10 xZ06NRA084FP03 P969F78x D1 14

10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
flow NPC 0
600V/75A & 99mΩ PS*
Features
flow 0 12mm housing
● *PS: 75A parallel switch (75A and 99mΩ MOSFET)
● neutral point clamped inverter
● reactive power capability
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● 10-FZ06NRA084FP03-P969F78
● 10-PZ06NRA084FP03-P969F78Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Boost Inv. Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Maximum repetitive forward current
IFRM
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
7
11
A
20
A
9,5
A2s
44
66
W
Tjmax
175
°C
VCE
600
V
61
80
A
225
A
225
A
108
163
W
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
DC current
Tj=Tjmax
Th=80°C
Tc=80°C
Buck IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Turn off safe operating area
Ptot
Gate-emitter peak voltage
VGE
±20
V
Tjmax
175
°C
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
Power dissipation per IGBT
1
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
25
34
A
300
A
40
61
W
Tjmax
150
°C
VDS
600
V
17
21
A
112
A
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Non-repetitive Peak Surge Current
IFSM
60Hz Single Half-Sine Wave
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Th=80°C
Tc=80°C
60
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
VCE
600
V
58
75
A
225
A
225
A
93
141
W
±20
V
6
360
µs
V
175
°C
1200
V
22
29
A
70
A
51
77
W
175
°C
Maximum Junction Temperature
Tj=Tjmax
91
W
Boost IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpuls
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax,
20 kHz Square Wave
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
3
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Boost Inv. Diode
Forward voltage
VF
10
Threshold voltage (for power loss calc. only)
Vto
10
Slope resistance (for power loss calc. only)
rt
10
Reverse current
Ir
600
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
9,44
7,24
8,32
6,62
0,11
0,06
V
V
Ω
0,027
mA
2,17
K/W
1,43
Buck IGBT *
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,00025
15
75
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Input capacitance **
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge**
QGate
f=1MHz
0
25
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
3,5
4,5
6
1,69
1,87
2,5
250
±400
V
V
mA
nA
none
Ω
4+4,7
nF
400
pF
Thermal resistance chip to heatsink per chip
RthJH
115
15
480
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
248+70
nC
0,88
K/W
* see dinamic characteristic at Buck MosFET
**additional value stands for built-in capacitor
Buck Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
Ir
600
IRRM
trr
Qrr
Rgon=4 Ω
±15
350
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
copyright Vincotech
30
Thermal grease
thickness≤50um
λ = 1 W/mK
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,67
1,86
100
80
90
13
22
0,59
1,18
22422
14099
0,13
0,19
1,73
4
2,7
V
µA
A
ns
µC
A/µs
mWs
K/W
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
2,4
108
214
3
3,6
Buck MOSFET
Static drain to source ON resistance
Gate threshold voltage
Rds(on)
10
16
VDS=VGS
V(GS)th
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
0,00121
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Rgoff=4 Ω
Rgon=4 Ω
±15
350
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
mΩ
100
5
36
37
3
3
399
414
3
4
0,06
0,28
0,06
0,23
V
nA
uA
ns
mWs
119
10
480
18,1
14
Tj=25°C
nC
61
Input capacitance
Ciss
Output capacitance
Coss
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
2660
f=1MHz
0
100
pF
Tj=25°C
154
1,16
K/W
** see schematic of the Gate-complex at characteristic figures
Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
Collector-emitter cut-off incl diode
ICES
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
