70 W624N3A1K2SC L400FP D1 14

70-W624N3A1K2SC-L400FP
datasheet
flow NPC 12w
2400 V / 1200 A
Features
flow SCREW 12w housing
● 2400V NPC-topology
● Low inductive
● High power screw interface
Target Applications
● Solar inverter
Schematic
● Wind Power
● Motor Drive
Types
● 70-W624N3A1K2SC-L400FP
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
940
1200
A
3600
A
Buck IGBT( T1 ,T4 )
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
copyright Vincotech
t p limited by T jmax
V CE ≤ 1200V, T j ≤ T op max
Turn off safe operating area
Maximum Junction Temperature
T j=T jmax
T s=80°C
T c=80°C
T j=T jmax
T j≤150°C
V GE=15V
T jmax
1
T s=80°C
T c=80°C
2400
A
2470
3742
W
±20
V
10
800
µs
V
175
°C
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
744
984
A
2400
A
1490
2257
W
175
°C
1200
V
922
1200
A
3600
A
Buck Diode( D5 ,D6 )
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T j=T jmax
T s=80°C
T c=80°C
t p=10ms, sin 180°
T j=T jmax
T s=80°C
T c=80°C
T jmax
Boost IGBT( T2 ,T3 )
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CE
IC
I CRM
t p limited by T jmax
V CE ≤ 1200V, T j ≤ T op max
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j=T jmax
T s=80°C
T c=80°C
T j=T jmax
T s=80°C
T c=80°C
T j≤150°C
V GE=15V
T jmax
2400
A
2192
3322
W
±20
V
10
800
µs
V
175
°C
1200
V
634
856
A
1800
A
1069
1619
W
175
°C
1200
V
648
870
A
1800
A
1069
1619
W
175
°C
Boost Inverse Diode( D1 ,D4 )
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T j=T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j=T jmax
T s=80°C
T c=80°C
T jmax
Boost Diode( D2 ,D3 )
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
copyright Vincotech
V RRM
IF
I FRM
P tot
T j=T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j=T jmax
T jmax
2
T s=80°C
T c=80°C
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
Insulation Properties
Insulation voltage
V is
t=2s
DC voltage
Creepage distance
Clearance
Stage
copyright Vincotech
CTI
4000
V
min 12,7
mm
min 12,7
mm
>200
3
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Unit
Typ
Max
5,2
5,8
6,4
1,7
2,37
2,78
2,4
Buck IGBT( T1 ,T4 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE=V GE
V CEsat
0,0408
1200
15
Collector-emitter cut-off current incl. Diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
Per gate access
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
R goff=0,3 Ω
R gon=0,3 Ω
0,024
2880
1
tr
t d(off)
25
125
25
125
25
125
25
125
-10/+15
600
1200
25
125
25
125
25
125
25
125
25
125
25
125
V
V
mA
nA
Ω
113
115
43
45
183
229
38
68
44,08
48,91
49,18
86,78
ns
mWs
66480
f=1MHz
0
25
25
3600
pF
3840
±15
960
960
25
phase-change
material
λ = 3,4 W/mK
5550
nC
0,038
K/W
0,025
Buck Diode( D5 ,D6 )
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
IR
Reverse recovery time
t rr
Q rr
Reverse recovered energy
R gon=0,3 Ω
-10/+15
( di rf/dt )max
E rec
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
copyright Vincotech
1200
I RRM
Reverse recovered charge
Peak rate of fall of recovery current
1200
phase-change
material
λ = 3,4 W/mK
600
1200
25
125
25
125
25
125
25
125
25
125
25
125
25
125
