INTERSIL IRFF120

IRFF120
Data Sheet
March 1999
6.0A, 100V, 0.300 Ohm, N-Channel
Power MOSFET
1563.3
Features
• 6.0A, 100V
This N-Channel enhancement mode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdown avalanche mode of operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
• rDS(ON) = 0.300Ω
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Formerly developmental type TA09594.
Ordering Information
PART NUMBER
File Number
Symbol
PACKAGE
BRAND
D
IRFF120
TO-205AF
IRFF120
NOTE: When ordering, use the entire part number.
G
S
Packaging
JEDEC TO-205AF
SOURCE
DRAIN
(CASE)
GATE
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
IRFF120
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
IRFF120
100
100
6.0
24
±20
20
0.16
36
-55 to 150
UNITS
V
V
A
A
V
W
W/oC
mJ
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 125oC.
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
PARAMETER
SYMBOL
BVDSS
ID = 250µA, VGS = 0V (Figure 10)
100
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS , ID = 250µA
2.0
-
4.0
V
-
-
25
µA
-
-
250
µA
6.0
-
-
A
Zero Gate Voltage Drain Current
IDSS
TEST CONDITIONS
VDS = Rated BVDSS , VGS = 0V
VDS = 0.8 x Rated BVDSS , VGS = 0V, TC = 125oC
On-State Drain Current (Note 2)
ID(ON)
Gate to Source Leakage Current
IGSS
Drain to Source On Resistance (Note 2)
Forward Transconductance (Note 2)
Turn-On Delay Time
rDS(ON)
gfs
td(ON)
Rise Time
tr
Turn-Off Delay Time
td(OFF)
Fall Time
tf
Total Gate Charge
(Gate to Source + Gate to Drain)
Qg(TOT)
Gate to Source Charge
Qgs
VDS > ID(ON) x rDS(ON)MAX, VGS = 10V
VGS = ±20V
-
-
±100
nA
ID = 3.0A, VGS = 10V (Figures 8, 9)
-
0.25
0.300
Ω
VDS > ID(ON) x rDS(ON)MAX, ID = 3.0A (Figure 12)
1.5
2.9
-
S
VDD ≅ 0.5 x Rated BVDSS, ID = 6.0A, RG = 9.1Ω,
VGS =10V (Figures 17, 18), RL = 8Ω for VDSS = 50V,
RL = 6.3Ω for VDSS = 40V, MOSFET Switching
Times are Essentially Independent of Operating
Temperatures
-
20
40
ns
-
37
70
ns
-
50
100
ns
-
35
70
ns
VGS = 10V, ID = 6.0A, VDS = 0.8 x Rated BVDSS
(Figures 14, 19, 20) Gate Charge is Essentially
Independent of Operating Temperature
-
10
15
nC
-
6.0
-
nC
-
4.0
-
nC
VDS = 25V, VGS = 0V, f = 1MHz (Figure 11)
-
450
-
pF
Gate to Drain (“Miller”) Charge
Qgd
Input Capacitance
CISS
Output Capacitance
COSS
-
20
-
pF
Reverse Transfer Capacitance
CRSS
-
50
-
pF
-
5.0
-
nH
-
15
-
nH
-
-
6.25
oC/W
-
-
175
oC/W
Internal Drain Inductance
LD
Measured from the Drain
Lead, 5.0mm (0.2in) from
Header to Center of Die
Internal Source Inductance
LS
Measured from the Source
Lead, 5.0mm (0.2in) from
Header to Source Bonding
Pad
Modified MOSFET
Symbol Showing the
Internal Devices
Inductances
D
LD
G
LS
S
Thermal Resistance, Junction to Case
RθJC
Thermal Resistance, Junction to Ambient
RθJA
2
Free Air Operation
IRFF120
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Continuous Source to Drain Current
ISD
Pulse Source to Drain Current (Note 3)
ISM
TEST CONDITIONS
MIN
TYP
MAX
UNITS
-
-
6.0
A
-
-
24
A
TJ = 25oC, ISD = 6.0A, VGS = 0V (Figure 13)
-
-
2.5
V
TJ = 150oC, ISD = 6.0A, dISD/dt = 100A/µs
TJ = 150oC, ISD = 6.0A, dISD/dt = 100A/µs
-
230
-
ns
-
1.0
-
µC
Intrinsic Turn-on Time is Negligible, Turn-On
Speed is Substantially controlled by LS + LD
-
-
-
-
Modified MOSFET
Symbol Showing the
Integral Reverse P-N
Junction Rectifier
D
G
S
Source to Drain Diode Voltage (Note 2)
VSD
Reverse Recovery Time
trr
Reverse Recovery Charge
QRR
Forward Turn-On Time
tON
NOTES:
2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 25V, starting TJ = 25oC, L = 1.5mH, RG = 25Ω, peak IAS = 6.0A (Figures 15, 16).