30
600
0
0
20
td(off)
tf
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5
5,8
6,5
1,05
1,12
1,13
1,85
0,0038
600
none
tr
Eon
copyright Vincotech
15
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0,0012
Rgoff=4 Ω
Rgon=4 Ω
±15
350
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
85
87
11
13
177
209
78
102
0,39
0,66
1,56
2,18
V
V
mA
nA
Ω
ns
mWs
4620
f=1MHz
25
0
Tj=25°C
288
pF
137
15
480
Thermal grease
thickness≤50um
λ = 1 W/mK
5
75
Tj=25°C
470
nC
1,02
K/W
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
2,23
2,04
3,3
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
18
Ir
1200
IRRM
trr
Qrr
Rgon=4 Ω
±15
350
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
100
79
104
26
105
3,00
6,55
11365
7906
0,87
1,86
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
1,87
K/W
21511
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
Tj=25°C
R100=1486 Ω
Tc=100°C
P
Power dissipation constant
-4,5
+4,5
Tj=25°C
210
mW
Tj=25°C
3,5
mW/K
K
A-value
B(25/50)
Tj=25°C
3884
B-value
B(25/100)
Tj=25°C
3964
Vincotech NTC Reference
copyright Vincotech
Tj=25°C
6
%
K
F
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Buck
MOSFET+IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET+IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
160
IC (A)
IC (A)
160
140
140
120
120
100
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
MOSFET+IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
125
IF (A)
IC (A)
70
5
60
100
50
75
40
30
50
Tj = Tjmax-25°C
20
25
10
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
V GE (V)
8
0
At
tp =
µs
V
7
1
250
2
3
4
V F (V)
5
µs
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Buck
MOSFET+IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET+IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,6
E (mWs)
0,8
E (mWs)
Eon High T
Eoff High T
Eon High T
0,5
0,6
0,4
Eon Low T
0,4
0,3
Eoff High T
0,2
Eoff Low T
Eoff Low T
0,2
Eon Low T
0,1
0,0
0,0
0
20
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
40
60
80
I C (A)
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
40
A
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
20
40
60
RG( Ω )
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,25
80
0,20
E (mWs)
E (mWs)
Erec High T
0,20
0,15
Erec High T
Erec Low T
0,15
0,10
0,10
0,05
0,05
Erec Low T
0,00
0,00
0
20
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
40
60
I C (A)
80
0
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
40
A
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
8
40
60
RG( Ω )
80
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Buck
MOSFET+IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET+IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
1,00
tdoff
t (ms)
t (ms)
tdoff
tdon
0,10
0,10
tdon
tr
tf
0,01
0,01
tf
tr
0,00
0,00
0
20
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
60
0
80
I C (A)
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
40
A
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
20
60
RG( Ω )
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,030
t rr(ms)
t rr(ms)
0,05
80
trr High T
trr High T
0,025
0,04
0,020
0,03
trr Low T
0,015
0,02
trr Low T
0,010
0,01
0,005
0,000
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
4
copyright Vincotech
40
°C
V
V
Ω
60
I C (A)
0
80
At
Tj =
VR =
IF =
VGE =
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
9
20
25/125
350
40
±15
40
°C
V
A
V
60
R gon ( Ω )
80
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Buck
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
2,0
Qrr (uC)
Qrr (uC)
1,2
Qrr High T
Qrr High T
1,0
1,5
0,8
0,6
1,0
Qrr Low T
0,4
Qrr Low T
0,5
0,2
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
20
40
°C
V
V
Ω
25/125
350
±15
4
60
0
80
I C (A)
At