2,34
2,38
2,52
1440
1075
1355
169
214
73,24
136,71
26252
24254
28,02
61,41
V
µA
A
ns
µC
A/µs
mWs
0,06
K/W
0,04
4
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Typ
Unit
Max
Boost IGBT( T2 ,T3 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE=V GE
V CEsat
0,0456
15
1200
Collector-emitter cut-off incl diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tr
t d(off)
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
R goff=0,9 Ω
R gon=0,9 Ω
R th(j-s)
Thermal resistance chip to case
R th(j-c)
600
1200
5
5,80
6,5
1,91
2,14
2,05
0,0156
1440
0,625
V
mA
nA
Ω
158
174
64
66
273
342
57
92
84,6
104,7
68,3
120,0
25
125
25
125
25
125
25
125
25
125
V
ns
mWs
75600
f=1MHz
0
25
1200
25
4860
pF
3240
QG
Thermal resistance chip to heatsink
-10/+15
25
125
25
125
25
125
25
125
25
125
15
960
1200
25
6090
phase-change
material
λ = 3,4 W/mK
nC
0,04
K/W
0,03
Boost Inverse Diode( D1 ,D4 )
Diode forward voltage
VF
Reverse leakage current
IR
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
900
1200
25
125
25
125
1,35
1,90
1,84
2,05
168
phase-change
material
λ = 3,4 W/mK
V
µA
0,09
K/W
0,06
Boost Diode( D2 ,D3 )
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
t rr
Reverse recovered charge
Q rr
Reverse recovery energy
R gon=0,9 Ω
-10/+15
( di rf/dt )max
E rec
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
copyright Vincotech
1200
I RRM
Reverse recovery time
Peak rate of fall of recovery current
900
phase-change
material
λ = 3,4 W/mK
600
1200
25
125
25
125
25
125
25
125
25
125
25
125
125
125
1,35
1,90
1,84
2,05
168
696
903
296
451
89
173
5538
4822
31,66
69,81
V
µA
A
ns
µC
A/µs
mWs
0,09
K/W
0,06
5
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R25
Δ R/R
Power dissipation
P
25
R 100=1486 Ω
100
22000
-12
25
Ω
+14
%
200
mW
25
2
mW/K
B-value
B (25/50)
Tol. ±3%
25
3950
K
B-value
B (25/100)
Tol. ±3%
25
3996
K
Power dissipation constant
Vincotech NTC Reference
B
Module Properties
Module inductance (from chips to PCB)
LsCE C-PCB
Mounting torque for screws to heatsink
MS
Mounting torque for terminal screws
Mt
Mounting torque for Interconn PCB screws
M
Weight
m
copyright Vincotech
Buck
Boost
5
9
Screw M5 –according to the valid handling instructions
FSWB-M-*-HI
Screw M6 –according to the valid handling instructions
FSWB-M-*-HI
Screw M4 –according to the valid handling instructions
FSWB-M-*-HI
6
nH
6
Nm
2,5
5
Nm
2
2,2
Nm
1930
g
4
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Buck T1, T4 / D5, D6
Buck IGBT and Buck FWD
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
IGBT
Typical output characteristics
I C = f(V CE)
2800
IC (A)
IC (A)
2800
2400
2400
2000
2000
1600
1600
1200
1200
800
800
400
400
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
V CE (V)
5
350
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
FWD
1000
IC (A)
IF (A)
1000
800
800
600
600
400
400
Tj = 125°C
Tj = 125°C
Tj = 25°C
200
200
Tj = 25°C
0
0
0
At
tp =
V CE =
2
350
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
7
0,5
350
1
1,5
2
V F (V)
2,5
µs
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Buck T1, T4 / D5, D6
