70 W224NIA400SH M400P D4 14

70-W224NIA400SH-M400P
datasheet
flow NPC 4w
2400 V / 400 A
Features
flow SCREW 4w housing
● 2400V NPC-topology (2x 1200V)
● High power screw interface
● Low inductive interface for external DC-capacitors
and paralleling on component level
● Snubber diode for optional asymmetrical inductance
● High speed buck IGBT´s
● Temperature sensor
Target Applications
Schematic
● Solar inverter
● Wind Power
● Motor Drive
Types
● 70-W224NIA400SH-M400P
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
326
400
A
1200
A
800
A
881
1335
W
±20
V
10
800
µs
V
Tjmax
175
°C
VRRM
1200
V
270
356
A
800
A
565
857
W
175
°C
Buck IGBT ( T1 , T4 )
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCE
IC
ICpulse
Th=80°C
Tc=80°C
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ T op max
Turn off safe operating area
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Buck Diode ( D5 , D6 )
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp=10ms, sin 180°
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
348
400
A
1200
A
800
A
826
1252
W
±20
V
10
800
µs
V
Tjmax
175
°C
VRRM
1200
V
400
400
A
600
A
881
1355
W
175
°C
1200
V
257
342
A
600
A
452
685
W
175
°C
Boost IGBT ( T2 , T3 )
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCE
IC
ICpuls
Th=80°C
Tc=80°C
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ T op max
Turn off safe operating area
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Boost Inverse Diode ( D2 , D3 )
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
Boost Diode ( D1 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
copyright Vincotech
VRRM
IF
IFRM
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tjmax
2
Th=80°C
Tc=80°C
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
90
120
A
540
A
730
A s
162
245
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Snubber Diode ( D7 , D8 )
Repetitive peak reverse voltage
VRRM
Forward average current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms, sin 180°
Tj=150°C
Th=80°C
Tc=80°C
Tj=Tjmax
2
Thermal Properties
Insulation Properties
Insulation voltage
Stage
copyright Vincotech
Vis
t=2s
DC voltage
>200
CTI
3
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5,2
5,8
6,4
1,7
2,14
2,44
Buck IGBT ( T1 , T4 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
0,0136
15
VCE(sat)
400
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tr
td(off)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
V
0,048
960
0,5
Rgoff=1 Ω
Rgon=1 Ω
±15
600
398
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
Ω
171
172
24
29
238
290
21
38
9,03
14,33
13,20
21,33
ns
mWs
22160
f=1MHz
0
25
Tj=25°C
pF
1520
1280
15
960
400
Tj=25°C
Phase-Change
Material
λ = 3,4 W/mK
nC
1840
0,105
K/W
0,069
Buck Diode ( D5 , D6 )
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
1200
IR
IRRM
trr
Qrr
Rgon=1 Ω
±15
600
di(rec)max
/dt
Erec
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
copyright Vincotech
400
VF
Phase-Change
Material
λ = 3,4 W/mK
398
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,34
2,38
V
480
506
624
86
117
34,86
57,89
14614
15212
15,14
26,14
µA
A
ns
µC
A/µs
mWs
0,163
K/W
0,108
4
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Tj
Unit
Min
Typ
Max
5
5,80
6,5
Boost IGBT ( T2 , T3 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
0,0152
15
VCE(sat)
400
Collector-emitter cut-off incl diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
1,91
2,14
2400
Rgoff=1 Ω
Rgon=1 Ω
600
±15
398
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
0,052
mA
nA
Ω
1,875
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
233
242
44
49
334
405
43
99
15,2
21,5
ns
mWs
24,2
37,6
24600
f=1MHz
0
25
398
Tj=25°C
pF
1620
1380
±15
960
400
Tj=25°C
nC
3700
Phase-Change
Material
λ = 3,4 W/mK
0,112
K/W
0,074
Boost Inverse Diode ( D2 , D3 )
Diode forward voltage
Reverse leakage current
300
VF
1200
Ir
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,35
1,90
1,84
V
56
Phase-Change
Material
λ = 3,4 W/mK
µA
0,108
K/W
0,071