Tj =
VR =
IF =
VGE =
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
20
25/125
350
40
±15
40
°C
V
A
V
60
R gon ( Ω)
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
100
IrrM (A)
100
80
IRRM Low T
80
80
IRRM High T
60
60
40
40
20
20
0
IRRM Low T
0
0
At
Tj =
VCE =
VGE =
Rgon =
IRRM High T
20
25/125
350
±15
4
copyright Vincotech
40
°C
V
V
Ω
60
I C (A)
80
0
At
Tj =
VR =
IF =
VGE =
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
10
20
25/125
350
40
±15
40
°C
V
A
V
60
R gon ( Ω)
80
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Buck
FWD
32000
dIrec/dt T
28000
FWD
Figure 18
Typical rate of fall of forward and reverse recovery current
as a function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIo/dt T
25000
dIrec/dt T
dI0/dt T
20000
24000
20000
15000
16000
10000
12000
8000
5000
4000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
4
40
°C
V
V
Ω
60
I C (A)
0
80
At
Tj =
VR =
IF =
VGE =
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
40
±15
40
°C
V
A
V
60
R gon ( Ω)
80
Gate on/off resistor of IGBT is fix 4Ω
MOSFET turn off delayed with 350 nS
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10
20
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10-5
1
10
102
At
D=
RthJH =
tp / T
0,88
K/W
IGBT thermal model values
R (C/W)
Tau (s)
0,14
1,8E+00
0,36
2,1E-01
0,28
7,5E-02
0,08
1,2E-02
0,02
1,1E-03
copyright Vincotech
10-4
10-3
10-2
10-1
100
t p (s)
101
tp / T
1,73
K/W
FWD thermal model values
R (C/W)
Tau (s)
0,08
4,5E+00
0,17
9,6E-01
0,63
1,6E-01
0,53
5,6E-02
0,20
1,2E-02
0,12
2,3E-03
11
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Buck
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
Ptot (W)
IC (A)
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
Ptot (W)
IF (A)
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
25
150
copyright Vincotech
50
75
100
125
T h ( o C) 150
0
At
Tj =
°C
12
25
150
50
75
100
125
T h ( o C) 150
°C
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Buck
IGBT
Figure 25
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
Safe operating area as a function of collector-emitter voltage
IC = f(VCE)
15
IC (A)
VGE (V)
103
100uS
200V
1
102
12
400V
100mS
10mS
1mS
DC
9
101
10
6
0
3
10-1
0
10
At
D=
0
101
0
V CE (V)
102
At
IC=
single pulse
80
ºC
±15
V
Tjmax
ºC
Th =
VGE =
Tj =
50
100
150
200
Q g (nC)
250
1
MOSFET
Figure 27
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
75
MOSFET
Figure 28
Gate voltage vs Gate charge
VGE = f(Qg)
101
VGE (V)
ZthJH (K/W)
10
120V
8
480V
10
0
6
4
10-1
2
0
10-2
At
10
-5
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
0
tp / T
At
IC =
1,16
K/W
MOSFET thermal model values
R (C/W)
Tau (s)
0,11
4,7E+00
0,22
9,0E-01
0,39
1,7E-01
0,25
4,8E-02
0,10
1,3E-02
0,05
2,5E-03
copyright Vincotech
20
40
1012
10
13
38
60
80
100
Q g (nC) 120
A
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
300
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
80
IF (A)
IC (A)
80
5
60
60
40
40
20
20
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
Tj = Tjmax-25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0
At
tp =
µs
V
14
1
250
2
3
V F (V)
4
µs
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,5
E (mWs)
E (mWs)
4
Eoff High T
Eoff High T
Eon High T
2,0
3
Eoff Low T
Eon Low T
Eoff Low T
1,5
2
1,0
Eon High T
1
Eon Low T
0,5
0
0,0
0
20
40
60
80
100
I C (A)
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
3
E (mWs)
E (mWs)
2,5
Erec High T
2,5
2
Erec High T
2
1,5
1,5
Erec Low T
1
1
Erec Low T
0,5
0,5
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
5
10
15
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
15
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Boost
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( µs)
t ( µs)
1
tdon
tdoff
tdon
0,1
