10 xx06NIA100SA M135Fxx D3 19

10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
application sheet
NPC Application
flow NPC 1
600 V / 100 A
General conditions
V GEon
V GEoff
R gon
R goff
BUCK
=
15 V
=
=
=
-15 V
8Ω
8Ω
V out= 230 VAC
Figure 1.
Buck IGBT
V GEon
BOOST
=
15 V
V GEoff
R gon
R goff
=
=
=
-15 V
8Ω
8Ω
Figure 2.
Typical average static loss as a function of
output current I oRMS
P loss=f(I out)
Buck FWD
Typical average static loss as a function of
output current I oRMS
P loss=f(I out)
70
●UPS
Ploss (W)
Ploss (W)
50
φ=0º
60
φ=90º
40
50
30
40
30
20
20
φ=0º
10
10
φ=180º
0
0
0
20
40
Conditions:
T j=
150
parameter:
φ
from
60
80
100 I (A)
out
0
120
°C
0°
12
in
to
steps
Figure 3.
180°
20
40
60
Conditions:
T j=
150
parameter:
φ
from
100
0°
12
to
steps
Figure 4.
Typical average static loss as a function of
phase displacement φ
P loss=f(φ )
I out (A)
120
°C
in
Buck IGBT
80
180°
Buck FWD
Typical average static loss as a function of
phase displacement φ
P loss=f(φ )
Ploss (W)
50
Ploss (W)
70
IoutRMS=Imax
60
IoutRMS=Imax
40
50
30
40
30
20
20
10
10
IoutRMS=6% Imax
IoutRMS=6%Imin
0
0
0
Conditions:
parameter:
50
T j=
I oRMS
150
from
in steps of
copyright Vincotech
100
150
°C
6,67 A
to
13
φ( º )
200
0
Conditions:
parameter:
100 A
A
50
T j=
I oRMS
100
150
from
in steps of
1
150
°C
6,67 A
13
to
φ( º )
200
100 A
A
17 May. 2016 / Revision 3
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
application sheet
NPC Application
flow NPC 1
Figure 5.
Buck IGBT
600 V / 100 A
Figure 6.
Typical average switching loss as a function of
phase displacement φ
P loss=f(φ )
Buck FWD
Typical average switching loss as a function of
phase displacement φ
P loss=f(φ )
Ploss (W)
25
Ploss (W)
60
IoutRMS=Imax
IoutRMS=Imax
50
20
40
15
30
10
20
5
10
IoutRMS=6% Imax
IoutRMS=6% Imax
0
0
Conditions:
parameter:
50
100
T j=
f sw=
150
20
°C
kHz
DC link=
I oRMS
700
from
V
150
13
Figure 7.
0
200
Conditions:
6,67 A
in steps of
φ( º )
to
100 A
parameter:
50
100
T j=
f sw=
150
20
°C
kHz
DC link=
I oRMS
700
from
V
A
6,67 A
in steps of
Buck IGBT
13
Figure 8.
Typical total loss as a function of
phase displacement φ and output current I oRMS
P loss=f(I oRMS;φ )
87
P loss (W)
93
87
50-60
80
80
73
73
67
67
40-50
60
60
53
53
30-40
47
60-80
47
40
40
33
40-60
33
20-30
27
27
20
20
13
20-40
0
10-20
13
7
15 30 45 60 75 90 105 120 135 150 165 180
0
7
15 30 45 60 75 90 105 120 135 150 165 180
0-10
0-20
φ( º )
Conditions:
100 A
A
Buck FWD
100-120
80-100
to
200
100
IoutRMS
93
φ( º )
Typical total loss as a function of
phase displacement φ and output current I oRMS
P loss=f(I oRMS;φ )
100
P loss (W)
150
IoutRMS
0
T j=
150
°C
DC link=
f sw=
700
20
V
kHz
copyright Vincotech
φ( º )
Conditions:
2
T j=
150
°C
DC link=
f sw=
700
20
V
kHz
17 May. 2016 / Revision 3
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
application sheet
NPC Application
flow NPC 1
Figure 9.
for Buck IGBT+FWD
600 V / 100 A
Figure 10.
for Buck IGBT+FWD
Typical available output current as a function of
phase displacement φ
Typical available output current as a function of
switching frequency f sw
I out=f(φ )
I out=f(f sw)
Iout (A)
160
Iout (A)
160
Th=50°C
Th=50°C
140
140
120
120
100
100
80
80
Th=100°C
60
60
Th=100°C
40
40
20
20
0
0
0
30
60
90
120
150
180
1
φ
Conditions:
T j= T jmax-25 °C
f sw=
700
V
parameter:
Heatsink temp.
50
°C to
T h from
100
in
steps
°C
Figure 11.
100
fsw (kHz)
20 kHz
Conditions:
DC link=
10
10
°C
φ= 0 °
T j= T jmax-25 °C
DC link=
700
parameter:Heatsink temp.
