30 F206NIA300SA M106F P4 14

F206NIA300SA-M106F
preliminary datasheet
flowNPC 2
600V/300A
Features
flow2 housing
● Neutral-point-Clamped inverter
● High power flow2 housing
● Low Inductance Layout
Target Applications
Schematic
● UPS
● Solar inverters
Types
● F206NIA300SA
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
209
275
A
900
A
331
502
W
±20
V
6
360
μs
V
175
°C
600
V
Buck IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
147
197
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
Tc=100°C
900
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
232
352
W
175
°C
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Boost IGBT
Collector-emitter break down voltage
DC collector current
VCE
IC
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Th=80°C
208
Tc=80°C
275
A
900
A
331
502
W
±20
V
Tj≤150°C
6
μs
VGE=15V
360
V
175
°C
600
V
166
219
A
900
A
232
352
W
175
°C
600
V
166
219
A
900
A
232
352
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tc=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,66
1,87
1,85
Buck IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0048
300
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,96
700
Rgoff=2 Ω
Rgon=2 Ω
±15
350
300
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
1
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
358
366
51
55
445
479
56
79
6,14
7,30
8,02
10,00
ns
mWs
18480
f=1MHz
25
0
pF
1152
Tj=25°C
548
700
15
250
Tj=25°C
nC
3200
Thermal grease
thickness≤50um
λ = 1 W/mK
0,29
K/W
0,19
Buck Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Rgoff=2 Ω
±15
350
di(rec)max
/dt
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
300
Thermal grease
thickness≤50um
λ = 1 W/mK
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,5
2,04
2,20
143
192
132
280
10,6
21,6
2947
2759
2,10
4,59
3,3
V
A
ns
μC
A/μs
mWs
0,40
K/W
0,30
3
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,66
1,87
1,85
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0048
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
300
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,96
700
Rgoff=2 Ω
Rgon=2 Ω
350
±15
300
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
1
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
355
363
52
56
450
485
50
80
6,47
7,99
8,34
10,46
ns
mWs
18480
f=1MHz
0
25
15
700
Tj=25°C
1152
Tj=25°C
3200
pF
548
250
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
0,29
K/W
0,19
Boost Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
20
Tj=25°C
Tj=125°C
1,5
Thermal grease
thickness≤50um
λ = 1 W/mK
1,82
1,86
3,3
V
0,41
K/W
0,27
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
600
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
300
Rgoff=2 Ω
±15
350
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
300
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,5
1,82
1,86
3,3
960
150
199
144,5
283,9
10,9
22,6
3261
2229
2,38
5,40
Thermal grease
thickness≤50um
λ = 1 W/mK
V
μA
A
ns
μC
A/μs
mWs
0,41
K/W
0,27
Thermistor
T=25°C
Rated resistance
Deviation of R100
R100=1486 Ω
T=100°C
Ω
22000
-5
5
%
Power dissipation
T=25°C
200
mW
Power dissipation constant
T=25°C
2
mW/K
K
B-value
Tol. ±3%
T=25°C
3950
B-value
Tol. ±3%
T=25°C
3996
Vincotech NTC Reference
Copyright by Vincotech
K
B
4
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Buck
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
600
IC (A)
600
500
500
400
400
300
300
200
200
100
100
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
350
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
4
5
350
μs
150
°C
7 V to 17 V in steps of 1 V
Diode
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
600
IF (A)
IC (A)
300
250
Tj = 25°C
Tj = Tjmax-25°C
400
200
Tj = Tjmax-25°C
150
Tj = 25°C
200
100
50
0
0
0
At
tp =
VCE =
2
350
10
4
6
8
10
V GE (V)
0
12
At
tp =
μs
V
Copyright by Vincotech
5
1
350
2
3
4
V F (V)
5
μs
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Buck
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
20
E (mWs)
E (mWs)
20
Eoff High T
16
16
Eoff Low T
Eon High T
12
12
Eon Low T
8
Eoff Low T
Eoff High T
Eon High T
8
Eon Low T
4
4
0
0
0
100
200