Boost Diode ( D1 , D4 )
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
trr
Reverse recovered charge
Qrr
Rgon=1 Ω
±15
600
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
copyright Vincotech
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
300
398
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=125°C
Tj=125°C
Phase-Change
Material
λ = 3,4 W/mK
1,35
1,90
1,84
V
56
368
403
251
341
34
59
3292
3343
13,60
24,53
µA
A
ns
µC
A/µs
mWs
0,204
K/W
0,135
5
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Tj
Min
Typ
Unit
Max
Snubber Diode ( D7 , D8 )
Forward voltage
Reverse current
100
VF
1200
Ir
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,91
1,85
V
0,12
Phase-Change
Material
λ = 3,4 W/mK
mA
0,588
K/W
0,388
Thermistor
Rated resistance
R
Deviation of R25
ΔR/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tj=100°C
22000
-12
Tj=25°C
Power dissipation constant
B-value
B(25/50)
Tol. ±3%
B-value
B(25/100) Tol. ±3%
Ω
+12
%
200
mW
Tj=25°C
2
mW/K
Tj=25°C
3884
K
Tj=25°C
3964
K
B
Vincotech NTC Reference
Module Properties
Module inductance (from chips to PCB)
Buck
15
Boost
28
nH
LsCE C-PCB
LsCE PCB-PCB
Module inductance (from PCB to PCB using Intercon
board)
5
Mounting torque
M
Mounting torque
M
Terminal connection torque
M
Weight
G
copyright Vincotech
nH
1,5
Resistance of Intercon boards (from PCB to PCBRusing
cc'1+EE' Intercon board)
Screw M4 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M5 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M6 - mounting according to valid application note
FSWB1-4TY-M-*-HI
6
mΩ
2
2,2
Nm
4
6
Nm
2,5
5
Nm
580
g
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
IGBT
IGBT
1000
1000
IC (A)
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
Figure 1
Typical output characteristics
IC = f(VCE)
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
350
µs
25
°C
7 V to 17 V in steps of 1 V
VGE from
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
V CE (V)
350
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
1000
IF (A)
IC (A)
350
5
300
800
250
600
200
150
400
100
Tj = 125°C
Tj = 125°C
200
50
Tj = 25°C
0
At
tp =
VCE =
Tj = 25°C
0
0
2
350
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
7
1
350
2
3
V F (V)
4
µs
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
140
E (mWs)
50
Eoff High T
120
Eon High T
40
100
Eon Low T
30
80
Eon High T
Eoff Low T
60
20
Eon Low T
40
10
Eoff High T
20
Eoff Low T
0
0
0
200
400
600
800
I C (A)
1000
0
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
10
R G ( Ω)
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
IC =
398
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
40
E (mWs)
40
Erec High T
32
32
24
24
Erec Low T
16
16
Erec High T
8
8
Erec Low T
0
0
0
200
400
600
800
I C (A)
0
1000
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
1,0
Ω
copyright Vincotech
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
398
A
8
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
tdon
t (ms)
t (ms)
1,00
tdoff
tdon
0,10
tr
0,10
tf
tf
tr
0,01
0,01
0,00
0,00
0
200
400
600
800
I C (A)
0
1000
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
10
R G ( Ω)
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
398
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1,0
t rr(ms)
t rr(ms)
0,2
trr High T
0,8
0,2
trr High T
0,6
0,1
trr Low T
trr Low T
0,4
0,1
0,2
0,0
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
600
±15
1,0
copyright Vincotech
400
600
800
I C (A)
0
1000
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
2
25/125
600
398
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (mC)
100
Qrr (mC)
100
Qrr High T
80
80
60
60
Qrr Low T
Qrr High T
40
40
20
20
Qrr Low T
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
600
±15
1,0
400
600
800
I C (A)
1000
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(I C)
2
25/125
600
398
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
1000
IrrM (A)
IrrM (A)
1000
800
800
IRRM High T
IRRM Low T
600
600
400
400
200
200
