10 xZ06NRA041FS03 P965F78x D4 14

10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
flowNPC 0
600V/30A
Features
flow0 12mm housing
● neutral point clamped inverter
● reactive power capability
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● 10-FZ06NRA041FS03-P965F78
● 10-PZ06NRA041FS03-P965F78Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Boost Inv. Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
DC current
Maximum repetitive forward current
IFRM
Tjmax
Th=80°C
Tc=80°C
17
17
A
20
A
I2t-value
I2t
tp=10ms
Tj=25°C
9,5
A2s
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
44
61
W
175
°C
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Tc=80°C
25
35
A
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Th=80°C
Non repetitive peack surge current
IFSM
tp limited by Tjmax
60Hz Single Half-Sine Wave
Tc=25°C
300
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
40
61
W
Tjmax
150
°C
VDS
600
V
Maximum Junction Temperature
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
29
36
A
tp limited by Tjmax
Tc=25°C
272
A
Tj=Tjmax
Th=80°C
Tc=80°C
118
78
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
VCE
600
V
58
77
A
tp limited by Tjmax
225
A
Tj≤175°C
VCE<=VCES
225
A
93
141
W
±20
V
6
360
µs
V
175
°C
Maximum Junction Temperature
W
Boost IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpuls
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
2
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
17
23
A
36
A
33
50
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak surge current
IFRM
20kHz Square Wave
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
3
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,25
1,88
1,22
1,37
0,70
0,05
0,05
1,95
Boost Inv. Diode
Forward voltage
VF
10
Threshold voltage (for power loss calc. only)
Vt0
10
Slope resistance (for power loss calc. only)
rt
10
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
600
V
Ω
0,027
Thermal grease
thickness≤50um
λ = 1 W/mK
V
2,17
mA
K/W
Buck Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
30
Ir
600
IRRM
trr
Qrr
Rgon=2 Ω
350
10
30
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,28
1,76
2,8
100
58
75
14
24
0,38
0,95
17148
12194
0,06
0,14
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
1,74
K/W
Buck MOSFET
Static drain to source ON resistance
Rds(on)
Gate threshold voltage
V(GS)th
30
10
VDS=VGS
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
0,00296
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Rgoff=2 Ω
Rgon=2 Ω
350
10
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,4
41
82
3
mΩ
3,6
100
5000
23
22
5
6
123
134
5
7
0,15
0,28
0,05
0,07
V
nA
uA
ns
mWs
290
10
480
44,4
Tj=25°C
36
Gate to drain charge
Qgd
150
Input capacitance
Ciss
6530
Output capacitance
Coss
nC
pF
Gate resistor
Thermal resistance chip to heatsink per chip
copyright Vincotech
f=1MHz
0
100
rG
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
4
Tj=25°C
360
0,7
Ω
0,90
K/W
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,22
1,29
1,85
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0012
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
30
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,0038
600
Rgoff=4 Ω
Rgon=4 Ω
350
±15
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
84
84
7
8
204
242
55
90
0,26
0,39
0,99
1,36
ns
mWs
4620
f=1MHz
0
25
15
480
288
Tj=25°C
pF
137
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
470
nC
1,02
K/W
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
18
Rgon=4 Ω
±15
350
di(rec)max
/dt
Erec
RthJH
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,23
2,04
3,5
100
59
67
21
102
2,53
4,72
9919
5374
0,75
1,45
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
2,11
K/W
21511
Ω
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tj=25°C
Power dissipation constant
+4,5
-4,5
%
Tj=25°C
210
mW
Tj=25°C
4
mW/K
B-value
B(25/50)
Tj=25°C
3884
K
B-value
B(25/100)
Tj=25°C
3964
K
Vincotech NTC Reference
copyright Vincotech
F
5
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Buck
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
90
IC (A)
IC (A)
90
75
75
60
60
45
45
30
30
15
15
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
1
At
tp =
Tj =
VGE from
250
µs
25
°C
0 V to 20 V in steps of 2 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
V CE (V)
5
250
µs
125
°C
0 V to 20 V in steps of 2 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IC (A)
IF (A)
50
40
40
30
30
20
20
10
10
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
1
250
10
copyright Vincotech
