V23990 P629 L59 D2 14

V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
flow BOOST
1200 V / 40 A
Features
flow 0 housing
● High efficiency dual boost
● Ultra fast switching frequency
● Low Inductance Layout
● 1200V IGBT and 1200V Si diode
17mm hight
solder Pin
Target Applications
12mm hight
Press-fit Pin
12mm hight
solder Pin
Schematic
● solar inverter
Types
● V23990-P629-L59-PM
● V23990-P629-L58-PM
● V23990-P629-L58Y-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
34
40
A
220
A
240
A 2s
42
63
W
150
°C
1200
V
Bypass Diode ( D7 , D8 )
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
T j=25°C
T j=Tjmax
T h=80°C
T c=80°C
t p=10ms
sin 180°
T j=25°C
T j=Tjmax
T h=80°C
T c=80°C
Boost IGBT ( T1 , T2 )
Collector-emitter break down voltage
DC collector current
V CE
IC
T j=25°C
T j=Tjmax
Pulsed collector current
I CRM
t p limited by T jmax
Power dissipation
P tot
T j=Tjmax
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
copyright Vincotech
T j≤150°C
V GE=15V
T jmax
1
T h=80°C
T c=80°C
T h=80°C
T c=80°C
40
45
A
120
A
113
171
W
±20
V
10
800
µs
V
175
°C
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Boost IGBT Protection Diode ( D9 , D10 )
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
T j=25°C
T j=Tjmax
Surge forward current
I FSM
t p=10ms, sin 180°, T j=Tjmax
Power dissipation
P tot
T j=Tjmax
Maximum Junction Temperature
T jmax
T h=80°C
10
T c=80°C
13
T h=80°C
T c=80°C
A
21
A
26
39
W
150
°C
1200
V
39
53
A
270
A
89
134
W
Boost FWD (D1 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
T j=25°C
T h=80°C
T j=Tjmax
T c=80°C
Surge forward current
I FSM
t p=10ms, sin 180°, T j=25°C
Power dissipation
P tot
T j=Tjmax
Maximum Junction Temperature
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
T h=80°C
T c=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
V is
t=2s
DC voltage
2
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,7
1,15
1,11
0,92
0,82
0,009
0,012
1,4
Bypass Diode ( D7 , D8 )
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
V to
24
Slope resistance (for power loss calc. only)
rt
24
Reverse current
Ir
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
1600
V
V
Ω
0,05
mA
1,67
Thermal grease
thickness≤50um
λ = 1 W/mK
K/W
1,10
Boost IGBT ( T1 , T2 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
V CEsat
Collector-emitter cut-off
I CES
Gate-emitter leakage current
I GES
Integrated Gate resistor
R gint
Turn-on delay time
0,0015
15
40
0
1200
20
0
tr
t d(off)
tf
Fall time
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Rgoff=4 Ω
Rgon=4 Ω
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
5,2
5,8
6,4
1,7
2,10
2,48
2,6
0,25
200
15
700
24
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
22
21
35
68
225
293
35
68
1,09
1,82
1,01
1,61
ns
mWs
2300
f=1MHz
0
25
Tj=25°C
150
pF
135
QG
Gate charge
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
none
t d(on)
Rise time
Turn-off delay time
VGE=VCE
V GE(th)
15
600
40
Tj=25°C
185
nC
0,84
Thermal grease
thickness≤50um
λ = 1 W/mK
K/W
0,56
Boost IGBT Protection Diode ( D9 , D10 )
Diode forward voltage
VF
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
3
Tj=25°C
Tj=125°C
0,7
1,66
1,58
2,4
V
2,72
Thermal grease
thickness≤50um
λ = 1 W/mK
K/W
1,80
Boost FWD ( D1 , D4 )
Forward voltage
VF
Reverse leakage current
I rm
Peak recovery current
I RRM
Reverse recovery time
t rr
Reverse recovery charge
Q rr
Reverse recovered energy
E rec
Peak rate of fall of recovery current
( di rf/dt )max
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
copyright Vincotech
50
1200
Rgon=4 Ω
15
700
24
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,5
2,28
2,36
2,8