300
400
I C (A)
500
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
6
8
R G (W)
10
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
249
A
Diode
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Diode
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
7
E (mWs)
7
E (mWs)
2
6
6
Erec High T
5
5
4
4
Erec High T
3
3
Erec Low T
2
2
Erec Low T
1
1
0
0
0
50
100
150
200
250
300
350
400
I C (A)
450
0
500
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
1
2
3
4
5
6
7
R8G (W)
9
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
249
A
6
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Buck
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
1,00
tdoff
tdon
t (ms)
t (ms)
tdoff
tdon
0,10
tf
0,10
t
trf
tr
0,01
0,01
0,00
0,00
0
50
100
150
200
250
300
350
400
I450
C (A)
500
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
2
4
6
8
R G (W)
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
249
A
Diode
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Diode
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,35
t rr(ms)
0,35
trr High T
0,30
trr High T
0,30
0,25
0,25
trr Low T
trr Low T
0,20
0,20
0,15
0,15
0,10
0,10
0,05
0,05
0,00
0,00
0
50
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
150
200
250
300
350
400
I C (A)
450
500
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
2
25/125
350
249
±15
4
6
8
R gon (W)
10
°C
V
A
V
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Buck
Diode
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr (mC)
30
Diode
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
25
Qrr (mC)
Qrr High T
25
Qrr High T
20
20
15
Qrr Low T
15
Qrr Low T
10
10
5
5
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
50
100
25/125
350
±15
4
150
200
250
300
350
400
(A)
I C450
0
500
2
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Diode
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
25/125
350
249
±15
4
6
8
R g on ( Ω)
°C
V
A
V
Diode
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
375
IrrM (A)
250
10
IRRM High T
200
300
IRRM Low T
150
225
100
150
50
75
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
100
25/125
350
±15
4
150
200
250
300
350
400
I C (A)
450
500
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
2
25/125
350
249
±15
4
6
8
R gon (W)
10
°C
V
A
V
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Buck
Diode
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
Diode
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
12000
direc / dt (A/ms)
direc / dt (A/ms)
12000
10000
10000
8000
8000
di0/dtHigh T
6000
6000
dIo/dtLow T
4000
4000
dI0/dtLow T
dIrec/dtLow T
dIrec/dtLow T
dI0/dtHigh T
2000
2000
dIrec/dtHigh T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
100
25/125
350
±15
4
150
200
250
300
350
400
I450
C (A)
500
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
249
±15
4
6
8
R gon (W)
10
°C
V
A
V
Diode
Figure 20
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
100
ZthJH (K/W)
ZthJH (K/W)
10
2
10-1
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-2
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
0,29
K/W
10-4
10-3
0,41
R (C/W)
0,02
0,07
0,07
0,09
0,02
0,02
R (C/W)
0,02
0,06
0,10
0,16
0,04
0,03
9
100
t p (s)
1011
K/W
Diode thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
9,6E+00
1,7E+00
2,9E-01
4,4E-02
7,6E-03
3,6E-04
10-2
Tau (s)
8,8E+00
1,6E+00
2,4E-01
5,4E-02
1,1E-02
4,5E-04
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Buck
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
700
IC (A)
Ptot (W)
250
600
200
500
150
400
300
100
200
50
100
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Diode
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
°C
V
Diode
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
IF (A)
250
Ptot (W)
500
400
200
300
150
200
100
100
50
0
0
0
At
Tj =
50
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Buck
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
IC (A)
VGE (V)
20
100uS
102
15
1mS
100mS
10mS
10
DC
1
120V
480V
10
10
0
5
Q g (nC)
100
At
D=
Th =
VGE =
Tj =
101
0
102
V CE (V)
103
0
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