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
600
±15
1,0
copyright Vincotech
400
600
800
I C (A)
0
1000
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
10
2
25/125
600
398
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
FWD
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(R gon)
20000
28000
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIrec/dt T
dIo/dt T
dI0/dt T
dIrec/dt T
24000
16000
20000
12000
16000
12000
8000
8000
4000
4000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
25/125
600
±15
1,0
400
600
800
1000
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
25/125
25/125
600
398
±15
4
6
8
R gon ( Ω)
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
K/W
RthJC =
0,069
-2
10
-3
10-5
101
At
D=
RthJH =
tp / T
0,105
10
K/W
IGBT thermal model values
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-4
10-3
10-2
10-1
100
t p (s)
tp / T
0,163
K/W
RthJC =
0,108
K/W
FWD thermal model values
With thermal grease
R (K/W)
Tau (s)
With phase change material
R (K/W)
Tau (s)
With thermal grease
R (K/W)
Tau (s)
With phase change material
R (K/W)
Tau (s)
0,011
0,034
0,025
0,028
0,006
0,003
0,010
0,033
0,024
0,027
0,006
0,003
0,018
0,031
0,032
0,043
0,033
0,010
0,018
0,030
0,031
0,042
0,032
0,010
5,238
1,193
0,295
0,030
0,008
0,001
copyright Vincotech
101 1
5,238
1,193
0,295
0,030
0,008
0,001
11
7,434
1,592
0,290
0,063
0,020
0,002
7,434
1,592
0,290
0,063
0,020
0,002
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
500
IC (A)
Ptot (W)
1800
400
1200
300
200
600
100
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
500
IF (A)
Ptot (W)
1200
1000
400
800
300
600
200
400
100
200
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
12
50
175
100
150
T h ( o C)
200
°C
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Buck T1,T4 / D5,D6
Buck IGBT and Buck FWD
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
10
VGE (V)
IC (A)
17,5
3
15
10uS
240V
12,5
102
100uS
960V
10
10
1mS
1
7,5
10mS
100
100mS
5
DC
10
2,5
-1
0
10
At
D=
Th =
0
103
102
101
0
400
600
800
1000
1200
1400
1600
1800
2000
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
VGE =
Tj =
200
V CE (V)
400
A
IGBT
Figure 27
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1000
IC MAX
Ic CHIP
800
600
VCE
Ic MODULE
MAX
400
200
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Uccminus=Uccplus
Switching mode :
copyright Vincotech
3 level switching
13
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
IGBT
IGBT
1000
1000
IC (A)
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
Figure 1
Typical output characteristics
IC = f(VCE)
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
350
µs
25
°C
7 V to 17 V in steps of 1 V
VGE from
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
350
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
400
5
IF (A)
IC (A)
1000
350
800
300
250
600
200
400
150
Tj = 125°C
100
200
Tj = 25°C
50
Tj = 125°C
0
0
At
tp =
VCE =
Tj = 25°C
0
2
350
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
14
1
350
2
3
V F (V)
4
µs
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
100
E (mWs)
E (mWs)
100
Eon High T
80
80
Eon Low T
Eoff High T
60
60
Eoff Low T
Eon High T
40
40
Eoff High T
Eon Low T
Eoff Low T
20
20
0
0
0
200
400
600
800
I C (A)
0
1000
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
1,0
Ω
Rgoff =
1,0
Ω
2
4
6
8
R G( Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
398
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
40
E (mWs)
40
Erec High T
30
30
20
20
Erec Low T
Erec High T
10
10
Erec Low T
0
0
0
200
400
600
800
I C (A)
0
1000
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
1,0
Ω
copyright Vincotech
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
398
A
15
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
tdon
t ( µs)
t ( µs)
1
tdoff
tdon
tf
0,1
tr
0,1
tr
tf
0,01
0,01
0,001
0,001
0
200
400
600
800
I C (A)
0
1000
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
1,0
Ω
Rgoff =
1,0
Ω
2
4
6
8
10
R G( Ω )
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