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
80
100
I C (A)
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
5
10
15
R G ( Ω)
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
trr High T
t rr(ms)
t rr(ms)
0,15
trr High T
0,12
0,3
0,09
trr Low T
0,2
0,06
trr Low T
0,1
0,03
0,0
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
20
125
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
5
125
25/125
350
50
±15
10
15
R gon ( Ω)
20
°C
V
A
V
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Boost
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
8
Qrr (mC)
Qrr (mC)
10
Qrr High T
8
Qrr High T
6
6
4
Qrr Low T
4
Qrr Low T
2
2
0
0
0
20
At
At
Tj =
VCE =
VGE =
Rgon =
125
25/125
350
±15
4
40
60
80
0
100
I C (A)
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
120
16
R gon ( Ω)
20
°C
V
A
V
FWD
120
IrrM (A)
IrrM (A)
125
25/125
350
50
±15
12
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IRRM High T
100
8
100
IRRM Low T
80
80
60
60
40
40
IRRM High T
IRRM Low T
20
20
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
125
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
17
5
125
25/125
350
50
±15
10
15
R gon ( Ω)
20
°C
V
A
V
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Boost
FWD
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
FWD
Figure 18
Typical rate of fall of forward and reverse recovery current
as a and reverse recovery current
dI0/dt,dIrec/dt = f(Rgon)
20000
direc / dt (A/ms)
direc / dt (A/ms)
14000
dIrec/dt T
di0/dt T
12000
dI0/dt T
dIrec/dt T
15000
10000
8000
10000
6000
4000
5000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
125
25/125
350
±15
4
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
125
25/125
350
50
±15
10
15
20
R gon ( Ω)
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
5
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
At
D=
RthJH =
10-4
tp / T
1,02
10-3
10-2
10-1
100
t p (s)
101 2
10
10-5
At
D=
RthJH =
K/W
10-4
tp / T
1,87
10-3
FWD thermal model values
R (C/W)
0,08
0,12
0,47
0,26
R (C/W)
0,08
0,22
1,10
0,21
0,15
0,12
copyright Vincotech
18
10-1
100
t p (s)
12
1010
K/W
IGBT thermal model values
Tau (s)
4,3E+00
1,0E+00
1,5E-01
4,9E-02
10-2
Tau (s)
2,9E+00
4,4E-01
1,1E-01
3,3E-02
7,2E-03
1,0E-03
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
Ptot (W)
IC (A)
200
80
150
60
100
40
50
20
0
0
At
Tj =
50
100
150
T h ( o C)
0
200
0
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
35
Ptot (W)
IF (A)
100
200
30
80
25
60
20
15
40
10
20
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
19
50
175
100
150
Th ( o C)
200
ºC
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Boost Inv.
IGBT Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IGBT Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
40
ZthJC (K/W)
IF (A)
101
30
10
0
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
Tj = 25°C
Tj = Tjmax-25°C
0
0
At
tp =
3
6
9
12
V F (V)
10-2
15
µs
250
IGBT Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
10-3
At
D=
RthJH =
tp / T
2,17
K/W
10-2
100
t p (s)
1012
10
IGBT Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
15
Ptot (W)
IF (A)
100
10-1
80
12
60
9
40
6
20
3
0
0
0
50
100
150
Th ( o C)
0
200
At
Tj =
50
100
150
Th ( o C)
200
At
175
copyright Vincotech
Tj =
ºC
20
175
ºC
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
21
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Switching Definitions BUCK IGBT&MOSFET
Rgon IGBT
Rgoff IGBT
General conditions
= 125°C
Tj
4Ω
Rgon MOSFET
4Ω
Rgoff MOSFET
=
=
=
=
4Ω
4Ω
MOSFET turn off delayed time with 350 nS
BUCK IGBT&MOSFET
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
350
%
tdoff
%
BUCK IGBT&MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
IC
300
100
VGE 90%
IC
VGE
250
75
200
50
VCE 90%
tEoff
150
25
100
IC 1%
VCE
0
50