Typical Performance Curves
Unless Otherwise Specified
6.0
ID , DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
0.2
0
0
50
100
4.8
3.6
2.4
1.2
0
25
150
50
TC , CASE TEMPERATURE (oC)
75
100
150
125
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
1.0
ZθJC, NORMALIZED
THERMAL IMPEDANCE
POWER DISSIPATION MULTIPLIER
1.2
0.5
0.2
PDM
0.1
0.1
0.05
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
0.02
0.01
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
t1, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
3
1
10
IRFF120
Typical Performance Curves
Unless Otherwise Specified
(Continued)
20
50.0
VGS = 10V
80µs PULSE TEST
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
10µs
100µs
10.0
1ms
1.0
OPERATION IN THIS
AREA IS LIMITED
BY rDS(ON)
10ms
100ms
16
VGS = 8V
12
VGS = 7V
8
VGS = 6V
VGS = 5V
4
DC
TJ = MAX RATED
0.1
1.0
10.0
100.0
VGS = 4V
0
200.0
0
10
20
30
40
VDS, DRAIN TO SOURCE VOLTAGE (V)
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
20
VGS = 8V
80µs PULSE TEST
VGS = 7V
VGS = 10V
ID, DRAIN CURRENT (A)
8
VGS = 9V
VGS = 6V
6
4
VGS = 5V
2
VGS = 4V
VDS > ID(ON) x rDS(ON)MAX
2
1
4
3
16
25oC
12
-55oC
8
4
0
5
0
2
4
6
8
VGS , GATE TO SOURCE VOLTAGE (V)
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 6. SATURATION CHARACTERISTICS
10
FIGURE 7. TRANSFER CHARACTERISTICS
2.50
2µs PULSE TEST
NORMALIZED DRAIN TO SOURCE
ON REISITANCE
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (Ω)
0.8
125oC
80µs PULSE TEST
0
0
50
FIGURE 5. OUTPUT CHARACTERISTICS
ID(ON), ON-STATE DRAIN CURRENT (A)
10
VGS = 9V
0.6
VGS = 10V
0.4
VGS = 20V
0.2
0
VGS = 10V
ID = 3A
2.00
1.50
1.00
0.50
0
0
10
20
ID , DRAIN CURRENT (A)
30
NOTE: Heating effect of 2µs pulse is minimal.
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
4
40
-40
0
40
80
120
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
IRFF120
Typical Performance Curves
Unless Otherwise Specified
(Continued)
1.25
1000
1.15
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
800
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
ID = 250µA
1.05
0.95
0.85
600
CISS
400
COSS
200
CRSS
0.75
-40
0
40
80
0
120
0
10
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
-55oC
25oC
3
125oC
2
1
0
0
4
40
50
100
80µs PULSE TEST
4
30
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
ISD, SOURCE TO DRAIN CURRENT (A)
gfs, TRANSCONDUCTANCE (S)
5
20
VDS , DRAIN TO SOURCE VOLTAGE (V)
8
12
16
5
2
10
150oC
5
25oC
2
1.0
0
20
1
ID , DRAIN CURRENT (A)
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT
FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
20
VGS, GATE TO SOURCE (V)
ID = 6A
VDS = 50V
15
VDS = 20V
VDS = 80V
10
5
0
0
4
8
12
16
20
Qg(TOT) , TOTAL GATE CHARGE (nC)
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
5
2
VSD, SOURCE TO DRAIN VOLTAGE (V)
3
IRFF120
Test Circuits and Waveforms
BVDSS
VDS
tP
VDS
L
IAS
VARY tP TO OBTAIN
VDD
+
RG
REQUIRED PEAK IAS
-
VDD
DUT
VGS
0
tP
0V
IAS
tAV
0.01Ω
FIGURE 15.
UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 16. UNCLAMPED ENERGY WAVEFORM
tON
tOFF
td(ON)
td(OFF)
tf
tr
VDS
RL
90%
+
RG
-
10%
10%
0
VDD
90%
90%
DUT
VGS
0
50%
50%
PULSE WIDTH
10%
VGS
FIGURE 17. SWITCHING TIME TEST CIRCUIT
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
VDD
Qg(TOT)
12V
BATTERY
0.2µF
SAME TYPE
AS DUT
50kΩ
Qgd
Qgs
0.3µF
D
IG(REF)
VDS
DUT
G
0
S
0
IG CURRENT
SAMPLING
RESISTOR
VDS
ID CURRENT
SAMPLING
RESISTOR
FIGURE 19. GATE CHARGE TEST CIRCUIT
6
VGS
IG(REF)
0
FIGURE 20. GATE CHARGE WAVEFORMS
IRFF120
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
7
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029