398
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,8
t rr(ms)
t rr(ms)
0,8
trr High T
0,6
0,6
trr High T
trr Low T
0,4
0,4
trr Low T
0,2
0,2
0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
600
±15
1,0
copyright Vincotech
400
600
800
I C (A)
0
1000
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
2
25/125
600
398
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (mC)
100
Qrr (mC)
100
Qrr High T
80
80
60
60
Qrr High T
Qrr Low T
40
40
Qrr Low T
20
20
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
0
200
25/125
600
±15
1,0
400
600
800
I C (A)
0
1000
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
25/125
600
398
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
500
IrrM (A)
500
IrrM (A)
IRRM High T
IRRM Low T
400
400
300
300
200
200
100
100
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
600
±15
1,0
copyright Vincotech
400
600
800
I C (A)
0
1000
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
17
2
25/125
600
398
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
15000
direc / dt (A/ms)
direc / dt (A/ms)
15000
dIrec/dt T
di0/dt T
12000
dI0/dt T
dIrec/dt T
12000
9000
9000
6000
6000
3000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(R gon)
200
25/125
25/125
600
±15
1,0
400
600
800
1000
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
25/125
25/125
600
398
±15
4
6
8
R gon ( Ω)
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
100
ZthJH (K/W)
100
10
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-3
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
102
100
t p (s)
101
10-5
At
D=
RthJH =
tp / T
0,112
K/W
RthJC =
0,074
IGBT thermal model values
10-4
10-3
10-2
10-1
100
t p (s)
tp / T
0,204
K/W
RthJC =
0,135
FWD thermal model values
With thermal grease
R (K/W)
Tau (s)
With phase change material
R (K/W)
Tau (s)
With thermal grease
R (K/W)
Tau (s)
With phase change material
R (K/W)
Tau (s)
0,012
0,048
0,021
0,013
0,020
0,002
0,012
0,046
0,020
0,013
0,019
0,002
0,021
0,067
0,048
0,055
0,012
0,007
0,020
0,065
0,047
0,053
0,012
0,006
6,352
1,766
0,394
0,087
0,019
0,002
copyright Vincotech
101 10
6,352
1,766
0,394
0,087
0,019
0,002
18
5,238
1,193
0,295
0,030
0,008
0,001
5,238
1,193
0,295
0,030
0,008
0,001
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Boost T2,T3 / D2,D3
Boost IGBT and Boost FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
500
IC (A)
Ptot (W)
1800
1500
400
1200
300
900
200
600
100
300
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
900
200
IF (A)
Ptot (W)
400
750
300
600
450
200
300
100
150
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
19
50
175
100
150
Th ( o C)
200
ºC
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Boost T2,T3 / D2,D3
Boost IGBT
IGBT
Figure 25
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1000
IC MAX
Ic CHIP
800
Ic MODULE
600
400
VCE MAX
200
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Uccminus=Uccplus
12
Ls=
Switching mode :
copyright Vincotech
nH
3 level switching
20
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Boost Inverse Diode D1,D4
Figure 25
Boost Inverse Diode D1,D4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
Figure 26
Boost Inverse Diode D1,D4
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
1000
0
ZthJC (K/W)
IF (A)
10
800
10-1
600
400
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
200
Tj = Tjmax-25°C
Tj = 25°C
0
10-3
0
At
tp =
1
250
2
3
V F (V)
4
10-5
10-4
At
D=
RthJH =
µs
Figure 27
Boost Inverse Diode D1,D4
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
tp / T
0,108
10-2
10-1
100
t p (s)
10110
K/W
Figure 28
Boost Inverse Diode D1,D4
Forward current as a
function of heatsink temperature
IF = f(Th)
450
Ptot (W)
IF (A)
2000
400
1600
350
300
1200
250
200
800
150
100
400
50
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
21
50
175
100
150
Th ( o C)
200
ºC
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Snubber Diode D7, D8
Snubber Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Snubber Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