2
3
4
5
V GE (V)
0,0
6
At
tp =
µs
V
6
0,5
1,0
250
µs
1,5
2,0
2,5
V F (V)
3,0
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Buck
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
0,5
0,6
E (mWs)
Eon High T
E (mWs)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon High T
0,5
0,4
0,4
0,3
Eon Low T
Eon Low T
0,3
Eoff High T
0,2
0,2
Eoff High T
Eoff Low T
Eoff Low T
0,1
0,1
0,0
0
10
20
30
40
50
0,0
60
I C (A)
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
4
6
8
RG( Ω )
10
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
10
V
IC =
30
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,24
0,20
Erec High T
E (mWs)
E (mWs)
2
0,20
0,16
0,16
0,12
Erec High T
0,12
Erec Low T
0,08
0,08
0,04
0,04
Erec Low T
0,00
0,00
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
10
V
Rgon =
2
Ω
copyright Vincotech
2
4
6
8
RG( Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
10
V
IC =
30
A
7
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Buck
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
tdoff
tdoff
0,10
0,10
tdon
tdon
tr
tr
0,01
0,01
0,00
0,00
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
RG( Ω )
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
10
V
IC =
30
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,04
0,04
t rr(ms)
t rr(ms)
trr High T
0,03
0,03
trr High T
0,02
0,02
trr Low T
trr Low T
0,01
0,01
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
10
2
copyright Vincotech
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
2
25/125
350
30
10
4
6
8
R gon ( Ω )
10
°C
V
A
V
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Buck
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
Qrr (mC)
1,2
Qrr (mC)
1,5
Qrr High T
1,0
1,2
Qrr High T
0,8
0,9
0,6
Qrr Low T
0,6
0,4
Qrr Low T
0,3
0,2
0,0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
10
2
20
30
40
50
0
60
I C (A)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
25/125
350
30
10
4
6
8
R gon (Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
100
IrrM (A)
100
10
IRRM High T
80
80
60
60
IRRM Low T
40
40
20
20
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
10
2
copyright Vincotech
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
2
25/125
350
30
10
4
6
8
R gon (Ω)
10
°C
V
A
V
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Buck
FWD
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
direc / dt (A/ms)
20000
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward and reverse recovery current
as a function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dtLow T
16000
25000
20000
15000
12000
dIrec/dtHigh T
8000
10000
dIo/dtLow T
dI0/dtLow T
dIrec/dtLow T
di0/dtHigh T
5000
4000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
10
2
20
30
40
50
I C (A)
0
60
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
30
10
4
6
8
R gon (Ω)
10
°C
V
A
V
FWD
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10
21
tp / T
0,90
K/W
IGBT thermal model values
R (C/W)
Tau (s)
0,13
4,5E+00
0,26
1,1E+00
0,25
2,4E-01
0,18
8,4E-02
0,07
1,5E-02
0,03
1,1E-03
copyright Vincotech
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
10-2
10
2
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
dI0/dtHigh TdI /dt
rec
High T
-2
10-5
10-4
At
D=
RthJH =
tp / T
10-3
10-2
10-1
100
t p (s)
1021
1,74
K/W
FWD thermal model values
R (C/W)
Tau (s)
0,09
3,4E+00
0,23
5,1E-01
0,85
1,0E-01
0,33
2,5E-02
0,13
4,5E-03
0,11
8,6E-04
10
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Buck
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
200
Ptot (W)
IC (A)
50
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
100
200
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
11
50
150
100
150
T h ( o C)
200
°C
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Buck
MOSFET
Figure 25
IC = f(VCE)
3
8
IC (A)
VGE (V)
10
MOSFET
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
Safe operating area as a function of collector-emitter voltage
7
100uS
102
120V
6
100mS
10mS
480V
1mS
DC
5
101
4
10
0
3
2
10-1
1
0
10
0
101
102
V CE (V)
103
0
At
D=
Th =
VGE =
Tj =
At
ID=
single pulse
80
ºC
15
V
Tjmax
ºC
copyright Vincotech
12
50
44,4
100
150
200
Q g (nC)
250
A
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
90
IC (A)
90
75
75
60
60
45
45
30
30
15
15
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
60
V CE (V)
IC (A)
IF (A)
70
Tj = 25°C
Tj = Tjmax-25°C
60
50
50
40
40
30
30
20
20
10
10
Tj = 25°C
Tj = Tjmax-25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
0
10
At
tp =
µs
V
13
1
250
2
3
4
V F (V)
5
µs
