datasheet

SEMiX305TMLI12E4B
Absolute Maximum Ratings
Symbol
Conditions
Values
Unit
IGBT1
VCES
IC
Tj = 25 °C
Tj = 175 °C
1200
V
Tc = 25 °C
479
A
Tc = 80 °C
369
A
300
A
ICnom
ICRM
SEMiX® 5
3-Level TNPC IGBT-Module
VGES
tpsc
Tj
VCC = 800 V, VGE ≤ 15 V, Tj = 150 °C,
VCES ≤1200 V
IC
Tj = 25 °C
ICRM
• Solderless assembling solution with
PressFIT signal pins and screw power
terminals
• IGBT 4 Trench Gate Technology
• VCE(sat) with positive temperature
coefficient
• Low inductance case
• Reliable mechanical design with
injection moulded terminals and
reliable internal connections
• UL recognized file no. E63532
• NTC temperature sensor inside
Remarks*
• Case temperature limited to TC=125°C
max.
• Product reliability results are valid for
Tjop=150°C
• IGBT1: outer IGBTs T1 & T4
• IGBT2: inner IGBTs T2 & T3
• Diode1: outer diodes D1 & D4
• Diode2: inner diodes D2 & D3
A
V
10
µs
-40 ... 175
°C
Tj = 175 °C
650
V
Tc = 25 °C
360
A
Tc = 80 °C
271
A
300
A
900
A
-20 ... 20
V
10
µs
-40 ... 175
°C
ICnom
Features
900
-20 ... +20
IGBT2
VCES
SEMiX305TMLI12E4B
ICRM = 3 x ICnom
VGES
tpsc
Tj
ICRM = 3 x ICnom
VCC = 360 V, VGE ≤ 15 V, Tj = 150 °C,
VCES ≤ 650 V
Diode1
VRRM
IF
Tj = 25 °C
Tj = 175 °C
1200
V
Tc = 25 °C
363
A
Tc = 80 °C
272
A
300
A
IFnom
IFRM
IFRM = 3 x IFnom
900
A
IFSM
10 ms, sin 180°, Tj = 25 °C
1485
A
-40 ... 175
°C
Tj
Diode2
VRRM
IF
Tj = 25 °C
Tj = 175 °C
650
V
Tc = 25 °C
366
A
Tc = 80 °C
267
A
300
A
IFnom
IFRM
IFRM = 2 x IFnom
600
A
IFSM
10 ms, sin 180°, Tj = 25 °C
2160
A
-40 ... 175
°C
Tj
Module
It(RMS)
Tstg
Visol
AC sinus 50Hz, t = 1 min
400
A
-40 ... 125
°C
4000
V
TMLI
© by SEMIKRON
Rev. 1.0 – 02.03.2016
1
SEMiX305TMLI12E4B
Characteristics
Symbol
IGBT1
VCE(sat)
VCE0
SEMiX® 5
3-Level TNPC IGBT-Module
SEMiX305TMLI12E4B
• Solderless assembling solution with
PressFIT signal pins and screw power
terminals
• IGBT 4 Trench Gate Technology
• VCE(sat) with positive temperature
coefficient
• Low inductance case
• Reliable mechanical design with
injection moulded terminals and
reliable internal connections
• UL recognized file no. E63532
• NTC temperature sensor inside
Remarks*
• Case temperature limited to TC=125°C
max.
• Product reliability results are valid for
Tjop=150°C
• IGBT1: outer IGBTs T1 & T4
• IGBT2: inner IGBTs T2 & T3
• Diode1: outer diodes D1 & D4
• Diode2: inner diodes D2 & D3
IC = 300 A
VGE = 15 V
chiplevel
chiplevel
min.
typ.
max.
