10 FZ06NPA070FP01 P969F10 P1 19

FZ06NPA070FP01
preliminary datasheet
NPC Application
flowNPC 0
600V/75A & 70A PS*
General conditions
BUCK
=
=
=
=
VGEon
VGEoff
Rgon
Rgoff
15 V
-15 V
8Ω
8Ω
Vout= 230 VAC
Figure 1.
Buck MOSFET
BOOST
=
=
=
=
VGEon
VGEoff
Rgon
Rgoff
15 V
0V
8Ω
8Ω
Figure 2.
Typical average static loss as a function of
of output current IoRMS
Ploss=f(Iout)
Buck FRED
Typical average static loss as a function of
output current IoRMS
Ploss=f(Iout)
70
Ploss (W)
Ploss (W)
60
φ=0º
60
50
φ=90º
50
40
40
30
30
φ=0º
20
20
φ=180º
10
10
φ=180º
0
0
0
10
Conditions:
parameter:
20
30
40
Tj=
φ
125
from
°C
50
60
0°
in
12
70
I out (A)
to
0
80
10
Conditions:
parameter:
180°
20
30
40
Tj=
φ
125
from
°C
steps
50
0°
in
Figure 3.
Buck MOSFET
60
12
70
I out (A)
to
180°
steps
Figure 4.
Typical average static loss as a function of
phase displacement φ
Ploss=f(φ)
80
Buck FRED
Typical average static loss as a function of
phase displacement φ
Ploss=f(φ)
60
Ploss (W)
Ploss (W)
70
50
IoutRMS=Imax
IoutRMS=Imax
60
50
40
40
30
30
20
20
10
10
IoutRMS=6% Imax
IoutRMS=6%Imin
0
0
0
Conditions:
parameter:
20
40
Tj=
IoRMS
60
80
100
125
from
°C
in steps of
copyright by Vincotech
120
140
4,58 A
9
160
to
180
φ(º )
200
0
Conditions:
parameter:
68 A
A
20
40
Tj=
IoRMS
60
80
100
125
from
°C
in steps of
1
120
140
4,58 A
9
160
to
180
φ(º )
200
68 A
A
Revision: 1
FZ06NPA070FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 5.
Buck MOSFET
600V/75A & 70A PS*
Figure 6.
Buck FRED
Typical average switching loss as a function of
Typical average switching loss as a function of
phase displacement φ
Ploss=f(φ)
phase displacement φ
Ploss=f(φ)
Ploss (W)
2,50
Ploss (W)
9,0
8,0
IoutRMS=Imax
2,00
7,0
IoutRMS=Imax
6,0
1,50
5,0
4,0
1,00
3,0
2,0
0,50
IoutRMS=6% Imax
1,0
IoutRMS=6% Imax
0,00
0
20
40
Conditions:
parameter:
60
80
100
120
Tj=
fsw=
125
20
°C
kHz
DC link=
IoRMS
700
from
V
140
φ(º )
180
0
200
9
to
40
68 A
parameter:
60
80
100
Tj=
fsw=
125
20
°C
kHz
DC link=
IoRMS
700
from
V
A
Figure 7.
Buck MOSFET
9
200
68 A
5-10
0-5
5-10
10-15
15-20
20-25
25-30
30-35
35-40
64
60
55
55
50
50
15-20
46
46
41
41
25-30
37
37
32
32
35-40
28
40-45
45-50
50-55
55-60
28
23
23
45-50
18
18
14
14
50-55
to
69
60
40-45
180
φ(º )
Buck FRED
P loss (W)
64
30-35
160
A
Figure 8.