Buck IGBT and Buck FWD
Figure 5
IGBT
Figure 6
FWD
Typical switching energy losses
Typical reverse recovery energy loss
as a function of collector current
E = f(I C)
as a function of collector current
E rec = f(I c)
E (mWs)
125
E (mWs)
Eoff High T
100
90
Erec High T
80
70
Eoff Low T
60
75
Eon High T
50
Eon Low T
Erec Low T
40
50
30
20
25
10
0
0
500
1000
1500
2000
0
2500
I C (A)
0
With an inductive load at
Tj =
°C
25/125
25/125
V CE =
600
V
V GE =
-10/+15 V
R gon =
0,33
Ω
R goff =
0,33
Ω
500
1000
1500
2000
I C (A)
2500
With an inductive load at
Tj =
25/125
°C
25/125
V CE =
600
V
V GE =
-10/+15 V
R gon =
0,33
Ω
Figure 7
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 8
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
0,25
tdoff
t (ms)
trr High T
t rr(ms)
1,00
FWD
0,20
trr Low T
tdon
0,10
tf
0,15
tr
0,10
0,01
0,05
0,00
0,00
0
500
1000
1500
2000
I C (A)
2500
0
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
-10/+15 V
R gon =
0,33
Ω
R goff =
0,33
Ω
copyright Vincotech
At
Tj =
V CE =
V GE =
R gon =
8
500
25/125
25/125
600
-10/+15
0,33
1000
1500
2000
I C (A)
2500
°C
V
V
Ω
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Buck T1, T4 / D5, D6
Buck IGBT and Buck FWD
Figure 9
FWD
Figure 10
FWD
Typical reverse recovery charge as a
Typical reverse recovery current as a
function of collector current
Q rr = f(I C)
function of collector current
I RRM = f(I C)
1600
IrrM (A)
Qrr (mC)
200
Qrr High T
175
IRRM High T
1400
IRRM Low T
1200
150
1000
125
Qrr Low T
100
800
75
600
50
400
25
200
0
0
0
500
At
Tj =
V CE =
V GE =
R gon =
1000
25/125
600
-10/+15
°C
V
V
0,33
Ω
1500
Tj =
2000
#REF!
25/125
I C (A)
direc / dt (A/ms)
500
1000
1500
2000
2500
I C (A)
°C
Figure 11
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
40000
0
2500
At
Tj =
V CE =
V GE =
25/125
25/125
600
-10/+15
°C
V
V
R gon =
0,33
Ω
FWD
dIrec/dt T
dIo/dt T
35000
30000
25000
20000
15000
10000
5000
0
0
At
Tj =
V CE =
V GE =
R gon =
500
25/125
25/125
600
-10/+15
0,33
copyright Vincotech
1000
1500
2000
I C (A)
2500
°C
V
V
Ω
9
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Buck T1, T4 / D5, D6
Buck IGBT and Buck FWD
Figure 12
IGBT
Figure 13
FWD
IGBT transient thermal impedance
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
as a function of pulse width
Z th(j-s) = f(t p)
100
ZthJH (K/W)
ZthJH (K/W)
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-5
10-4
10-3
10-2
10-1
100
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-5
101
At
10-4
10-3
10-2
10-1
100
t p (s)
1011
At
tp/T
D =
tp/T
D =
FWD thermal model values with phase-change material
R th(j-s) =
R thJC =
0,064
K/W
0,050
K/W
IGBT thermal model values with phase-change material
R thJC =
R th(j-s) =
0,038
K/W
0,030
K/W
IGBT thermal model values
FWD thermal model values
With phase change material
R (K/W) Tau (s)
0,0156
2,305
0,007
0,315
0,008
0,064
0,005
0,019
0,001
0,002
0,001
0,001
With phase change material
R (K/W) Tau (s)
0,015
1,696
0,024
0,127
0,017
0,025
0,005
0,002
0,003
0,000
Figure 14
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
IGBT
Figure 15
Collector current as a