Unit
Tj = 25 °C
1.80
2.05
V
Tj = 150 °C
2.20
2.40
V
Tj = 25 °C
0.80
0.90
V
Tj = 150 °C
0.70
0.80
V
Tj = 25 °C
3.3
3.8
mΩ
5.0
5.3
mΩ
5.8
6.5
V
4
mA
rCE
VGE = 15 V
chiplevel
VGE(th)
VGE = VCE, IC = 11.4 mA
ICES
VGE = 0 V, VCE = 1200 V, Tj = 25 °C
Cies
Coes
Cres
VCE = 25 V
VGE = 0 V
QG
- 15 V...+ 15 V
RGint
Tj = 25 °C
VCC = 300 V
IC = 300 A
VGE = +15/-15 V
RG on = 2 Ω
RG off = 2 Ω
di/dton = 4400 A/µs
di/dtoff = 3000 A/µs
td(on)
Features
Conditions
tr
Eon
td(off)
tf
Eoff
Tj = 150 °C
5
f = 1 MHz
18.5
nF
f = 1 MHz
1.22
nF
f = 1 MHz
1.04
nF
2265
nC
2.5
Tj = 150 °C
Ω
232
ns
Tj = 150 °C
128
ns
Tj = 150 °C
4.5
mJ
Tj = 150 °C
422
ns
Tj = 150 °C
121
ns
Tj = 150 °C
21
mJ
Rth(j-c)
per IGBT
Rth(c-s)
per IGBT (λgrease=0.81 W/(m*K))
0.04
K/W
Rth(c-s)
per IGBT, pre-applied phase change
material
0.021
K/W
IGBT2
VCE(sat)
VCE0
rCE
IC = 300 A
VGE = 15 V
chiplevel
chiplevel
VGE = 15 V
chiplevel
0.09
Tj = 25 °C
1.55
1.95
V
Tj = 150 °C
1.75
2.15
V
Tj = 25 °C
0.90
1.00
V
Tj = 150 °C
0.82
0.90
V
Tj = 25 °C
2.2
3.2
mΩ
Tj = 150 °C
3.1
4.2
mΩ
5.8
6.4
V
0.3
mA
VGE(th)
VGE = VCE, IC = 8 mA
ICES
VGE = 0 V, VCE = 650 V, Tj = 25 °C
Cies
Coes
Cres
VCE = 25 V
VGE = 0 V
QG
- 15 V...+ 15 V
RGint
Tj = 25 °C
VCC = 300 V
IC = 300 A
VGE = +15/-15 V
RG on = 2 Ω
RG off = 2 Ω
di/dton = 3100 A/µs
di/dtoff = 2800 A/µs
td(on)
tr
Eon
td(off)
tf
Eoff
K/W
5.1
f = 1 MHz
18.5
nF
f = 1 MHz
1.16
nF
f = 1 MHz
Tj = 150 °C
0.55
nF
3318
nC
1.0
Ω
170
ns
Tj = 150 °C
118
ns
Tj = 150 °C
2.25
mJ
Tj = 150 °C
380
ns
Tj = 150 °C
127
ns
Tj = 150 °C
17.25
mJ
Rth(j-c)
per IGBT
Rth(c-s)
per IGBT (λgrease=0.81 W/(m*K))
0.064
K/W
Rth(c-s)
per IGBT, pre-applied phase change
material
0.059
K/W
0.17
K/W
TMLI
2
Rev. 1.0 – 02.03.2016
© by SEMIKRON
SEMiX305TMLI12E4B
Characteristics
Symbol
Diode1
VF = VEC
VF0
rF
SEMiX® 5
3-Level TNPC IGBT-Module
SEMiX305TMLI12E4B
Features
• Solderless assembling solution with
PressFIT signal pins and screw power
terminals
• IGBT 4 Trench Gate Technology
• VCE(sat) with positive temperature
coefficient
• Low inductance case
• Reliable mechanical design with
injection moulded terminals and
reliable internal connections
• UL recognized file no. E63532
• NTC temperature sensor inside
Remarks*
• Case temperature limited to TC=125°C
max.
• Product reliability results are valid for
Tjop=150°C
• IGBT1: outer IGBTs T1 & T4
• IGBT2: inner IGBTs T2 & T3
• Diode1: outer diodes D1 & D4
• Diode2: inner diodes D2 & D3
Conditions
IF = 300 A
VGE = 0 V
chiplevel
chiplevel
chiplevel
min.
typ.
max.