600
0
ZthJC (K/W)
IF (A)
10
500
400
10-1
Tj = 25°C
300
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
Tj = Tjmax-25°C
200
10-2
100
0
0
At
tp =
1
2
250
3
4
V F (V)
10-3
5
10-5
10-4
At
D=
RthJH =
µs
Snubber Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
101 10
tp / T
0,588
K/W
Snubber Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
150
IF (A)
Ptot (W)
300
t p (s)
250
120
200
90
150
60
100
30
50
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
22
50
175
100
150
T h ( o C)
200
ºC
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R(Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
23
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Switching Definitions Buck
General
Tj
Rgon
Rgoff
conditions
= 125 °C
= 1Ω
= 1Ω
Test setup inductance: 9nH
Figure 1
Buck IGBT
Turn-off Switching Waveforms & definition of t doff, tEoff
(tEoff = integrating time for Eoff)
Figure 2
Buck IGBT
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
300
%
%
VCE
125
250
tdoff
IC
100
VGE 90%
200
VCE 90%
75
VGE
150
IC
50
tEoff
VCE
100
25
VGE
tdon
50
IC 1%
0
VGE 10%
IC 10%
tEon
0
-25
-50
-0,3
VCE 3%
-50
-0,15
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
0,15
-15
15
600
402
0,29
0,45
V
V
V
A
µs
µs
0,3
0,45
time (us)
3,8
0,6
3,95
-15
15
600
402
0,17
0,30
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Figure 3
Buck IGBT
Turn-off Switching Waveforms & definition of t f
4,1
4,25
4,4
time(us)
4,55
V
V
V
A
µs
µs
Figure 4
Buck IGBT
Turn-on Switching Waveforms & definition of tr
150
300
%
%
Ic
250
125
VCE
fitted
IC
200
100
IC 90%
150
75
IC 60%
VCE
100
50
IC 90%
tr
IC 40%
50
25
IC 10%
0
IC 10%
0
tf
-50
-25
0,1
0,15
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,2
0,25
600
402
0,04
V
A
µs
0,3
0,35
time(us)
4,1
0,4
4,15
4,2
4,25
4,3
4,35
time(us)
VC (100%) =
IC (100%) =
tr =
24
600
402
0,03
V
A
µs
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Switching Definitions Buck
Figure 5
Buck IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Buck IGBT
Turn-on Switching Waveforms & definition of tEon
125
125
%
Poff
%
Eoff
Eon
100
100
75
75
50
50
Pon
25
25
IC 1%
VGE 10%
VGE90%
0
-25
-0,2
VCE 3%
0
tEon
tEoff
-0,05
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
241,06
21,33
0,45
0,25
-25
3,95
0,4 time (us) 0,55
4,05
4,15
4,25
4,35
time(us)
kW
mJ
µs
241,06
14,33
0,30
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Figure 7
Buck FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Vd
0
IRRM 10%
-50
-100
IRRM 90%
IRRM 100%
-150
fitted
-200
4
4,1
4,2
4,3
4,4
4,5
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
25
600
402
-624
0,12
V
A
A
µs
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Switching Definitions Buck
Figure 8
Buck FWD
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Figure 10
Buck FWD
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
200
Qrr
Id
%
Prec
%
100
150
tQrr
50
Erec
100
0
tErec
-50
50
-100
0
-150
-50
-200
4
4,2
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
4,4
402
57,89
1,00
4,6
4,8
5
4
5,2
5,4
time(us)
A
µC
µs
Prec (100%) =
Erec (100%) =
tErec =
26
4,2
4,4
4,6
241,06
26,14
1,00
4,8
5
5,2
time(us)
5,4
kW
mJ
µs
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Switching Definitions Boost
General
Tj
Rgon
Rgoff
conditions
= 125 °C
= 1Ω
= 1Ω
Test setup inductance: 9nH
Figure 1
Boost IGBT
Turn-off Switching Waveforms & definition of t doff, tEoff
(tEoff = integrating time for Eoff)
Figure 2
Boost IGBT
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
200
%
%
IC
125
tdoff
150
100
VCE
VGE 90%
90%
VCE
100
75
VGE
IC
tdon
50
50
tEoff
25
IC
VCE
VCE 3%
IC 10%
VGE 10%
1%
0
tEon
0
VGE
-25
-0,2
-50
0
0,2
0,4
-15
15
600
398
0,40
0,76
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,6
0,8
1
time (us)
2,7
V
V
V
A
µs
µs
2,9
3,3
-15
15
600
398
0,24
0,48
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Figure 3
Boost IGBT
Turn-off Switching Waveforms & definition of t f
3,1
3,5
3,7
time(us)
3,9
V
V
V
A
µs
µs