IoutR
69
20-25
140
Typical total loss as a function of
phase displacement φ and output current IoRMS
Ploss=f(IoRMS;φ)
P loss (W)
10-15
120
4,58 A
in steps of
Typical total loss as a function of
phase displacement φ and output current IoRMS
Ploss=f(IoRMS;φ)
0-5
20
Conditions:
4,58 A
in steps of
160
IoutR
0,0
60-65
9
55-60
0
15
30
45
60
75
90
5
105 120 135 150 165 180
9
0
15
30
45
60
75 90
φ(º )
5
105 120 135 150 165 180
φ(º )
Conditions:
Tj=
125
°C
DC link=
fsw=
700
20
V
kHz
copyright by Vincotech
Conditions:
2
Tj=
125
°C
DC link=
fsw=
700
20
V
kHz
Revision: 1
FZ06NPA070FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 9.
for Buck MOSFET+FRED
600V/75A & 70A PS*
Figure 10.
for Buck MOSFET+FRED
Typical available output current as a function of
phase displacement φ
Typical available output current as a function of
switching frequency fsw
Iout=f(φ)
Iout=f(fsw)
120
Iout (A)
Iout (A)
100
Th=50°C
90
100
80
80
70
Th=50°C
60
60
50
Th=100°C
40
40
Th=100°C
30
20
20
0
0
15
30
45
60
75
90
105
120
135
150
165
10
180
φ
0
1
Conditions:
Tj= Tjmax-25 °C
fsw=
parameter:
700
V
Heatsink temp.
Th from
50
°C to
in
10
°C
20 kHz
Conditions:
DC link=
Figure 11.
parameter:
100
steps
°C
10
fsw (kHz)
φ= 0 °
Tj= Tjmax-25 °C
DC link=
Heatsink temp.
Th from
in
700
50
10
100
V
°C to
°C
100
steps
°C
for Buck IGBT+FRED
Typical available 50Hz output current as a function of
fsw and phase displacement φ
Iout=f(fsw,φ)
180
I out (A)
φ
165
150
60-70
135
50-60
120
40-50
105
30-40
90
75
20-30
60
10-20
45
0-10
30
15
fsw (kHz)
Conditions:
2
4
8
16
32
64
0
128
Tj= Tjmax-25 °C
DC link=
Th=
copyright by Vincotech
700
80
V
°C
3
Revision: 1
FZ06NPA070FP01
preliminary datasheet
flowNPC 0
NPC Application
Figure 12.
Boost IGBT
600V/75A & 70A PS*
Figure 13.
Typical average static loss as a function of
output current
Ploss=f(Iout)
Boost FRED
Typical average static loss as a function of
output current
Ploss=f(Iout)
90
Ploss (W)
Ploss (W)
60
φ=0º
φ=180º
80
50
70
60
40
50
30
40
30
20
20
10
10
φ=180º
φ=0º
0
0
0
10
20
Conditions:
parameter:
30
40
Tj=
125
°C
φ
from
in
50
60
70
Iout (A)
0
80
10
20
Conditions:
0°
12
to
steps
Figure 14.
180º
parameter:
Boost IGBT
30
40
Tj=
125
°C
φ
from
in
60
0°
12
70
Iout (A)
to
steps
80
180º
Figure 15.
Typical average static loss
as a function of phase displacement
Ploss=f(φ)
Boost FRED
Typical average static loss
as a function of phase displacement
Ploss=f(φ)
FRED D1
90
Ploss (W)
60
Ploss (W)
50
IoutRMS=Imax
IoutRMS=Imax
80
50
70
60
40
50
30
40
20
30
20
10
10
IoutRMS=6% Imax
IoutRMS=6% Imax
0
0
0
Conditions:
parameter:
20
40
Tj=
IoRMS
60
80
100
125
from
°C
in steps of
copyright by Vincotech
120
5 A
140
160
to
180
φ(º )
0
200
Conditions:
parameter:
68 A
9 A
20
40
Tj=
IoRMS
60
80
100
125
from
°C
in steps of
4
120
5 A
140
160
to
180
φ(º )
200
68 A
9 A
Revision: 1
FZ06NPA070FP01
preliminary datasheet
flowNPC 0
NPC Application
Figure 16.
Boost IGBT
Figure 17.
