10 Fx122PA100SC01 P999F1x P1 14

FZ12 / F0122PA100SC01
preliminary datasheet
flowPHASE0
1200V/100A
Features
flow0 housing
● Trench Fieldstop IGBT technology
● 2-clip housing in 12mm and 17mm height
● Compact and low inductance design
4
● AlN substrate for improved performance
Target Applications
Schematic
● Motor Drive
● UPS
Types
● FZ122PA100SC01
● F0122PA100SC01
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
111
142
A
300
A
297
450
W
±20
V
10
800
μs
V
175
°C
1200
V
103
130
A
200
A
187
284
W
175
°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,5
1,95
2,39
2,3
Inverter Transistor
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
0,0036
100
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,035
700
Rgoff=4 Ω
Rgon=4 Ω
±15
600
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
7,5
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
193
210
32
42
299
383
75
110
8,09
12,46
5,35
8,47
ns
mWs
6150
f=1MHz
0
Tj=25°C
25
405
pF
345
±15
Tj=25°C
386
Thermal foil
thickness=76um
Kunze foil KUALF5
nC
0,32
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Rgon=4 Ω
600
±15
di(rec)max
/dt
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
50
Thermal foil
thickness=76um
Kunze foil KUALF5
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1,81
1,77
98,18
113,5
283,4
454,7
8,93
18,06
3254
1038
3,1
6,56
2,3
V
A
ns
μC
A/μs
mWs
0,51
K/W
3
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
300
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
350
μs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
350
μs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
300
IF (A)
IC (A)
120
4
100
Tj = 25°C
250
Tj = Tjmax-25°C
80
200
60
150
40
100
Tj = Tjmax-25°C
Tj = 25°C
20
50
0
0
0
At
tp =
VCE =
2
350
10
4
6
8
10
V GE (V)
12
0
At
tp =
μs
V
Copyright by Vincotech
4
0,8
350
1,6
2,4
3,2
V F (V)
4
μs
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
30
E (mWs)
E (mWs)
30
Eon High T
25
25
20
20
Eon High T
Eon Low T
Eon Low T
15
15
Eoff High T
10
10
Eoff High T
Eoff Low T
Eoff Low T
5
5
0
0
0
40
80
120
160
I C (A)
0
200
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG(Ω)
20
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
100
A
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
10
E (mWs)
10
Erec
8
8
Tj = Tjmax -25°C
Tj = Tjmax -25°C
Erec
6
6
Tj = 25°C
Erec
4
4
Tj = 25°C
Erec
2
2
0
0
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
RG(Ω)
20
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
100
A
5
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
1
t ( μs)
1
tdoff
tdoff
tdon
tdon
0,1
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG(Ω )
20
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
100
A
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,8
t rr( μs)
t rr( μs)
0,8
trr
0,6
0,6
Tj = Tjmax -25°C
trr
Tj = Tjmax -25°C
trr
0,4
0,4
trr
Tj = 25°C
Tj = 25°C
0,2
0,2
0
0
0
40
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
4
80
120
160
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
4
25/150
600
100
±15
8
12
16
R g on ( Ω )
20
°C
V
A
V
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
30
Qrr( μC)
Qrr( μC)
30
25
25
Qrr
Tj = Tjmax -25°C
20
20
Qrr
Tj = Tjmax -25°C
15
15
Qrr
Tj = 25°C
10
10
Qrr
Tj = 25°C
5
5
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
40
25/150
600
±15
4
80
120
160
I C (A)
200
0
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/150
600
100
±15
12
16
R g on ( Ω)
20
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
150
IrrM (A)
IrrM (A)
150
IRRM
120
120
Tj = Tjmax -25°C
IRRM
Tj = Tjmax - 25°C
90
90
Tj = 25°C
IRRM
IRRM
Tj = 25°C
60
60
30
30
0
0
0
40
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
4
80
120
160
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
4
25/150
600
100
±15
8
12
16
R gon ( Ω )
20
°C
V
A
V
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ μs)
6000
direc / dt (A/μ s)
6000
dI0/dt
dIrec/dt
5000
dI0/dt
dIrec/dt
5000
4000
4000
Tj = 25°C
dIrec/dtLow T
3000
2000
3000
di0/dtHigh T