Figure 4
Boost IGBT
Turn-on Switching Waveforms & definition of tr
125
200
fitted
%
VCE
IC
Ic
%
100
150
Ic 90%
75
VCE
100
Ic 60%
IC
90%
50
tr
Ic 40%
50
25
Ic 10%
IC 10%
0
0
tf
-25
0,1
0,2
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,3
600
398
0,099
0,4
0,5
0,6
time (us)
-50
0,7
3,1
V
A
µs
VC (100%) =
IC (100%) =
tr =
27
3,2
3,3
600
398
0,049
3,4
3,5
time(us)
3,6
V
A
µs
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Switching Definitions Boost
Figure 5
Boost IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Boost IGBT
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
Poff
Eon
Eoff
100
100
Pon
75
75
50
50
IC 1%
25
25
Uge 90%
Uce 3%
Uge 10%
0
0
tEon
tEoff
-25
-0,2
-25
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
238,67
37,62
0,76
0,4
0,6
0,8
time (us)
2,9
1
kW
mJ
µs
3,05
3,2
3,35
3,5
time(us)
3,65
238,6716 kW
13,39
mJ
0,48
µs
Pon (100%) =
Eon (100%) =
tEon =
Figure 7
Boost FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Ud
fitted
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
-150
2,9
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
28
3,1
3,3
600
398
-403
0,34
3,5
3,7
time(us)
3,9
V
A
A
µs
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Switching Definitions Boost
Figure 8
Boost FWD
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
Figure 9
Boost FWD
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Id
Qrr
Erec
100
100
tErec
75
tQint
50
50
0
25
Prec
-50
0
-25
-100
3
3,2
Id (100%) =
Qrr (100%) =
tQint =
copyright Vincotech
3,4
3,6
398
58,83
0,69
A
µC
µs
3,8
4 time(us)
3
4,2
Prec (100%) =
Erec (100%) =
tErec =
29
3,2
3,4
238,67
24,53
0,69
3,6
3,8
4
time(us)
4,2
kW
mJ
µs
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Outline - Pinout
Outline
Driver pins
Pin
X1
Y1
Function
Group
1.1
1.2
1.3
-2,15
-2,15
46,15
84,85
81,95
84,85
G1-1
E1-1
G1-2
T1
T1
T1
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
46,15
19,45
24,55
-7,65
-7,65
51,65
51,65
16,75
81,95
93,05
93,05
70,05
67,15
70,05
67,15
75,35
E1-2
DC+ desat
DC+ desat
G2-1
E2-1
G2-2
E2-2
GND desat
T1
T1
T1
T2
T2
T2
T2
D5
1.12
1.13
1.14
1.15
1.16
1.17
1.18
27,25
-2,55
-5,45
46,55
49,45
-4,8
-1,6
75,35
28
28
28
28
50,85
49,05
GND desat
G3-1
E3-1
G3-2
E3-2
G4-1
E4-1
D5
T3
T3
T3
T3
T4
T4
1.19 48,8
50,85
G4-2
1.20 45,6
49,05
E4-2
1.21 67,65
89,8
NTC1
1.22 67,65
86,7
NTC2
Low current connections
M4
screw
X3
Y3
3.1
-39,1
89,8
TR+
3.2
3.3
3.4
-39,1
-39,1
83,1
89,8
89,8
89,8
GND
DC+
TR+
3.5
3.6
3.7
83,1
83,1
-39,1
89,8
89,8
65,2
GND
DC+
T2C
3.8
3.9
3.10
3.11
-39,1
-39,1
83,1
83,1
65,2
65,2
65,2
65,2
GND
Phase
T2C
GND
3.12
3.13
3.14
3.15
83,1
-39,1
-39,1
-39,1
65,2
45,2
45,2
45,2
Phase
Phase
GND
DK
3.16
3.17
3.18
3.19
83,1
83,1
83,1
-39,1
45,2
45,2
45,2
20,6
Phase
GND
DK
DC-
3.20
3.21
3.22
3.23
3.24
-39,1
20,6
GND
-39,1
20,6
TR83,1
20,6
DC83,1
20,6
GND
83,1
20,6
TRPower connections
Function
M6
screw
X2
Y2
Function
2.1
2.2
0
22
0
0
Phase
Phase
2.3
2.4
2.5
2.6
44
0
22
44
0
110,4
110,4
110,4
Phase
DC+
GND
DC-
copyright Vincotech
T4
T4
30
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Ordering Code and Marking - Pinout
Ordering Code & Marking
Version
Standard
Ordering Code
70-W224NIA400SH-M400P
in DataMatrix as
M400P
in packaging barcode as
M400P
Pinout
copyright Vincotech
31
14 Jul 2015 / Revision 4
70-W224NIA400SH-M400P
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
10
>SPQ
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flowNPC 4w packages see vincotech.com website.
Document No.:
Date:
Modification:
Pages
70-W224NIA400SH-M400P-D4-14
14 Jul. 2015
Gate charge
4,5,13,25,28
Product status definition
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact
Vincotech.Vincotech reserves the right to make changes without further notice to any products herein t
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance with instructions for use provided in la
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or effectiveness.
copyright Vincotech
32
14 Jul 2015 / Revision 4
Similar pages