60
63
78
83
208
2,25
5,02
0,98
2,42
5304
3201
V
µA
A
ns
µC
mWs
A/µs
1,07
Thermal grease
thickness≤50um
λ = 1 W/mK
K/W
0,71
3
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Value
Tj
Min
Typ
Unit
Max
Thermistor
Rated resistance
Tj=25°C
R
Deviation of R100
Δ R/R
Power dissipation
P
R100=1486Ω
Tc=100°C
Power dissipation constant
B-value
B (25/50)
B-value
B (25/100)
Tol. ±1%
Vincotech NTC Reference
copyright Vincotech
22
-4,5
kΩ
+4,5
%
Tj=25°C
210
mW
Tj=25°C
3,5
mW/K
Tj=25°C
3884
K
Tj=25°C
3964
K
F
4
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
Boost IGBT Protection Diode
Figure 1
Boost IGBT Protection Diode
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
Figure 2
Boost IGBT Protection Diode
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
20
IF (A)
101
ZthJC (K/W)
Tj = 25°C
15
100
Tj = Tjmax-25°C
10
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
5
0
0
At
tp =
1
250
2
3
V F (V)
10-2
4
10-5
At
D =
R thJH =
µs
Figure 3
Boost IGBT Protection Diode
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
2,72
K/W
Figure 4
Boost IGBT Protection Diode
Forward current as a
function of heatsink temperature
I F = f(T h)
20
IF (A)
Ptot (W)
60
45
15
30
10
15
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
5
50
150
100
150
Th ( o C)
200
ºC
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
INPUT BOOST
Figure 3
Typical output characteristics
I C = f(V CE)
BOOST IGBT
Figure 4
Typical output characteristics
I C = f(V CE)
120
IC(A)
IC (A)
120
BOOST FWD
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
V GS from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
V GS from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
BOOST IGBT
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
BOOST FWD
150
IC (A)
IF (A)
40
V CE (V)
Tj = Tjmax-25°C
Tj = 25°C
120
30
90
20
60
10
30
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
2
At
tp =
V DS =
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
6
1
250
2
3
4
5
V F (V)
6
µs
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
INPUT BOOST
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
BOOST IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
8
E (mWs)
E (mWs)
8
BOOST IGBT
Eon High T
Eon High T
6
6
Eoff High T
Eon Low T
4
4
Eon Low T
Eoff Low T
Eoff High T
2
2
0
Eoff Low T
0
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
25/125
°C
V DS =
700
V
V GS =
15
V
R gon =
4
Ω
R goff =
4
Ω
16
32
48
64
RG (Ω )
80
With an inductive load at
Tj =
25/125
°C
V DS =
700
V
V GS =
15
V
ID =
24
A
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
E rec = f(I C)
BOOST IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
5
E (mWs)
5
BOOST IGBT
Erec High T
4
4
3
3
Erec Low T
2
2
Erec High T
1
1
Erec Low T
0
0
0
20
40
60
I C (A)
0
80
With an inductive load at
Tj =
25/125
°C
V DS =
700
V
V GS =
15
V
R gon =
4
Ω
copyright Vincotech
16
32
48
64
R G( Ω )
80
With an inductive load at
Tj =
25/125
°C
V DS =
700
V
V GS =
15
V
ID =
24
A
7
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
INPUT BOOST
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
BOOST IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
10
t ( µs)
t ( µs)
10
BOOST IGBT
1
tdoff
1
tdoff
tdon
tf
0,1
0,1
tr
tf
tdon
0,01
0,01
tr
0,001
0,001
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
125
°C
V DS =
700
V
V GS =
15
V
R gon =
4
Ω
R goff =
4
Ω
16
32
48
64
R G( Ω )
80
With an inductive load at
Tj =
125
°C
V DS =
700
V
V GS =
15
V
IC =
24
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,6
BOOST FWD
trr High T
t rr( µs)
t rr( µs)
0,6
0,5
0,5
trr Low T
trr High T
0,4
0,4
0,3
0,3
trr Low T
0,2
0,2
0,1
0,1
0
0,0