Boost FRED
Typical average switching loss as a function of
phase displacement
Ploss=f(φ)
25
Ploss (W)
Typical average switching loss as a function of
phase displacement
Ploss=f(φ)
Ploss (W)
600V/75A & 70A PS*
45
IoutRMS=Imax
IoutRMS=Imax
40
20
35
15
30
25
10
20
15
5
IoutRMS=6% Imax
10
0
5
0
IoutRMS=6% Imax
0
20
40
80
100
Tj=
125
°C
DC link=
IoRMS
700
from
V
Conditions:
parameter:
60
120
140
160
fsw=
in steps of
5 A
to
9 A
A
Figure 18.
φ(º )
180
100
150
φ(º )
200
200
20 kHz
Conditions:
68 A
parameter:
Tj=
125
°C
DC link=
IoRMS
700
from
V
in steps of
Boost IGBT
fsw=
20 kHz
5 A
to
68 A
9 A
A
Figure 19.
Typical total loss as a function of phase displacement
and IoutRMS
Boost FRED
Typical total loss as a function of phase displacement
and IoutRMS
Ploss=f(IoRMS;φ)
Ploss=f(IoRMS;φ)
69
IoutR
64
IoutR
69
64
P loss70-80
(W)
60
55
P loss (W)
60
55
60-70
50
50
60-70
50-60
46
50-60
MS
0
50
46
41
41
40-50
37
37
40-50
30-40
32
30-40
32
20-30
28
23
28
23
10-20
20-30
18
18
0-10
10-20
14
14
9
9
0-10
0
Conditions:
15
30
45
60
75
90
Tj=
125
°C
DC link=
fsw=
700
20
V
kHz
copyright by Vincotech
5
105 120 135 150 165 180
φ(º )
0
15
Conditions:
5
30
45
60
75 90
φ(º )
5
105 120 135 150 165 180
Tj=
125
°C
DC link=
fsw=
700
20
V
kHz
Revision: 1
FZ06NPA070FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 20.
Boost IGBT+FRED
Figure 21.
Typical available output current as a function of
of phase displacement
Iout=f(φ)
Boost IGBT+FRED
Typical available output current
as a function of switching frequency
Iout=f(fsw)
90
90
Iout (A)
Iout (A)
600V/75A & 70A PS*
80
80
Th=50°C
70
70
60
60
50
50
Th=50°C
40
40
30
30
Th=100°C
20
Th=100°C
20
10
10
0
0
15
30
45
60
75
90
105
120
135
150
165
180
0
φ(º
)
Conditions:
Tj= Tjmax-25 °C
DC link=
700
V
parameter:
Th from
in
fsw=
Heatsink temp.
50
°C to
10
°C
1
20 kHz
Conditions:
10
Figure 22.
°C
Th from
in
Heatsink temp.
50
°C to
10
°C
f sw (kHz)
1000
φ= 90°
Tj= Tjmax-25 °C
DC link=
700
V
parameter:
100
steps
100
100
steps
°C
Boost IGBT+FRED
Typical available 50Hz output current as a function of
fsw and phase displacement
Iout=f(fsw,φ)
180
I out (A)
φ
165
150
-10-0
0-10
10-20
20-30
30-40
40-50
135
120
105
90
75
60
50-60
60-70
45
70-80
30
80-90
15
2
Conditions:
4
8
16
32
64
0
128
fsw (kHz)
Tj= Tjmax-25 °C
DC link=
Th=
copyright by Vincotech
700
80
V
°C
6
Revision: 1
FZ06NPA070FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 23.
per MODULE
600V/75A & 70A PS*
Figure 24.
Typical available output current as a function of
heat sink temperature
Iout=f(Th)
per MODULE
Typical available output current
as a function of phase displacement
Iout=f(φ)
90
Iout (A)
Iout (A)
90
80
70
80
70
60
60
Th=50°C
2kHz
50
50
40
40
30
30
128kHz
20
20
Th=100°C
10
10
φ
0
0
60
65
Conditions:
70
75
80
85
90
0
o
95T h ( C)100
Tj= Tjmax-25 °C
DC link=
φ=
parameter:
Conditions:
700
V
0°
Switching freq.
fsw from
2
in steps of factor 2
30
parameter:
kHz to
128
kHz
60
75
90
105
120
135
150
50
10
°C to
°C
180
100
steps
Figure 26.
