10 FZ062UA040FP P980Dx8 D4 14 1

10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
flow PFC 0
600 V/ 2 x 99mOhm / 200 kHz
Features
●
●
●
●
flow 0 housing
Vincotech clip-in housing
Compact and low inductance design
Suitable for Interleaved topology
Suitable for curent sensing in drain
● CP series CoolMOSTM and SiC boost FRED
Target Applications
●
●
●
●
●
PFC
PFC
PFC
PFC
PFC
for
for
for
for
for
Schematic
welding
SMPS
motor drives
UPS
battery charger
FZ062TA099FH
FZ062TA099FH01
Types
● FZ062TA099FH; without SCR, current sense in drain
● FZ062TA099FH01; with SCR, current sense in drain
CoolMOS is a trademark of Infineon Technologies AG
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
35
A
250
A
310
A 2s
40
W
Input Rectifier Diode
Repetitive peak reverse voltage
DC forward current
Surge forward current
V RRM
IF
Tj=Tjmax
Th=80°C
tp=10ms
Tj=25°C
I FSM
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V RRM
800
V
34
A
250
A
310
A 2s
44
W
Th=80°C
Tj=Tjmax
Input Rectifier Thyristor
Repetitive peak reverse voltage
DC forward current
Surge forward current
IF
Tj=Tjmax
Th=80°C
tp=10ms
Tj=25°C
I FSM
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
Drain to source voltage
V DS
600
V
DC drain current
ID
16
A
93
A
800
mJ
1,2
mJ
11
A
Tj=Tjmax
Th=80°C
PFC MOSFET
Pulsed drain current
I Dpulse
Tj=Tjmax
Th=80°C
tp limited by Tjmax
E AS
ID=11 A
VDD=50 V
Avalanche energy, repetitive
E AR
ID=11A
VDD=50V
Avalanche current, repetitive
I AR
tp limited by Tjmax
Avalanche energy, single pulse
copyright Vincotech
1
tAR limited by Tjmax
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
dv/dt ruggedness
dv /dt
Reverse diode dv/dt
dv /dt
VDS=0...480V
Tj=Tjmax
Th=80°C
Value
Unit
50
V/ns
15
V/ns
62
W
Power dissipation
P tot
Gate-source peak voltage
V GS
+/- 20
V
T jmax
150
°C
600
V
8
A
16
A
14
W
175
°C
600
V
19
A
64
A
37
W
175
°C
Maximum Junction Temperature
C.T. Inverse diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
Th=80°C
PFC Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
Th=80°C
PFC Shunt
DC forward current
Power dissipation
IF
Tc=25°C
31,6
A
P tot
Tc=25°C
10
W
V MAX
Tc=25°C
500
V
DC link Capacitor
Max.DC voltage
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
min 12,7
mm
9,42
mm
Insulation Properties
Insulation voltage
V is
t=2s
DC voltage
Creepage distance
Clearance
copyright Vincotech
2
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Min
Unit
Typ
Max
1,16
1,11
0,9
0,77
9
12
1,4
Input Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
V to
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
Thermal resistance chip to heatsink
R th(j-s)
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
V
mΩ
0,02
2
Thermal grease
thickness≤50um
λ =1 W/mK
V
1,72
mA
K/W
Input Rectifier Thyristor
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
V to
30
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Gate controlled delay time
t GD
Gate controlled rise time
t GR
30
800
Ig=0,5A
dig/dt=0,5A/us
Ig=0,2A
dig/dt=0,2A/us
VD=1/2Vdrm
(dv /dt )cr
VD=2/3Vdrm
Critical rate of rise of on-state current
(di /dt )cr Ig=0,2A
VD=2/3Vdrm
40
tq
Holding current
IH
Latching current
IL
Gate trigger voltage
V GT
Gate trigger current
I GT
Gate non-trigger voltage
V GD
Gate non-trigger current
I GD
Thermal resistance chip to heatsink
R th(j-s)
1,25
1,22
0,93
0,82
0,011
0,014
f=50Hz
VD=2/3Vdrm
tp=200us
VD=6V
100
26
VD=6V
VD=1/2Vdrm
VD=1/2Vdrm
mΩ
500
Tj=125°C
150
150
90
Tj=25°C
Tj=-40°C
Tj=25°C
Tj=-40°C
Tj=125°C
1,3
1,6
28
50
0,2
A/µs
mA
1
Thermal grease
thickness≤50um
λ = 1 W/mK
V/µs
mA
Tj=25°C
Tj=125°C
µs
µs
50
11
mA
µs
Tj=125°C
Tj=125°C
V
V
<1
Tj=25°C
tp=10us
Ig=0,2A
VD=6V
1,6
0,05
2
2
Tj=25°C
Critical rate of rise of off-state voltage
Circuit commutated turn-off time
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
V
mA
V
mA
K/W
1,57
PFC MOSFET
Avalanche breakdown voltage
V (BR)DS
0
0,0003
Static drain to source ON resistance
r DS(on)
10
18
Gate threshold voltage
V (GS)th
Vds
0,0012
Gate to Source Leakage Current
I GSS
20
0
Zero Gate Voltage Drain Current
I DSS
0
600
Turn On Delay Time
t d(on)
Rise Time
Turn off delay time
Fall time
tr
t d(off)
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Total gate charge
Q GE
Gate to source charge