0
R (K/W)
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
15
4
copyright Vincotech
40
60
I C (A)
80
0
R (K/W)
At
Tj =
VR=
IF=
V GS =
°C
V
V
Ω
8
16
25/125
700
24
15
32
48
64
R Gon ( Ω )
80
°C
V
A
V
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
INPUT BOOST
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr ( µC)
10
Qrr ( µC)
10
BOOST FWD
Qrr High T
8
8
6
6
Qrr Low T
Qrr High T
4
4
2
2
Qrr Low T
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
15
4
40
60
I C (A)
80
0
At
Tj =
°C
V
V
Ω
25/125
700
24
15
VR=
IF=
V GS =
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
BOOST FWD
16
32
48
64
80
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
100
R Gon ( Ω)
BOOST FWD
IrrM (A)
IrrM (A)
100
IRRM High T
80
80
IRRM Low T
60
60
40
40
20
20
IRRM High T
IRRM Low T
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
15
4
copyright Vincotech
40
60
I C (A)
0
80
At
Tj =
VR=
IF=
V GS =
°C
V
V
Ω
9
16
25/125
700
24
15
32
48
64
R Gon ( Ω )
80
°C
V
A
V
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
INPUT BOOST
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
8000
BOOST FWD
direc / dt (A/ µs)
direc / dt (A/ µs)
8000
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
15
4
40
I C (A)
60
80
0
At
Tj =
°C
V
V
Ω
VR=
IF=
V GS =
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
BOOST IGBT
16
25/125
700
24
15
32
48
80
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
BOOST FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
R Gon ( Ω)
64
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
10-5
At
D =
R thJH =
tp/T
0,84
K/W
10-4
10-3
1,07
R (K/W)
0,107
0,391
0,223
0,092
0,030
R (K/W)
0,027
0,098
0,284
0,405
0,171
10
100
t p (s)
10110
K/W
FWD thermal model values
copyright Vincotech
10-1
tp/T
IGBT thermal model values
Tau (s)
1,413
0,188
0,056
0,011
0,001
10-2
Tau (s)
8,145
1,332
0,228
0,069
0,014
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
INPUT BOOST
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
BOOST IGBT
Figure 22
Collector/Drain current as a
function of heatsink temperature
I C = f(T h)
250
BOOST IGBT
IC (A)
Ptot (W)
50
200
40
150
30
100
20
50
10
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
V GS =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
BOOST FWD
50
175
15
100
150
200
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
BOOST FWD
70
IF (A)
Ptot (W)
200
Th ( o C)
60
150
50
40
100
30
20
50
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
ºC
11
50
175
100
150
T h ( o C)
200
ºC
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
INPUT BOOST
Figure 25
Safe operating area as a function
of drain-source voltage
I C = f(V CE)
BOOST IGBT
Figure 26
Gate voltage vs Gate charge
BOOST IGBT
V GE = f(Q g)
103
IC (A)
VGE (V)
18
16
14
102
240V
10uS
12
10mS
960V
100uS
1mS
10
100mS
101
8
DC
6
10
0
4
2
1
0
0
10
At
D =
Th =
V GS =
Tj =
1
10
2
10
3
100
150
200
250
Qg (nC)
At
ID =
single pulse
80
ºC
V
15
T jmax
ºC
copyright Vincotech
50
V CE (V)
12
24
A
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
Bypass Diode
Figure 1
Typical Diode forward current as
a function of forward voltage
I F= f(V F)
Bypass Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
35
Bypass Diode
ZthJC (K/W)
IF (A)
101
30
Tj = 25°C
Tj = Tjmax-25°C
25
100
20
15
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
5
0
10-2
0
0,3
At
tp =
0,6
250
0,9
1,2
V F (V)
1,5
10-5
10-4
At
D =
R thJH =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Bypass Diode
10-3
10-2
10-1
100
10110
tp/T
1,674
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
Bypass Diode
50
Ptot (W)
IF (A)
100
t p (s)
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