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,5
E (mWs)
E (mWs)
2,5
Eoff High T
Eoff High T
2,0
1,2
1,5
0,9
Eon High T
Eoff Low T
Eon Low T
Eoff Low T
1,0
0,6
Eon High T
0,5
0,3
Eon Low T
0,0
0,0
0
10
20
30
40
50
60
I C (A)
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
30
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2,0
2,00
E (mWs)
E (mWs)
Erec High T
1,5
1,50
Erec High T
1,0
1,00
Erec Low T
Erec Low T
0,5
0,50
0,0
0,00
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
R G (Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
30
A
14
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Boost
IGBT
IGBT
1,00
1,00
t ( µs)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdon
tf
tdoff
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G (Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
30
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,35
t rr(ms)
t rr(ms)
0,15
trr High T
0,30
trr High T
0,12
0,25
trr Low T
0,09
0,20
0,15
0,06
0,10
0,03
trr Low T
0,05
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
copyright Vincotech
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
4
25/125
350
30
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Boost
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
6
Qrr (mC)
Qrr (mC)
8
Qrr High T
5
Qrr High T
6
4
3
4
Qrr Low T
Qrr Low T
2
2
1
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
20
30
40
50
I C (A)
0
60
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/125
350
30
±15
12
16
R gon (Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
90
IrrM (A)
90
20
IRRM High T
75
75
IRRM Low T
60
60
45
45
30
30
IRRM High T
IRRM Low T
15
15
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
copyright Vincotech
20
30
40
50
I C (A)
0
60
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
4
25/125
350
30
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Boost
FWD
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
FWD
Figure 18
Typical rate of fall of forward and reverse recovery current
as a and reverse recovery current
dI0/dt,dIrec/dt = f(Rgon)
24000
direc / dt (A/ms)
12000
direc / dt (A/ms)
dIrec/dtLow T
10000
dI0/dt T
dIrec/dt T
20000
8000
16000
6000
12000
dIrec/dtHigh T
dIo/dtLow T
4000
8000
di0/dtHigh T
2000
4000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
30
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
4
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
At
D=
RthJH =
10-4
tp / T
1,02
10-3
10-2
10-1
100
t p (s)
101 10
K/W
10-5
10-4
10-3
At
D=
RthJH =
tp / T
2,11
K/W
IGBT thermal model values
FWD thermal model values
R (C/W)
0,08
0,12
0,47
0,26
0,08
0,04
R (C/W)
0,04
0,11
0,53
0,96
0,30
0,17
Tau (s)
4,30E+00
9,99E-01
1,48E-01
4,85E-02
8,38E-03
2,72E-04
copyright Vincotech
17
10-2
10-1
100
t p (s) 101 10
Tau (s)
6,53E+00
1,19E+00
1,77E-01
6,31E-02
5,77E-03
9,51E-04
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
90
Ptot (W)
IC (A)
200
75
160
60
120
45
80
30
40
15
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
30
Ptot (W)
IF (A)
80
200
25
60
20
40
15
10
20
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
150
100
150
Th ( o C)
200
ºC
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Boost
IGBT Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
10
30
IF (A)
IGBT Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJC (K/W)
Tj = Tjmax-25°C
1
25
Tj = 25°C
20
100
15
10
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
5
0
0,0
At
tp =
0,5
1,0
1,5
2,0
2,5
V F (V)
10-2
3,0
µs
250
IGBT Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
At
D=
RthJH =
tp / T
2,17
10-2
10-1
100
t p (s)
1021
K/W
IGBT Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
20
Ptot (W)
IF (A)
100
80
16
60
12
40
8
20
4
0
0
0
50
100
150
Th ( o C)
200
0
At
Tj =
10-3
50
100
150
Th ( o C)
200
At
175
copyright Vincotech
Tj =
ºC
19
175
ºC
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
20
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Switching Definitions BUCK MOSFET
General conditions
= 125 °C
Tj
= 2Ω
Rgon IGBT
Rgoff IGBT
= 2Ω
BUCK MOSFET
Figure 1
BUCK MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
350
120
tdoff
%
IC
%
300
100
VGE 90%
250
80
IC
VGE
200
60
150
40
VCE 90%
tEoff
100
IC 1%
tdon
VCE
20
50
0
VGE
VCE
VGE10%
IC10%
0
-20
-0,1
0
0,1
0,2
-50
2,95
0,3
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
10
700
30
0,13
0,15
tEon
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
BUCK MOSFET
Figure 3
VCE3%
3,05
0
10
700
30
0,02
0,05
3,1
3,15
V
V
V
A
µs
µs
BUCK MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