function of heatsink temperature
I C = f(T h)
1400
Ptot (W)
IC (A)
5000
IGBT
1200
4000
1000
3000
800
600
2000
400
1000
200
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
10
50
175
15
100
150
T h ( o C)
200
°C
V
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Buck T1, T4 / D5, D6
Buck IGBT and Buck FWD
Figure 16
FWD
Figure 17
FWD
Power dissipation as a
Forward current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I F = f(T h)
1200
IF (A)
Ptot (W)
3000
2500
1000
2000
800
1500
600
1000
400
500
200
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Figure 18
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
IGBT
50
175
100
150
T h ( o C)
200
°C
Figure 19
IGBT
Gate voltage vs Gate charge
V GE = f(Q g)
VGE (V)
IC (A)
17,5
10uS
15
103
240V
100uS
12,5
960V
102
1mS
10
101
10mS
7,5
100mS
DC
100
5
2,5
10-1
0
100
At
D =
Th =
101
single pulse
80
ºC
copyright Vincotech
V GE =
Tj =
0
103
102
15
T jmax
1000
2000
3000
4000
5000
6000
Q g (nC)
V CE (V)
At
IC =
V
1200
A
ºC
11
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Buck T1, T4 / D5, D6
Buck IGBT and Buck FWD
Figure 20
IGBT
Reverse bias safe operating area
IC (A)
I C = f(V CE)
2600
IC MAX
2400
2200
Ic CHIP
2000
1800
1600
1400
MAX
1200
Ic MODULE
VCE
1000
800
600
400
200
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Uccminus=Uccplus
Switching mode :
copyright Vincotech
3 level switching
12
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Boost T2, T3 / D2, D3
Boost IGBT and Boost FWD
Figure 1
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
IGBT
Typical output characteristics
I C = f(V CE)
2800
IC (A)
IC (A)
2800
2400
2400
2000
2000
1600
1600
1200
1200
800
800
400
400
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
IGBT
1
2
3
4
V CE (V)
350
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical transfer characteristics
I C = f(V GE)
5
FWD
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
1200
IC (A)
IF (A)
2800
2400
1000
2000
800
1600
600
1200
400
800
Tj = 125°C
200
400
Tj = 25°C
Tj = 125°C
0
0
At
tp =
V CE =
Tj = 25°C
0
2
350
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
13
1
350
2
3
V F (V)
4
µs
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Boost T2, T3 / D2, D3
Boost IGBT and Boost FWD
Figure 5
IGBT
Figure 6
FWD
Typical switching energy losses
Typical reverse recovery energy loss
as a function of collector current
E = f(I C)
as a function of collector current
E rec = f(I c)
E (mWs)
E (mWs)
250
Eon High T
80
Erec High T
70
200
Eon Low T
60
Eoff High T
50
Erec Low T
150
40
Eoff Low T
100
30
20
50
10
0
0
0
500
1000
1500
2000
I C (A)
0
2500
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
+10/ -15 V
R gon =
0,9
Ω
R goff =
0,9
Ω
500
1000
1500
2000
I C (A)
2500
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
+10/ -15 V
R gon =
0,9
Ω
Figure 7
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 8
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
0,6
t rr(ms)
1
FWD
t ( µs)
tdoff
trr High T
0,5
tdon
trr Low T
0,1
0,4
tf
tr
0,3
0,01
0,2
0,1
0,001
0
500
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
+10/ -15 V