13
50
150
100
150
T h ( o C)
200
ºC
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
datasheet
Thermistor
NTC-typical temperature characteristic
R (Ω)
25000
20000
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
14
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
Switching Definitions BOOST IGBT
General
Tj
R gon
R goff
conditions
= 125 °C
= 4Ω
= 4Ω
Figure 1
Boost IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Boost IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
500
tdoff
%
%
VCE
400
100
VGE 90%
IC
VCE 90%
300
75
IC
200
50
tEoff
VCE
VGE
100
25
tdon
IC 1%
VGE10%
IC 10%
0
0
VCE 3%
tEon
VGE
-25
-0,2
0
0,2
0,4
0,6
-100
2,95
0,8
3
3,05
3,1
3,15
time (us)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0
15
700
24
0,29
0,42
3,2
time(us)
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Boost IGBT
Turn-off Switching Waveforms & definition of t f
0
15
700
24
0,02
0,14
V
V
V
A
µs
µs
Figure 4
Boost IGBT
Turn-on Switching Waveforms & definition of tr
125
500
fitted
%
VCE
%
IC
IC
400
100
IC 90%
300
75
IC 60%
200
50
IC 40%
IC 90%
VCE
100
25
tr
IC10%
IC 10%
0
0
tf
-100
-25
0,1
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,2
700
24
0,06
0,3
time (us)
3
0,4
3,025
3,05
3,075
3,1
time(us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
15
700
24
0,01
V
A
µs
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
Switching Definitions BOOST IGBT
Figure 5
Boost IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Boost IGBT
Turn-on Switching Waveforms & definition of t Eon
120
%
350
%
Eoff
Pon
300
100
Poff
250
80
200
60
150
Eon
40
100
IC 1%
20
50
VGE 90%
VGE
0
tEoff
-20
-0,2
0
VCE 3%
10%
tEon
0
0,2
0,4
-50
2,95
0,6
3
3,05
3,1
3,15
P off (100%) =
E off (100%) =
t E off =
16,97
1,55
0,42
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Figure 7
Gate voltage vs Gate charge (measured)
3,2
time(us)
time (us)
Boost IGBT
16,97
1,85
0,14
kW
mJ
µs
Figure 8
Boost FWD
Turn-off Switching Waveforms & definition of t rr
200
20
VGE (V)
%
100
15
trr
Id
0
Vd
fitted
10
IRRM 10%
-100
5
-200
0
-300
-400
2,95
-5
-50
0
50
100
150
IRRM 90%
IRRM 100%
3,1
3,25
Qg (nC)
V GE off =
V GE on =
V C (100%) =
I C (100%) =
Qg =
copyright Vincotech
0
15
700
24
144,01
3,4
time(us)
V
V
V
A
nC
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
16
700
24
-76
0,21
V
A
A
µs
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
Switching Definitions BOOST FWD
Figure 9
Boost FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Boost FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
200
150
%
%
Qrr
125
100
tQrr
Erec
100
0
tErec
75
Id
-100
50
-200
25
Prec
-300
-400
2,95
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
0
3,1
3,25
24
4,94
0,43
3,4
time(us)
-25
2,95
3,55
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
17
3,1
3,25
16,97
2,36
0,43
3,4
time(us)
3,55
kW
mJ
µs
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
Ordering Code and Marking - Outline - Pinout
datasheet
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
P629-L59-PM
in packaging barcode as
without thermal paste 17mm housing
V23990-P629-L59-PM
P629-L59-PM
without thermal paste 12mm housing
V23990-P629-L58-PM
P629-L58-PM
P629-L58-PM
without thermal paste 12mm housing with Press-fit pins
V23990-P629-L58Y-PM
P629-L58Y-PM
P629-L58Y-PM
Outline
Pinout
copyright Vincotech
18
23 Febr. 2015 / Revision 2
V23990-P629-L59-PM
V23990-P629-L58-PM
V23990-P629-L58Y-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured
characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further
notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
19
23 Febr. 2015 / Revision 2