VGE
tdon
VCE
VGE10%
-25
VCE 3%
IC10%
0
tEon
-50
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
-15
15
700
40
0,41
0,44
0,4
time (us)
-50
2,98
0,6
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
BUCK IGBT&MOSFET
Figure 3
3,04
-15
15
700
40
0,04
0,06
3,06
time(us)
3,08
V
V
V
A
µs
µs
BUCK IGBT&MOSFET
Turn-on Switching Waveforms & definition of tr
350
%
fitted
IC
100
3,02
Figure 4
Turn-off Switching Waveforms & definition of tf
125
%
3
IC
300
IC 90%
250
75
IC 60%
200
50
IC 40%
25
150
VCE
IC10%
0
100
tf
VCE
-25
50
-50
0
-50
3,02
-75
0,4
0,41
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,42
700
40
0,004
0,43
0,44
time (us)
0,45
tr
IC
90%
IC 10%
3,03
3,04
3,05
3,06
3,07
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
22
700
40
0,003
V
A
µs
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Switching Definitions BUCK IGBT&MOSFET
BUCK IGBT&MOSFET
Figure 5
BUCK IGBT&MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
IC 1%
Eon
Eoff
100
100
75
75
Pon
50
50
25
25
VGE 90%
VCE 3%
VGE 10%
Poff
0
0
tEoff
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
tEon
0,2
28,07
0,23
0,44
0,4
time (us)
-25
2,98
0,6
3,02
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
BUCK IGBT&MOSFET
Figure 7
3
28,07
0,28
0,06
3,04
3,06
3,08
kW
mJ
µs
BUCK FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
time(us)
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
150
150
%
%
100
Id
Qrr
100
Id
trr
tQrr
50
50
fitted
0
0
IRRM 10%
Vd
-50
-50
-100
-100
-150
-150
IRRM 90%
-200
-200
IRRM 100%
-250
3,01
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
-250
3,03
3,05
700
40
-90
0,02
3,07
time(us)
3,09
3
Id (100%) =
Qrr (100%) =
tQrr =
V
A
A
µs
23
3,025
3,05
40
1,18
0,04
3,075
time(us)
3,1
A
µC
µs
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
Switching Definitions BUCK IGBT&MOSFET
BUCK FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
%
Erec
100
80
tErec
60
40
Prec
20
0
-20
3,03
3,05
Prec (100%) =
Erec (100%) =
tErec =
01-2
-1 -2
010-2
-1
-1 -5 -5
-5
1010
10
10
10
10
150
75
1,6
80
40
1,25
120
30
100
300
225
0,08
7032 11
3,07
kW
mJ
µs
28,07
0,19
0,04
-4 -4
1010
10-4
3,09
time(us)
10-3
10-3
-2 -2
1010
10-2
10-110-1-1
0
00
1 11
1010
10
20 -3
10=
10
100,5
10
10-1
10
D
DD
=
=
0,5
0,5
01-2
-1
-2
01 01-2
-1
-1-5
-5
-5 -5
-4
-4 -4
o -4
10
10
10
10
10
10
10
10
10010
C10
80
40
100
30
50
12
3000
60
25
40
150
1,4 1T =130
1,25
-3
-3
-3-3
10
1010
-2-2
-2
10
10
10-1-1-1
0
10
10
10
10
00000
10
10
10
10
10
D
D
D
D
=
=
==0,5
0,5
0,5
0,5
111
2
10
10
1010
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Figure 12
BOOST stage switching measurement circuit
T5
T5
T3
400V
C1
100uF
100k
R1
T1
D3
T1
D1
Vcc V
VDC
700V
200uH
L
4_OHM
4_OHM
0.00001
0.000003
Q
Q
Q
Q
+15V
400V
C2
100uF
R2
100k
T2
D2
D4
T4
Driver
Ic
1mH
V
T6
Vge
L2
T4
Rgon
-15V
200uH
L
A
D2
A
0.000003
Vce V
Ic
T2
Vce V
D1
D3
D4
Vge
V T6
T3
VDC
350V
Q
Q
VDC2
15V
350nS
VDC2
15V
Rgoff
0.00001
0.000003
Q
Q
Q
Q
0.000003
Q
Q
Cg is included in the module (T5,T6)
copyright Vincotech
24
Revision: 1
10-FZ06NRA084FP03-P969F78
10-PZ06NRA084FP03-P969F78Y
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without thermal paste 12mm housing with PressFiT
without thermal paste 12mm housing
in DataMatrix as
10-PZ06NRA084FP03-P969F78Y
10-FZ06NRA084FP03-P969F78
P969F78Y
P969F78
in packaging barcode as
P969F78Y
P969F78
Outline
Pin
X
Y
1
2
3
4
5
6
7
33,6
30,7
27,8
22
19,2
11,4
0
0
0
0
0
0
0
10,1
17,9
20,8
27,8
30,7
33,6
33,6
33,6
0
0
0
0
0
0
0
2,9
9,9
12,7
15,5
19,7
22,6
22,6
22,6
22,6
22,6
22,6
22,6
14,8
8,2
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Pinout
copyright Vincotech
25
Revision: 1
10-FZ06NRA084FP02-P969F78
10-PZ06NRA084FP02-P969F78Y
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
26
Revision: 1
Similar pages