T h from
50
in
10
V
°C to
100
°C
steps
°C
for Buck IGBT+FWD
Typical available 50Hz output current as a function of
f sw and phase displacement φ
I out=f(f sw,φ )
180
φ
165
I out (A)
150
135
120-140
120
100-120
105
90
80-100
75
60-80
60
45
40-60
30
20-40
15
0-20
2
4
8
16
32
64
0
128
fsw (kHz)
Conditions:
T j= T jmax-25 °C
DC link=
T h=
copyright Vincotech
700
80
V
°C
3
17 May. 2016 / Revision 3
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
application sheet
flow NPC 1
NPC Application
Figure 12.
Boost IGBT
600 V / 100 A
Figure 13.
Typical average static loss as a function of
output current
P loss=f(I out)
Boost FWD
Typical average static loss as a function of
output current
P loss=f(I out)
60
Ploss (W)
Ploss (W)
100
φ=0º
φ=180º
50
80
40
60
30
40
20
20
10
φ=180º
φ=0º
0
0
0
20
40
60
80
100
120
0
Iout (A)
Conditions:
T j=
150
parameter:
φ
from
in
°C
0°
12
to
steps
Figure 14.
180º
Boost IGBT
20
40
60
Conditions:
T j=
150
parameter:
φ
from
in
100
Iout (A)
120
°C
0°
12
to
steps
Figure 15.
Typical average static loss
as a function of phase displacement
P loss=f(φ )
180º
Boost FWD
Typical average static loss
as a function of phase displacement
P loss=f(φ )
FWD D1
60
Ploss (W)
100
Ploss (W)
80
IoutRMS=Imax
IoutRMS=Imax
50
80
40
60
30
40
20
20
10
IoutRMS=6% Imax
IoutRMS=6% Imax
0
0
0
Conditions:
parameter:
50
T j=
I oRMS
100
150
from
in steps of
copyright Vincotech
150
φ( º )
200
0
°C
7 A
to
Conditions:
parameter:
100 A
13 A
50
T j=
I oRMS
100
150
from
in steps of
4
150
φ( º )
200
°C
7 A
to
100 A
13 A
17 May. 2016 / Revision 3
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
application sheet
flow NPC 1
NPC Application
Figure 16.
Boost IGBT
600 V / 100 A
Figure 17.
Typical average switching loss as a function of
phase displacement
P loss=f(φ )
Boost FWD
Typical average switching loss as a function of
phase displacement
P loss=f(φ )
Ploss (W)
25
Ploss (W)
70
IoutRMS=Imax
60
IoutRMS=Imax
20
50
15
40
30
10
20
5
IoutRMS=6% Imax
10
IoutRMS=6% Imax
0
0
0
50
Conditions:
100
150
T j=
150
°C
DC link=
parameter:
I oRMS
700
from
V
in steps of
φ( º )
f sw=
7 A
to
13 A
A
Figure 18.
0
200
50
100
150
20 kHz
Conditions:
T j=
150
°C
700
from
V
100 A
DC link=
parameter:
I oRMS
in steps of
Boost IGBT
φ( º )
f sw=
20 kHz
7 A
to
100 A
13 A
A
Figure 19.
Boost FWD
Typical total loss as a function of phase displacement
and I outRMS
Typical total loss as a function of phase displacement
and I outRMS
P loss=f(I oRMS;φ )
P loss=f(I oRMS;φ )
87
93
IoutRMS
P loss (W)
P loss (W)
80
80-100
87
80
70-80
73
73
60-70
67
67
60
60
60-80
50-60
53
53
47
47
40-50
40
40-60
IoutRMS
100
100
93
200
40
33
33
30-40
27
27
20
20-40
20
20-30
13
0
0-20
13
7
15 30 45 60 75 90 105 120 135 150 165 180
10-20
0
7
15 30 45 60 75 90 105 120 135 150 165 180
0-10
φ( º )
Conditions:
T j=
150
°C
DC link=
f sw=
700
20
V
kHz
copyright Vincotech
φ( º )
Conditions:
5
T j=
150
°C
DC link=
f sw=
700
20
V
kHz
17 May. 2016 / Revision 3
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
application sheet
NPC Application
flow NPC 1
Figure 20.
Boost IGBT+FWD
600 V / 100 A
Figure 21.
Typical available output current as a function of
of phase displacement
I out=f(φ )
Boost IGBT+FWD
Typical available output current
as a function of switching frequency
I out=f(f sw)
Iout (A)
160
Iout (A)
160
Th=50°C
140
Th=50°C
140
120
120
100
100
80
80
Th=100°C
Th=100°C
60
60
40
40
20
20
0
0
30
60
90
120
150
0
180
1
φ( º )
Conditions:
T j= T jmax-25 °C
f sw=
700
V
parameter:
Heatsink temp.
50
°C to
T h from
20 kHz
Conditions:
DC link=
in
10
10
100
T j= T jmax-25 °C
1000
φ = 90°
DC link=
100
°C
700
V
parameter:
Heatsink temp.
