3SiCl
n
R'
BuMgCl (2.2 eq)
SiR"3
R
+
R'-Br
+
R"3SiCl
R
cat.Cp2TiCl2 (5 mol%)
R"3Si
n
BuMgCl (2.2 eq)
R'
R
R
Starting Material
t
R-X
R'3Si-Cl
Time(h)
Bu-Br
Et3Si-Cl
1
Product
Yield(%)
96
SiEt3
Ph
2-Norbornyl-Br
n
Pr3Si-Cl
Ph
6
85
n
Pr3Si
t
Bu-Br
Et3Si-Cl
2
Et3Si
83
E/Z=96/4
J. Org. Chem., 65, (17), 5291 (2000)
Ever Researching for a Brighter World
Regioselective syn-Hydrosilation of Alkynes
R1
R2
+
H-[Si]
Cp2TiCl2 (20 mol%),n-BuLi (40 mol%)
THF,1 h
R2
R1
Si
([Si] = SiHPh2, SiHMePh, SiH2Ph)
Alkyne
n-C3H7
Hydrosilane
n-C3H7
Alkenylsilane
Yield(%)
SiHPh2
H-SiHPh2
87
n-C3H7
n-C3H7
Et
Et
H-SiHPh2
SiHPh2
C2H5
96
C2H5
SiHMePh
n-C3H7
n-C3H7
H-SiHMePh
n-C3H7
97
n-C3H7
Org. Lett., 5, (19), 3479 (2003)
Ever Researching for a Brighter World
9.Storage and Safety Handling etc.
9-1. Storage
Store in a cool/dark place with reasonable ventilation.
Avoid direct radiation of sun beam to the container.
9-2. Handling
Unsealing (opening) of the container must be done under dry Nitrogen
atmosphere. When resealing, the inner space of container must be
filled with ample amount of dry Nitrogen gas. Titanocene Dichloride
must be sealed very tightly and stored in a place mentioned above.
Things (utensils, pipes, equipment, etc) which come in contact with
this product must be well-dried before use. When solvent must be used,
well-dehydrated micromoisture solvents is recommended.
9-3. First-aid Treatment
If Titanocene Dichloride adheres to a hand or face, it may cause allergic breakouts.
It must be immediately washed off with ample amount of clean water.
For protection, please use the protective devices as follows:
Rubber gloves ・ Protective glasses ・ Dust-protection masks, etc
9-4. Fire Fighting Procedure
Titanocene Dichloride is a flammable chemical. If fire breaks out, move all
the containers to a safe place where fire cannot reach. In case that this chemical
catches a fire, use plenty of water or powder fire extinguisher to fight fire.
9-5. Waste Disposal
Waste disposal can be accomplished either by hydrolysis or by incineration.
Hydrolyze in acid or alkaline aqueous solution to separate Titanium Hydroxide by
neutralization. Burn with flammable solvent to give Titanium Oxide. Either waste
must be disposed in accordance with industrial waste regulations.
Ever Researching for a Brighter World
■ The contents of this brochure are updated as of March, 2010.
■ Reference
(The manufacturer & engineering department)
NICHIA CORPORATION TOKUSHIMA PLANT (V-PLANT)
224 Hiraishi Ebisuno, Kawauchi-Cho, Tokushima-Shi, TOKUSHIMA 771-0132, JAPAN
TEL : +81-88-665-2311
FAX : +81-88-665 -5292
(Sales)
NICHIA CORPORATION TOKYO SALES OFFICE
13F Tamachi Center Building34-7, Shiba 5-Chome, Minato-Ku, TOKYO 108-0014, JAPAN
TEL : +81- 3-3456-3784
FAX : +81- 3-3453 -2369
http://www.nichia.co.jp
Ever Researching for a Brighter World