copyright Vincotech
1000
1500
R gon =
R goff =
2000
0,9
0,9
I C (A)
0,0
2500
0
At
Tj =
V CE =
V GE =
R gon =
Ω
Ω
14
500
25/125
600
+10/ -15
0,9
1000
1500
2000
I C (A)
2500
°C
V
V
Ω
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Boost T2, T3 / D2, D3
Boost IGBT and Boost FWD
Figure 9
FWD
Figure 10
FWD
Typical reverse recovery current as a
function of collector current
Q rr = f(I C)
function of collector current
I RRM = f(I C)
225
1000
Qrr High T
IrrM (A)
Qrr (mC)
Typical reverse recovery charge as a
200
IRRM High T
800
175
IRRM Low T
150
600
Qrr Low T
125
100
400
75
50
200
25
0
0
0
500
At
Tj =
V CE =
V GE =
R gon =
1000
1500
2000
I C (A)
direc / dt (A/ms)
500
1000
25/125
°C
600
V
+10/ -15 V
At
Tj =
V CE =
V GE =
25/125
°C
600
V
+10/ -15 V
0,9
R gon =
0,9
Ω
Figure 11
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
25000
0
2500
1500
2000
I C (A)
2500
Ω
FWD
dIrec/dt T
di0/dt T
20000
15000
10000
5000
0
0
At
Tj =
V CE =
V GE =
R gon =
500
25/125
600
+10/ -15
0,9
copyright Vincotech
1000
1500
2000
I C (A)
2500
°C
V
V
Ω
15
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Boost T2, T3 / D2, D3
Boost IGBT and Boost FWD
Figure 12
IGBT
Figure 13
FWD
as a function of pulse width
Z th(j-s) = f(t p)
as a function of pulse width
Z th(j-s) = f(t p)
100
100
ZthJH (K/W)
FWD transient thermal impedance
ZthJH (K/W)
IGBT transient thermal impedance
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-3
10-5
10-4
At
D =
10-3
10-2
10-1
100
t p (s)
1 2
1010
10-5
10-4
At
D =
tp/T
10-3
10-2
10-1
100
t p (s) 10101 2
tp/T
IGBT thermal model values with phase-change material
R th(j-s) =
R thJC =
0,043
K/W
0,034
FWD thermal model values with phase-change material
R th(j-s) =
R thJC =
0,089
K/W
0,069
IGBT thermal model values
With phase-change material
FWD thermal model values
With phase-change material
R (K/W)
0,020
0,010
0,011
0,001
0,001
R (K/W)
0,014
0,018
0,016
0,022
0,009
0,003
0,006
Tau (s)
1,78
0,17
0,03
0,00
0,00
Figure 14
IGBT
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
IGBT
Collector current as a
function of heatsink temperature
I C = f(T h)
1400
IC (A)
4500
Ptot (W)
Tau (s)
5,78
1,38
0,26
0,05
0,02
0,00
0,00
4000
1200
3500
1000
3000
800
2500
2000
600
1500
400
1000
200
500
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
16
50
175
15
100
150
T h ( o C)
200
ºC
V
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Boost T2, T3 / D2, D3
Boost IGBT and Boost FWD
Figure 16
FWD
Figure 17
FWD
Power dissipation as a
Forward current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I F = f(T h)
2000
Ptot (W)
IF (A)
1200
1000
1500
800
1000
600
400
500
200
0
0
0
50
At
Tj =
175
100
150
Th ( o C)
0
At
Tj =
ºC
Figure 18
Reverse bias safe operating area
I C = f(V CE)
IC (A)
200
50
175
100
150
Th ( o C)
200
ºC
IGBT
2600
IC MAX
2400
Ic CHIP
2200
2000
1800
Ic MODULE
1400
1200
1000
VCE MAX
1600
800
600
400
200
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Uccminus=Uccplus
Switching mode :
copyright Vincotech
3 level switching
17
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Boost Inverse Diode D1, D4
Figure 19