dIo/dtLow T
2000
1000
1000
dIrec/dtHigh T
Tj = Tjmax - 25°C
0
dIrec/dtHigh T
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/150
600
±15
4
80
120
I C (A)
160
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/150
600
100
±15
8
12
20
°C
V
A
V
Output inverter FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
Zth-JH (K/W)
100
R gon ( Ω )
16
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
0,32
K/W
10-4
10-3
0,51
R (C/W)
0,03
0,06
0,11
0,08
0,02
0,02
R (C/W)
0,02
0,08
0,14
0,18
0,05
0,04
8
100
t p (s)
1011
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
4,4E+00
9,7E-01
1,5E-01
4,2E-02
2,5E-03
3,5E-04
10-2
Tau (s)
9,2E+00
1,2E+00
1,5E-01
3,9E-02
4,2E-03
5,1E-04
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
180
IC (A)
Ptot (W)
600
160
500
140
120
400
100
300
80
60
200
40
100
20
0
0
0
At
Tj =
50
175
100
°C
150
T h ( o C)
0
200
At
Tj =
VGE =
single heating
overall heating
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
160
Ptot (W)
IF (A)
400
150
140
320
120
100
240
80
160
60
40
80
20
0
0
0
At
Tj =
50
175
100
°C
Copyright by Vincotech
150
T h ( o C)
200
0
At
Tj =
single heating
overall heating
9
50
175
100
150
T h ( o C)
200
°C
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
103
IC (A)
VGE (V)
16
100uS
14
10uS
102
240V
12
1mS
960V
100mS
10mS
DC
10
8
101
6
4
100
2
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
101
102
103
0
100
150
200
250
300
350
400
450
500
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
50
V CE (V)
10
100
A
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
250
%
%
120
tdoff
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
VCE
IC
210
100
VGE 90%
VCE 90%
170
80
60
130
IC
VCE
tEoff
40
90
VGE
tdon
20
50
0
IC 1%
VGE
-40
-0,2
-0,05
0,1
0,25
0,4
0,55
-15
15
600
99
0,38
0,66
2,8
2,95
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
VCE 3%
tEon
-30
0,7
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
IC10%
VGE10%
10
-20
3,1
3,25
-15
15
600
99
0,21
0,59
V
V
V
A
μs
μs
3,4
3,7
time(us)
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,55
Turn-on Switching Waveforms & definition of tr
140
250
%
fitted
%
120
IC
210
VCE
100
170
IC 90%
80
130
VCE
IC 60%
60
IC90%
90
IC 40%
40
tr
50
20
IC10%
0
Ic
tf
-20
0,25
0,3
0,35
0,4
0,45
0,5
-30
2,95
0,55
time (us)
VC (100%) =
IC (100%) =
tf =
600
99
0,11
Copyright by Vincotech
IC10%
10
3,1
3,25
3,4
3,55
3,7
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
μs
11
600
99
0,04
V
A
μs
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Poff
100
Pon
%
Eoff
150
80
120
60
90
40
60
20
30
Eon
VGE 10%
VCE 3%
VGE 90%
0
0
tEon
tEoff
IC 1%
-20
-0,2
-30
-0,05
0,1
0,25
0,4
0,55
0,7
2,9
0,85
3
3,1
3,2
3,3
3,4
3,5
3,6
Poff (100%) =
Eoff (100%) =
tEoff =
59,42
8,45
0,66
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Figure 7
Gate voltage vs Gate charge (measured)
3,7
time(us)
time (us)
Output inverter FRED
59,42
12,38
0,59
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
VGE (V)
120
%
15
Id
80
trr
10
40
5
0
Vd
0
IRRM10%
-40
-5
-80
-10
IRRM90%
IRRM100%
-120
-15
fitted
-20
-250
-160
0
250
500
3,1
750
3,25
3,4
3,55
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-15
15
600
99
6433,37
Copyright by Vincotech
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
12
600
99
-113
0,46
3,7
time(us)
3,85
V
A
A
μs
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
%
Erec
%
Qrr
100
100
Id
80
50
tQrr
tErec
60
0
40
-50
20
Prec
-100
0
-20
-150
3
3,2
3,4
3,6
3,8
4
4,2
3
4,4
3,2
3,4
3,6
3,8
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
99
18,12
0,93
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
13
59,42
6,60
0,93
4
4,2
4,4
time(us)
kW
mJ
μs
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste 12mm housing
without thermal paste 17mm housing
10-FZ122PA100SC01-P999F18
10-F0122PA100SC01-P999F19
P999F18
P999F19
P999F18
P999F19
Outline
Pinout
Copyright by Vincotech
14
Revision: 1
FZ12 / F0122PA100SC01
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
15
Revision: 1