T h from
50
°C to
f sw (kHz)
°C
steps
Figure 22.
in
10
°C
100
°C
steps
Boost IGBT+FWD
Typical available 50Hz output current as a function of
f sw and phase displacement
I out=f(f sw,φ )
180
I out (A)
165
φ
150
120-140
135
120
100-120
105
80-100
90
75
60-80
60
40-60
45
30
20-40
15
0-20
2
4
8
16
32
64
0
128
fsw (kHz)
Conditions:
T j= T jmax-25 °C
DC link=
T h=
copyright Vincotech
700
80
V
°C
6
17 May. 2016 / Revision 3
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
application sheet
flow NPC 1
NPC Application
Figure 23.
per MODULE
600 V / 100 A
Figure 24.
Typical available output current as a function of
heat sink temperature
I out=f(T h)
per MODULE
Typical available output current
as a function of phase displacement
I out=f(φ )
140
Iout (A)
Iout (A)
140
2kHz
120
Th=50°C
120
100
100
80
80
60
60
40
40
Th=100°C
128kHz
20
20
0
0
60
70
Conditions:
80
90
T h ( o C)
0
100
T j= T jmax-25 °C
DC link=
φ=
parameter:
f sw from
700
0°
Conditions:
V
30
60
parameter:
128
kHz
T h from
in steps of factor 2
in
Figure 25.
per MODULE
Typical available output current as a function of
switching frequency
I out=f(f sw)
120
150
700
20
180
V
kHz
Heatsink temp.
50
°C to
10
100
°C
steps
Figure 26.
per MODULE
Typical available 50Hz output current as a function of
f sw and phase displacement
I out=f(f sw,φ )
140
180
Iout (A)
φ
T j= T jmax-25 °C
DC link=
f sw=
Switching freq.
2
kHz to
90
Th=50°C
φ
165
I out (A)
120
150
120-140
135
100
120
100-120
105
80-100
80
90
75
60-80
Th=100°C
60
60
40-60
45
40
20-40
30
15
0-20
20
2
4
8
16
32
64
0
128
0
1
10
Conditions:
T j= T jmax-25 °C
DC link=
parameter:
T h from
in
50
700
V
Heatsink temp.
°C to
100
10
°C
copyright Vincotech
f sw (kHz)
φ=
100
f sw (kHz)
0°
Conditions:
T j= T jmax-25 °C
DC link=
T h=
700
80
V
°C
steps
7
17 May. 2016 / Revision 3
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
application sheet
flow NPC 1
NPC Application
Figure 27.
per MODULE
600 V / 100 A
Figure 28.
Typical efficiency as a function of output power
η=f(P out)
per MODULE
Typical efficiency as a function of output power
η=f(P out)
100
efficiency (%)
efficiency (%)
100,0
2kHz
98
96
99,0
φ=0º
94
128kHz
92
98,0
φ=180º
90
88
97,0
86
84
96,0
0
5
Conditions:
10
T j=
f sw=
DC link=
parameter:
150
20
15
20
P out (kVA)
0
25
Conditions:
700
V
phase displacement
T j=
DC link=
parameter:
f sw from
0°
to
180 °
Figure 29.
10
15
20
25
P out (kVA)
°C
kHz
φ
from
in steps of 30 °
5
150
700
φ= 0 °
°C
V
Switching freq.
2
kHz to
128
kHz
in steps of factor 2
per MODULE
Typical available output power as a function of
heat sink temperature
P out=f(T h)
Pout (kW)
30
2kHz
25
20
15
10
128kHz
5
0
60
70
Conditions:
80
90
T h ( o C)
100
T j= T jmax-25 °C
DC link=
φ=
parameter:
f sw from
700
0
Switching freq.
2
kHz to
V
°
128
kHz
in steps of factor 2
copyright Vincotech
8
17 May. 2016 / Revision 3
10-F106NIA100SA-M135F
10-P106NIA100SA-M135FY
10-FY06NIA100SA-M135F08
10-PY06NIA100SA-M135F08Y
application sheet
flow NPC 1
NPC Application
Figure 30.
Typical loss distribution as a function of
output current
P out=f(T h)
per MODULE
600 V / 100 A
Figure 31.
per MODULE
Typical relativ loss distribution as a function of
output current
P out=f(T h)
300
1,0
Loss distribution
Loss distribution
Boost
IGBT static 250
Boost IGBT
static
Buck Diode
200
switch
Buck Diode
switch
Buck Diode
150
static
Buck Diode
static
0,8
0,6
0,4
Buck IGBT
switch
Buck IGBT 100
switch
Buck IGBT
static
Buck IGBT 50
static
0,2
0,0
0
7
Conditions:
13
20
T j=
f sw=
DC link=
φ=
copyright Vincotech
27
33
150
20
700
0°
40
47
53
60
67
73
80
87
7
93 100
Iout (A)
°C
kHz
V
Conditions:
9
13
20
T j=
f sw=
DC link=
φ=
27
33
150
20
700
0°
40
47
53
60
67
73
80
87 93 100
Iout (A)
°C
kHz
V
17 May. 2016 / Revision 3
Similar pages