Boost Inverse Diode D1, D4
Figure 20
Boost Inverse Diode D1, D4
Typical FWD forward current as
FWD transient thermal impedance
a function of forward voltage
I F = f(V F)
as a function of pulse width
Z th(j-s) = f(t p)
100
ZthJC (K/W)
IF (A)
2800
2400
2000
10-1
1600
1200
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
800
Tj = Tjmax-25°C
400
Tj = 25°C
0
10-3
0
At
tp =
1
250
2
3
V F (V)
4
10-5
At
D =
R th(j-s) =
µs
Figure 21
10-4
Boost Inverse Diode D1, D4
10-3
10-2
100
t p (s)
10110
tp/T
0,09
K/W
Figure 22
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
10-1
Boost Inverse Diode D1, D4
Forward current as a
function of heatsink temperature
I F = f(T h)
1200
Ptot (W)
IF (A)
2000
1000
1500
800
600
1000
400
500
200
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
18
50
175
100
150
Th ( o C)
200
ºC
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Thermistor
Figure 1
Thermistor
Typical NTC characteristic
as a function of temperature
R T = f(T )
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Switching Definitions Buck
General conditions
Tj
= 125 °C
= 0,33 Ω
R gon
R goff
= 0,33 Ω
Figure 1
Buck IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Buck IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
150
%
250
%
VCE
IC
125
200
tdoff
100
VGE
75
VGE 90%
VCE 90%
150
IC
100
VGE
VCE
50
tdon
tEoff
50
25
VGE 10%
IC 1%
0
0
VCE 3%
IC 10%
tEon
-50
-25
-0,2
0
0,2
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-10
15
600
t doff =
t E off =
0,4
0,6
time (us)
2,1
0,8
2,2
2,3
2,4
2,5
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
1201
A
I C (100%) =
1201
A
0,23
0,48
µs
µs
t don =
t E on =
0,11
0,29
µs
µs
Figure 3
Buck IGBT
Turn-off Switching Waveforms & definition of t f
-10
15
600
2,6
2,7
2,8
time(us)
V
V
V
Figure 4
Buck IGBT
Turn-on Switching Waveforms & definition of t r
150
250
%
%
125
Ic
200
VCE
fitted
IC
100
150
IC 90%
75
VCE
100
IC 60%
IC 90%
50
tr
IC 40%
50
25
IC 10%
0
IC 10%
0
tf
-50
-25
0
0,1
0,2
0,3
0,4
time(us)
2,3
0,5
2,35
2,4
2,45
V C (100%) =
I C (100%) =
600
1201
V
A
V C (100%) =
I C (100%) =
600
1201
V
A
tf =
0,07
µs
tr =
0,04
µs
copyright Vincotech
20
2,5
2,55
2,6
time(us)
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Switching Definitions Buck
Figure 5
Buck IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Buck IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
Poff
Eoff
100
IC 1%
75
Eon
100
75
Pon
50
50
25
25
VCE 3%
VGE90%
VGE 10%
0
0
tEon
tEoff
-25
-25
-0,1
0
0,1
P off (100%) =
E off (100%) =
t E off =
0,2
720,80
86,78
0,48
0,3
0,4
2,2
0,5
0,6
time (us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
2,3
2,4
720,80
48,91
0,29
2,5
2,6
2,7
2,8
time(us)
kW
mJ
µs
Figure 7
Buck FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Vd
0
fitted
IRRM 10%
-50
-100
IRRM 90%
IRRM 100%
-150
2,3
2,4
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
2,5
600
1201
-1355
0,21
2,6
2,7
time(us)
2,8
V
A
A
µs
21
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Switching Definitions Buck
Figure 8
Buck FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Buck FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