Unit
Tj = 25 °C
2.20
2.52
V
Tj = 150 °C
2.15
2.47
V
Tj = 25 °C
1.30
1.50
V
Tj = 150 °C
0.90
1.10
V
Tj = 25 °C
3.0
3.4
mΩ
4.2
4.6
mΩ
Err
Tj = 150 °C
IF = 300 A
Tj = 150 °C
di/dtoff = 3100 A/µs T = 150 °C
j
VCC = 300 V
VGE = +15/-15 V
Tj = 150 °C
Rth(j-c)
per diode
Rth(c-s)
per Diode (λgrease=0.81 W/(m*K))
0.05
K/W
Rth(c-s)
per Diode, pre-applied phase change
material
0.041
K/W
IRRM
Qrr
Diode2
VF = VEC
VF0
rF
IF = 300 A
VGE = 0 V
chiplevel
chiplevel
chiplevel
160
A
41.7
µC
8.8
mJ
0.16
K/W
Tj = 25 °C
1.40
1.76
V
Tj = 150 °C
1.39
1.77
V
Tj = 25 °C
1.04
1.24
V
Tj = 150 °C
0.85
0.99
V
Tj = 25 °C
1.19
1.76
mΩ
1.79
2.6
mΩ
Err
Tj = 150 °C
IF = 300 A
Tj = 150 °C
di/dtoff = 4400 A/µs T = 150 °C
j
VR = 300 V
VGE = +15/-15 V
Tj = 150 °C
Rth(j-c)
per diode
Rth(c-s)
per Diode (λgrease=0.81 W/(m*K))
0.06
K/W
Rth(c-s)
per Diode, pre-applied phase change
material
0.059
K/W
LsCE1
31
nH
LCE
42
nH
0.8
mΩ
1.1
mΩ
0.006
K/W
0.0106
K/W
0.0077
K/W
IRRM
Qrr
181
A
34.5
µC
8.2
mJ
0.22
K/W
Module
RCC'+EE'
Rth(c-s)1
Rth(c-s)2
Rth(c-s)2
Ms
measured
TC = 25 °C
between terminal 5
TC = 125 °C
and 1
calculated without thermal coupling
including thermal coupling,
Ts underneath module (λgrease=0.81 W/
(m*K))
including thermal coupling,
Ts underneath module, pre-applied
phase change material
to heat sink (M5)
to terminals (M6)
Mt
3
6
Nm
3
6
Nm
Nm
w
398
g
493 ± 5%
Ω
3550
±2%
K
Temperature Sensor
R100
B100/125
Tc=100°C (R25=5 kΩ)
R(T)=R100exp[B100/125(1/T-1/T100)]; T[K];
TMLI
© by SEMIKRON
Rev. 1.0 – 02.03.2016
3
SEMiX305TMLI12E4B
Fig. 1: Typ. IGBT1 output characteristic, incl. RCC'+ EE'
Fig. 2: IGBT1 rated current vs. Temperature Ic=f(Tc)
Fig. 3: Typ. IGBT1 & Diode2 turn-on /-off energy = f (IC)
Fig. 4: Typ. IGBT1 & Diode2 turn-on /-off energy = f(RG)
Fig. 5: Typ. IGBT1 transfer characteristic
Fig. 6: Typ. IGBT1 gate charge characteristic
4
Rev. 1.0 – 02.03.2016
© by SEMIKRON
SEMiX305TMLI12E4B
Fig. 7: Typ. IGBT1 switching times vs. IC
Fig. 8: Typ. IGBT1 switching times vs. gate resistor RG
Fig. 9: Transient thermal impedance of IGBT1 & Diode2
Fig. 10: Typ. Diode2 forward characteristic, incl. RCC'+ EE'
Fig. 13: Typ. IGBT2 output characteristic, incl. RCC'+ EE'
Fig. 14: IGBT2 Rated current vs. Temperature Ic= f (Tc)
© by SEMIKRON
Rev. 1.0 – 02.03.2016
5
SEMiX305TMLI12E4B
Fig. 15: Typ. IGBT2 & Diode1 turn-on /-off energy = f (IC)
Fig. 16: Typ. IGBT2 & Diode1 turn-on / -off energy = f(RG)
Fig. 17: Typ. IGBT2 transfer characteristic
Fig. 18: Typ. IGBT2 gate charge characteristic
Fig. 19: Typ. IGBT2 switching times vs. IC
Fig. 20: Typ. IGBT2 switching times vs. gate resistor RG
6
Rev. 1.0 – 02.03.2016
© by SEMIKRON
SEMiX305TMLI12E4B
Fig. 21: Transient thermal impedance of IGBT2 & Diode1
© by SEMIKRON
Fig. 22: Typ. Diode1 forward characteristic, incl. RCC'+ EE'
Rev. 1.0 – 02.03.2016
7
SEMiX305TMLI12E4B
SEMiX5p
TMLI
8
Rev. 1.0 – 02.03.2016
© by SEMIKRON
SEMiX305TMLI12E4B
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.
*IMPORTANT INFORMATION AND WARNINGS
The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics
("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in
typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective
application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their
applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical
injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is
compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written
document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of
the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is
given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation,
warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the
applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual
property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of
intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain
dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document
supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make
changes.
© by SEMIKRON
Rev. 1.0 – 02.03.2016
9