11
250
249
500
750
1000
1250
1500
1750
2000
2250
A
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
600
600
550
IC (A)
IC (A)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
500
500
450
400
400
350
300
300
250
200
200
150
100
100
50
0
0
0,0
At
tp =
Tj =
VGE from
1,0
2,0
3,0
V CE (V)
4,0
5,0
0,0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1,0
2,0
3,0
V CE (V)
4,0
250
μs
125
°C
7 V to 17 V in steps of 1 V
Diode
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
350
5,0
IF (A)
IC (A)
600
300
500
250
400
200
Tj = Tjmax-25°C
300
150
Tj = 25°C
200
100
Tj = Tjmax-25°C
100
50
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
0
4
6
8
10
12
V GE (V) 14
0
At
tp =
μs
V
Copyright by Vincotech
12
0,5
250
1
1,5
2
2,5
V F (V)
3
μs
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
18
E (mWs)
E (mWs)
25
16
Eoff High T
20
14
Eoff Low T
Eon Low T
12
15
Eoff High T
10
Eoff Low T
Eon High T
8
10
Eon Low T
6
4
5
Eon High T
2
0
0
0
50
100
150
200
250
300
350
400
I C (A)
450
0
500
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
6
8
R G ( Ω ) 10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
251
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
8
Erec High T
7
8
7
6
6
5
5
4
4
Erec Low T
3
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
E (mWs)
2
Erec High T
3
Erec Low T
2
2
1
1
0
0
0
50
100
150
200
250
300
350
400
450
I C (A) 500
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
251
A
13
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Boost
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( μs)
t ( μs)
10
1
tdoff
tdon
tdon
0,1
tr
tf
tf
0,1
tr
0,01
0,01
0,001
0,001
0
50
100
150
200
250
300
350
400
I C (A) 500
450
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
R G( Ω )
5
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
251
A
Diode
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Diode
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,350
t rr(ms)
t rr(ms)
0,350
0,300
trr High T
0,300
trr High T
0,250
0,250
0,200
0,200
trr Low T
trr Low T
0,150
0,150
0,100
0,100
0,050
0,050
0,000
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/125
350
±15
4
100
150
200
250
300
350
400
I C (A)
450
500
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
14
4
25/125
350
251
±15
8
R gon (W) 12
°C
V
A
V
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Boost
Diode
Diode
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
25
35,00
Qrr (mC)
Qrr (mC)
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr High T
30,00
Qrr High T
20
25,00
15
20,00
Qrr Low T
15,00
Qrr Low T
10
10,00
5
5,00
0
0,00
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
50
100
25/125
350
±15
4
150
200
250
300
350
1
2
3
4
5
6
7
8
I C (A) 500
450
400
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Diode
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
25/125
350
251
±15
9
R g on ( Ω)
10
°C
V
A
V
Diode
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
300
IrrM (A)
IrrM (A)
300
IRRM High T
IRRM High T
250
250
IRRM Low T
200
200
150
150
100
100
IRRM Low T
50
50
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
100
25/125
350
±15
4
150
200
250
300
350
400
450
I C (A)
0
500
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
15
1
25/125
350
251
±15
2
3
4
5
6
7
R 8gon (W)
9
°C
V
A
V
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Boost
Diode
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
8000
12000
direc / dt (A/ms)
direc / dt (A/ms)
Diode
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
7000
dIo/dtLow T
10000
6000
8000
dIrec/dtHigh T
5000
4000
6000
dIrec/dtLow T
dIrec/dtHigh T
dIrec/dtLow T
3000
4000
di0/dtHigh T
dI0/dtLow T
2000
dI0/dtHigh T
2000
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
100
25/125
350
±15
4
150
200
250
300
350
400
450
I C (A) 500
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
251
±15
4
6
8
R gon (W)
10
°C
V
A
V
Diode
Figure 20
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
2
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,29
10-3
10-2
10-1
100
t p (s)
10110
10-5
At
D=
RthJH =
K/W
10-4
tp / T
0,41
10-3