125
150
%
%
Id
Qrr
Erec
100
100
Prec
tQrr
50
75
0
50
-50
25
-100
0
tErec
-25
-150
2,3
2,4
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
2,5
1201
136,71
0,42
2,6
2,7
2,8
time(us)
2,4
2,9
2,5
2,6
2,7
2,8
2,9
time(us)
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
22
720,80
61,41
0,42
kW
mJ
µs
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Switching Definitions Boost
General conditions
Tj
= 125 °C
= 0,9 Ω
R gon
R goff
= 0,9 Ω
Figure 1
Boost IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Boost IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
150
200
%
%
VCE
125
tdoff
IC
150
VGE
100
VCE
VGE 90%
VCE
90%
100
75
IC
tdon
50
50
tEoff
25
IC
VGE 10%
1%
VCE 3%
IC 10%
0
VGE
tEon
0
-25
-0,2
-50
0
0,2
0,4
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-10
15
600
t doff =
t E off =
0,6
0,8
1
1,2
time (us)
2,3
2,4
2,5
2,6
2,7
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
1200
A
I C (100%) =
1200
A
0,34
0,70
µs
µs
t don =
t E on =
0,17
0,55
µs
µs
Figure 3
Boost IGBT
Turn-off Switching Waveforms & definition of t f
-10
15
600
2,8
2,9
3
time(us)
V
V
V
Figure 4
Boost IGBT
Turn-on Switching Waveforms & definition of t r
150
200
%
%
VCE
Ic
125
fitted
150
IC
100
Ic 90%
VCE
100
75
IC
Ic 60%
90%
tr
50
50
Ic 40%
25
IC 10%
Ic 10%
0
tf
0
-25
-50
0,1
0,2
0,3
0,4
0,5
0,6
time (us)
0,7
2,4
2,5
2,6
2,7
V C (100%) =
I C (100%) =
600
1200
V
A
V C (100%) =
I C (100%) =
600
1200
V
A
tf =
0,092
µs
tr =
0,065
µs
copyright Vincotech
23
2,8
2,9
time(us)
3
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Switching Definitions Boost
Figure 5
Boost IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Boost IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
Poff
Eon
Eoff
100
100
Pon
IC 1%
75
75
50
50
25
25
Uge 90%
Uce 3%
Uge 10%
0
0
tEon
tEoff
-25
-25
-0,2
0
0,2
P off (100%) =
E off (100%) =
t E off =
719,72
119,96
0,70
0,4
0,6
time (us)
2,2
0,8
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
2,4
2,6
719,724
104,74
0,55
2,8
time(us)
3
kW
mJ
µs
Figure 7
Boost FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
fitted
Ud
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
2,4
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
2,6
2,8
600
1200
-903
0,45
3
time(us)
3,2
V
A
A
µs
24
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Switching Definitions Boost
Figure 8
Boost FWD
Turn-on Switching Waveforms & definition of t Qrr
Figure 9
Boost FWD
Turn-on Switching Waveforms & definition of t Erec
(t Qrr= integrating time for Q rr)
(t Erec= integrating time for E rec)
150
125
%
%
Id
100
Erec
100
Qrr
tErec
75
tQint
50
50
0
25
Prec
-50
0
-100
-25
2,4
2,6
I d (100%) =
Q rr (100%) =
t Qint =
copyright Vincotech
2,8
1200
172,55
0,90
3
3,2
3,4
time(us)
3,6
2,4
A
µC
µs
2,6
P rec (100%) =
E rec (100%) =
t E rec =
25
2,8
719,72
69,81
0,90
3
3,2
3,4
time(us)
3,6
kW
mJ
µs
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Outline
Outline
Driver pins
Low current connections
Pin
X1
Y1
Function
Group
1.1
-2,15
84,85
G1-1
T1
M6
screw
1.2
-2,15
81,95
E1-1
T1
1.3
46,15