350
fitted
IC
%
%
IC
300
100
IC 90%
250
75
IC 60%
200
50
IC 40%
150
25
100
IC10%
VCE
0
tr
VCE
tf
IC90%
50
-25
IC10%
0
-50
-50
0,1
0,12
0,14
0,16
0,18
0,2
3
3,02
3,04
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
700
30
0,007
3,06
3,08
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
21
700
30
0,006
V
A
µs
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Switching Definitions BUCK MOSFET
BUCK MOSFET
Figure 5
BUCK MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
150
%
%
Eoff
125
Eon
100
100
80
IC 1%
Pon
75
60
50
40
25
VGE90%
Poff
20
0
VCE3%
VGE10%
tEoff
0
-25
tEon
-20
2,98
-50
0
0,05
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
21,23
0,070
0,15
0,15
time (us)
0,2
3,02
3,04
3,06
3,08
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
BUCK MOSFET
Figure 7
21,23
0,28
0,05
kW
mJ
µs
BUCK MOSFET
Figure 8
Turn-off Switching Waveforms & definition of trr
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
150
Id
%
3
150
%
100
Qrr
Id
100
trr
50
tQrr
50
Vd
fitted
0
0
IRRM 10%
-50
-50
-100
-100
-150
-150
-200
-200
IRRM 90%
IRRM 100%
-250
3
3,02
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
3,04
700
30
-75
0,02
3,06
-250
3,08
time(us)
3,1
3
Id (100%) =
Qrr (100%) =
tQrr =
V
A
A
µs
22
3,02
3,04
30
0,95
0,05
3,06
3,08
time(us)
3,1
A
µC
µs
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Switching Definitions BUCK MOSFET
BUCK FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
Erec
%
125
100
tErec
75
50
Prec
25
0
-25
-50
3
3,02
Prec (100%) =
Erec (100%) =
tErec =
3,04
21,23
0,14
0,05
3,06
3,08
time(us)
3,1
kW
mJ
µs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
copyright Vincotech
Figure 12
BOOST stage switching measurement circuit
23
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Switching Definitions BOOST
General conditions
= 125 °C
Tj
= 4Ω
Rgon IGBT
Rgoff IGBT
= 4Ω
BOOST IGBT
Figure 1
BOOST IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
350
%
%
IC
300
tdoff
250
100
VCE 90%
VGE 90%
200
IC
150
50
tEoff
IC 1%
tdon
VCE
0
VGE
VCE
100
50
VCE3%
VGE
Ic 10%
VGE10%
0
tEon
-50
-50
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
-15
15
350
30
0,24
0,52
0,4
time (us)
3
0,6
3,1
3,15
3,2
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
BOOST IGBT
Figure 3
-15
15
350
30
0,08
0,10
V
V
V
A
µs
µs
BOOST IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
%
3,05
350
%
fitted
Ic
VCE
IC
300
100
IC 90%
250
75
200
IC 60%
50
150
IC 40%
100
VCE
25
IC90%
tr
50
IC10%
0
tf
-25
0
0,1
0,2
0,3
0,4
-50
3,06
0,5
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
350
30
0,090
IC10%
0
VC (100%) =
IC (100%) =
tr =
V
A
µs
24
3,08
3,1
350
30
0,01
3,12
time(us)
3,14
V
A
µs
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Switching Definitions BOOST
BOOST IGBT
Figure 5
BOOST IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
200
%
%
IC 1%
Poff
100
Pon
Eoff
150
75
Eon
100
50
50
25
VCE 3%
VGE 10%
VGE 90%
0
0
tEon
tEoff
-25
-0,2
-50
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
10,46
1,36
0,52
0,4
time (us)
0,6
3
3,05
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
BOOST IGBT
Figure 7
3,1
10,46
0,39
0,10
3,15
time(us)
kW
mJ
µs
BOOST FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
3,2
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
150
%
150
%
Id
100
Id
Qrr
100
trr
50
tQrr
50
0
Vd
fitted
0
IRRM 10%
-50
-50
-100
-100
-150
-150
-200
-200
IRRM 90%
IRRM 100%
-250
3,05
-250
3,1
3,15
3,2
3,25
3
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
350
30
-67
0,10
Id (100%) =
Qrr (100%) =
tQrr =
V
A
A
µs
25
3,25
3,5
30
4,72
1,00
3,75
4
time(us)
4,25
A
µC
µs
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Switching Definitions BOOST
BOOST FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
300
%
Erec
250
200
150
100
tErec
50
Prec
0
-50
3
3,25
Prec (100%) =
Erec (100%) =
tErec =
3,5
10,46
1,45
1,00
3,75
4
time(us)
4,25
kW
mJ
µs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Figure 12
BOOST stage switching measurement circuit
Cg is included in the module
copyright Vincotech
26
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
w/o thermal paste 12mm housing solder pin
w/o thermal paste 12mm housing Press-fit pin
Ordering Code
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
in DataMatrix as
P965F78
P965F78Y
in packaging barcode as
P965F78
P965F78Y
Outline
Pinout
copyright Vincotech
27
Revision: 4
10-FZ06NRA041FS03-P965F78
10-PZ06NRA041FS03-P965F78Y
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
28
Revision: 4
Similar pages