Diode thermal model values
R (C/W)
0,02
0,07
0,07
0,09
0,02
0,02
R (C/W)
0,02
0,06
0,10
0,16
0,04
0,03
Copyright by Vincotech
16
10-1
100
t p (s)
10110
K/W
IGBT thermal model values
Tau (s)
9,6E+00
1,7E+00
2,9E-01
4,4E-02
7,6E-03
3,6E-04
10-2
Tau (s)
8,8E+00
1,6E+00
2,4E-01
5,4E-02
1,1E-02
4,5E-04
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
700
IC (A)
Ptot (W)
240
600
200
500
160
400
120
300
80
200
40
100
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
Diode
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
ºC
V
Diode
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
250
IF (A)
Ptot (W)
500
400
200
300
150
200
100
100
50
0
0
0
At
Tj =
50
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
17
50
175
100
150
Th ( o C)
200
ºC
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Boost
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
900
1
700
ZthJC (K/W)
IF (A)
10
600
100
800
500
Tj = 25°C
Tj = Tjmax-25°C
400
300
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
200
100
0
-2
0
At
tp =
0,5
1
1,5
2
3
VF (V)
10
3,5
10-5
At
D=
RthJH =
μs
250
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
tp / T
0,41
K/W
10-2
100
t p (s)
1011
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
500
10-1
250
IF (A)
Ptot (W)
2,5
400
200
300
150
200
100
100
50
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
18
50
175
100
150
Th ( o C)
200
ºC
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
19
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Switching Definitions BUCK IGBT
General conditions
= 125 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
240
140
120
IC
200
tdoff
VCE
100
160
VCE 90%
VGE 90%
80
120
%
IC
%60
VCE
80
VGE
tdon
40
IC10%
tEoff
40
IC 1%
20
VCE3%
VGE10%
0
0
VGE
tEon
-20
-0,2
-40
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,2
0,3
time (us)
-15
15
700
249
0,34
0,57
V
V
V
A
μs
μs
0,4
0,5
0,6
0,7
2,8
2,9
3
3,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Output inverter IGBT
Figure 3
3,2
3,3
time(us)
-15
15
700
249
0,25
0,36
3,4
3,6
3,7
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,5
Turn-on Switching Waveforms & definition of tr
140
220
fitted
120
Ic
VCE
IC
180
100
IC 90%
140
80
IC 60%
%60
VCE
%100
IC90%
40
IC 40%
tr
60
20
IC10%
20
0
IC10%
tf
-20
0,15
VC (100%) =
IC (100%) =
tf =
0,2
0,25
0,3
700
249
0,09
Copyright by Vincotech
0,35
time (us)
0,4
0,45
0,5
-20
0,55
3,1
VC (100%) =
IC (100%) =
tr =
V
A
μs
20
3,15
3,2
time(us)
3,25
700
249
0,04
3,3
3,35
3,4
3,45
3,5
V
A
μs
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
140
%
Eoff
Poff
%
120
100
Eon
100
80
80
60
60
Pon
40
40
20
20
0
-20
-0,2
VCE3%
0
tEoff
VGE90%
VGE10%
tEon
IC 1%
-20
-0,1
0
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
174,13
9,37
0,57
0,2
0,3
time (us)
0,4
0,5
0,6
2,9
0,7
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FRED
Figure 7
Gate voltage vs Gate charge (measured)
3,1
174,13
3,62
0,36
3,2
time(us)
3,3
3,4
3,5
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
15
80
Id
trr
10
40
fitted
VGE (V)
5
Vd
%
0
0
IRRM10%
-5
-40
-10
-80
-15
IRRM100%
-20
-500
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
500
1000
-15
15
700
249
3318,23
Copyright by Vincotech
1500
Qg (nC)
2000
2500
3000
-120
3,15
3500
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
21
3,23
3,31
700
249
-250
0,14
IRRM90%
3,39
3,47
time(us)
3,55
3,63
3,71
V
A
A
μs
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Erec
Qrr
Id
100
100
tQrr
80
tErec
50
60
% 0
%
40
-50
20
Prec
-100
0
-150
2,9
Id (100%) =
Qrr (100%) =
tQrr =
3,1
3,3
3,5
249
21,68
0,54
A
μC
μs
3,7
3,9
time(us)
-20
3,15
4,1
3,3
Prec (100%) =
Erec (100%) =
tErec =
3,45
174,13
5,22
0,54
3,6
3,75
time(us)
3,9
4,05
kW
mJ
μs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Copyright by Vincotech
Figure 12
BOOST stage switching measurement circuit
22
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard in flow2 housing
Ordering Code
in DataMatrix as
30-F206NIA300SA-M106F
M106F
in packaging barcode as
M106F
Outline
Pinout
Copyright by Vincotech
23
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
24
Revision: 4