84,85
G1-2
T1
1.4
46,15
81,95
E1-2
1.5
19,45
93,05
1.6
24,55
1.7
X2
Y2
Function
2.1
0
0
Phase
2.2
22
0
Phase
T1
2.3
44
0
Phase
DC+
desat
2.4
0
110,41
DC+
93,05
DC+
desat
2.5
22
110,41
GND
-7,65
70,05
G2-1
T2
2.6
44
110,41
DC-
1.8
-7,65
67,15
E2-1
T2
2.7
101
0
Phase
1.9
51,65
70,05
G2-2
T2
2.8
123
0
Phase
1.10
51,65
67,15
E2-2
T2
2.9
145
0
Phase
1.11
16,75
75,35
GND
desat
2.10
101
110,41
DC+
1.12
27,25
75,35
GND
desat
2.11
123
110,41
GND
1.13
-2,55
28
G3-1
T3
2.12
145
110,41
DC-
1.14
-5,45
28
E3-1
T3
2.13
202
0
Phase
1.15
46,55
28
G3-2
T3
2.14
224
0
Phase
1.16
49,45
28
E3-2
T3
2.15
246
0
Phase
1.17
-4,8
50,85
G4-1
T4
2.16
202
110,41
DC+
1.18
-1,6
49,05
E4-1
T4
2.17
224
110,41
GND
1.19
48,8
50,85
G4-2
T4
2.18
246
110,41
DC-
1.20
45,6
49,05
E4-2
T4
1.21
67,65
89,8
Therm11
Rt1
1.22
67,65
86,7
Therm12
Rt1
1.23
98,85
84,85
G1-3
T1
1.24
98,85
81,95
E1-3
T1
1.25 147,15
84,85
G1-4
T1
1.26 147,15
81,95
E1-4
T1
1.27 120,45
93,05
DC+
desat
1.28 125,55
93,05
DC+
desat
1.29
93,35
70,05
G2-3
T2
1.30
93,35
67,15
E2-3
T2
1.31 152,65
70,05
G2-4
T2
1.32 152,65
67,15
E2-4
T2
1.33 117,75
75,35
GND
desat
1.34 128,25
75,35
GND
desat
1.35
98,45
28
G3-3
T3
1.36
95,55
28
E3-3
T3
1.37 147,55
28
G3-4
T3
1.38 150,45
28
E3-4
T3
1.39
96,2
50,85
G4-3
T4
1.40
99,4
49,05
E4-3
T4
1.41
149,8
50,85
G4-4
T4
1.42
146,6
49,05
E4-4
T4
89,8
Therm21
Rt2
1.44 168,65
86,7
Therm22
Rt2
1.45 199,85
84,85
G1-5
T1
1.46 199,85
81,95
E1-5
T1
1.47 248,15
84,85
G1-6
T1
1.48 248,15
81,95
E1-6
T1
1.49 221,45
93,05
DC+
desat
1.50 226,55
93,05
DC+
desat
1.51 194,35
70,05
G2-5
T2
1.52 194,35
67,15
E2-5
T2
1.53 253,65
70,05
G2-6
T2
1.54 253,65
67,15
E2-6
T2
1.55 218,75
75,35
GND
desat
1.56 229,25
75,35
GND
desat
1.57 199,45
28
G3-5
T3
1.58 196,55
28
E3-5
T3
1.59 248,55
28
G3-6
T3
1.60 251,45
28
E3-6
T3
Pin
X1
Y1
Function
1.43 168,65
Driver pins
Group
1.61
197,2
50,85
G4-5
T4
1.64
247,6
49,05
E4-6
T4
1.62
200,4
49,05
E4-5
T4
1.65
269,7
89,8
Therm31
Rt3
1.63
250,8
50,85
G4-6
T4
1.66
269,7
86,7
Therm32
Rt3
copyright Vincotech
26
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
70-W624N3A1K2SC-L400FP
Standart
Text
in packaging barcode as
L400FP
L400FP
Name
Date code
UL & Vinco
Lot
Serial
NN-NNNNNNNNNNNNNN-TTTTTTTVV
WWYY
UL Vinco
LLLLL
SSSS
Type&Ver
Lot number
Serial
Date code
TTTTTTTVV
LLLLL
SSSS
WWYY
Datamatrix
Pinout
Identification
ID
T1, T4
D5, D6
Component
IGBT
FWD
Voltage
1200V
1200V
Current
1200A
1200A
Function
Buck Switch
Buck Diode
T2, T3
D1, D4
D2, D3
Rt1, Rt2, Rt3
IGBT
FWD
Diode
1200V
1200V
1200V
-
1200A
900A
900A
-
Boost Switch
Boost Diode
Boost Inverse Diode
Thermistor
copyright Vincotech
NTC
27
Comment
08 Dec. 2015 / Revision 1
70-W624N3A1K2SC-L400FP
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
5
Standard
<SPQ
Sample
Handling instruction
Handling instructions for Widebody 3phase packages see vincotech.com website.
Package data
Package data for Widebody 3phase packages see vincotech.com website.
Document No.:
Date:
70-W624N3A1K2SC-L400FP-D1-14
08 Dec. 2015
Modification:
Pages
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
28
08 Dec. 2015 / Revision 1