Typical available output current as a function of
switching frequency
Iout=f(fsw)
165
700
V
20
kHz
Heatsink temp.
Th from
in
per MODULE
45
Tj= Tjmax-25 °C
DC link=
fsw=
Figure 25.
Iout (A)
15
per MODULE
Typical available 50Hz output current as a function of
fsw and phase displacement
Iout=f(fsw,φ)
180
90
Th=50°C
I out (A)
80
φ
165
150
70
60-70
135
60
50-60
120
50
40-50
105
40
30-40
30
20
10
90
20-30
75
10-20
60
0-10
45
0
30
1
10
f sw (kHz)
100
15
f sw (kHz)
Conditions:
Tj= Tjmax-25 °C
DC link=
parameter:
Th from
in
50
10
copyright by Vincotech
φ=
0°
Conditions:
700
V
Heatsink temp.
°C to
°C
2
4
8
16
32
64
0
128
Tj= Tjmax-25 °C
DC link=
Th=
700
80
V
°C
100
steps
7
Revision: 1
FZ06NPA070FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 27.
per MODULE
Figure 28.
per MODULE
Typical efficiency as a function of output power
η=f(Pout)
efficiency (%)
Typical efficiency as a function of output power
η=f(Pout)
efficiency (%)
600V/75A & 70A PS*
100,0
100,0
2kHz
99,0
98,0
128kHz
97,0
96,0
99,0
95,0
94,0
φ=0º
93,0
92,0
98,0
91,0
φ=180º
90,0
89,0
Pout (kVA)
Pout (kVA)
88,0
97,0
0,0
Conditions:
2,0
Tj=
fsw=
4,0
125
20
6,0
8,0
10,0
12,0
14,0
16,0
0,0
18,0
°C
kHz
Conditions:
DC link=
parameter:
2,0
700
V
phase displacement
φ
from
0°
in steps of 30 °
Figure 29.
8,0
125
700
10,0
14,0
128
18,0
kHz
Figure 30.
per MODULE
Typical loss distribution as a function of
heat sink temperature
Pout=f(Th)
output current
Pout=f(Th)
20
16,0
φ= 0 °
°C
V
Typical available output power as a function of
Pout (kW)
12,0
Switching freq.
fsw from
2
kHz to
in steps of factor 2
180 °
per MODULE
6,0
Tj=
DC link=
parameter:
to
4,0
160,0
Loss distribution
18
140,0
16
120,0
T1
Stat.
14
D3-5
Sw.
12
2kHz
100,0
10
D3-5
Stat.
80,0
8
T3
Sw.
60,0
T3
Stat.
40,0
6
128kHz
4
20,0
2
0,0
0
60
65
70
75
80
85
90
95
o
5
100
9
14
18
23
28
32
T h ( C)
Conditions:
parameter:
Tj= Tjmax-25 °C
DC link=
700
φ=
0
Switching freq.
fsw from
2
kHz to
in steps of factor 2
copyright by Vincotech
41
46
50
55
60
64
69
Iout (A)
Conditions:
V
°
128
37
Tj=
fsw=
125
20
°C
kHz
DC link=
φ=
700
0°
V
kHz
8
Revision: 1
FZ06NPA070FP01
preliminary datasheet
NPC Application
flowNPC 0
Figure 31.
Typical relativ loss distribution as a function of
output current
Pout=f(Th)
per MODULE
Figure 32.
600V/75A & 70A PS*
per MODULE
1,0
Loss distribution
0,9
0,8
T1
Stat.
0,7
D3-5
Sw.
0,6
D3-5
Stat.
T3
Sw.
T3
Stat.
0,5
0,4
0,3
0,2
0,1
0,0
5
9
14
18
23
28
32
37
41
46
50
55
60
64
69
Iout (A)
Conditions:
Tj=
fsw=
DC link=
φ=
125
20
700
0°
°C
kHz
V
Cg is included in the module
copyright by Vincotech
9
Revision: 1
FZ06NPA070FP01
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
10
Revision: 1