Q GS
Gate to drain charge
Q GD
Input capacitance
C iss
Output capacitance
C oss
Reverse transfer capacitance
C rss
Thermal resistance chip to heatsink
copyright Vincotech
R th(j-s)
Rgoff=4 Ω
Rgon=4 Ω
10
400
0
400
15
18
Tj=25°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
600
2,5
V
111
223
3,0
mΩ
3,9
200
10
21
21
4
4
71
73
3
3
0,055
0,059
0,008
0,013
V
nA
uA
ns
mWs
60
14
nC
20
2800
f=1MHz
100
0
Tj=25°C
130
pF
2,5
Thermal grease
thickness≤50um
λ = 1 W/mK
1,13
3
K/W
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Min
Unit
Typ
Max
1,66
1,61
2
C.T. Inverse diode
Diode forward voltage
Thermal resistance chip to heatsink
VF
R th(j-s)
6
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
V
5,12
K/W
PFC Diode
Forward voltage
VF
Reverse leakage current
I rm
Peak recovery current
I RRM
Reverse recovery time
t rr
Reverse recovery charge
Q rr
Reverse recovered energy
Peak rate of fall of recovery current
Thermal resistance chip to heatsink
16
600
Rgon=4 Ω
10
400
E rec
( di rf/dt )max
R th(j-s)
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,53
1,68
1,8
400
24,4
21,9
8
8
0,11
0,09
0,02
0,02
9935
7532
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
mWs
A/µs
2,56
K/W
PFC Shunt
R1 value
Temperature coeficient
tc
Internal heat resistance
R thi
Inductance
9,4
R
10
10,6
< 50
20°C to 60°C
< 6.5
K/W
<3
L
mΩ
ppm/K
nH
DC link Capacitor
C value
C
480
540
600
nF
Thermistor
Rated resistance
25
R
21,5
Deviation of R100
ΔR/R
Power dissipation
P
25
B-value
B(25/50)
B-value
B(25/100)
25
3964
100
R100=1486 Ω
Power dissipation constant
Vincotech NTC Reference
copyright Vincotech
-4,5
kΩ
+4,5
%
210
mW
25
3,5
mW/K
25
3884
K
K
F
4
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
PFC Switch & C.T. Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
20
Inverse diode
ZthJC (K/W)
IF (A)
101
16
100
12
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
8
10
-1
Tj = Tjmax-25°C
4
Tj = 25°C
0
10-2
0
tp =
1
1
250
2
2
3
V F (V)
3
10
µs
-5
D=
R thJH =
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Inverse diode
10
-4
10
-3
10
-2
10
-1
10
t p (s)
1
10 10
tp/T
5,12
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
Inverse diode
12
IF (A)
Ptot (W)
40
0
10
32
8
24
6
16
4
8
2
0
0
0
Tj =
copyright Vincotech
50
150
100
150
T h ( o C)
200
0
Tj =
ºC
5
50
150
100
150
T h ( o C)
200
ºC
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
PFC
Figure 1
Typical output characteristics
I D = f(V DS)
PFC MOSFET
Figure 2
Typical output characteristics
I D = f(V DS)
40
PFC MOSFET
ID (A)
ID (A)
40
32
32
24
24
16
16
8
8
0
0
0
1
tp =
Tj =
V GS from
1
2
2
3
3
4
V DS
5 (V)
4
5
0
1
tp =
Tj =
V GS from
250
µs
25
°C
3 V to 13 V in steps of 1 V
Figure 3
Typical transfer characteristics
PFC MOSFET
1
2
2
3
3
4
4
PFC MOSFET
50
IF (A)
ID (A)
20
5
250
µs
125
°C
3 V to 13 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
I D = f(V DS)
V DS
5 (V)
Tj = 25°C
16
40
12
30
Tj = Tjmax-25°C
8
20
Tj = Tjmax-25°C
4
10
Tj = 25°C
0
0
0
1
tp =
V DS =
250
10
copyright Vincotech
2
3
4
5
V GS (V) 6
0
tp =
µs
V
6
1
250
2
3
V F (V)
4
µs
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
PFC
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I D)
PFC MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
0,120
PFC MOSFET
E (mWs)
E (mWs)
0,12
Eon
Eon
Tj = Tjmax -25°C
0,100
Eon
0,10
Tj =25°C
Eon
0,080
0,08
0,060
0,06
0,040
0,04
Eoff
Eoff
Eoff
0,020
0,02
Eoff
0,000
0,00
0
inductive
Tj =
V DS =
V GS =
R gon =
R goff =
5
load
25/125
400
10
4
4
10
15
20
25
I C (A)
30
0
inductive
Tj =
V DS =
V GS =
ID =
°C
V
V
Ω
Ω
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
E rec = f(I c)
PFC MOSFET
3
load
25/125
400
10
15
6
9
12
R G ( Ω ) 18
°C
V
V
A
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
PFC MOSFET
0,035
E (mWs)
E (mWs)
0,030
15
0,030
0,025
Tj = 25°C
Erec
0,025
0,020
Tj = 25°C
Erec
Erec
0,015
0,020
Tj = Tjmax -25°C
0,015
Tj = Tjmax - 25°C
Erec
0,010
0,010
0,005
0,005
0,000
0,000
0
inductive
Tj =
V DS =
V GS =
R gon =
R goff =
copyright Vincotech
5
load
25/125
400
10
4
4
10
15
20
25
I C (A)
30
0
inductive
Tj =
V DS =
V GS =
ID =
°C
V
V
Ω
Ω
7
3
load
25/125
400
10
15
6
9
12
15
RG (Ω )
18
°C
V
V
A
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
PFC
Figure 9
Typical switching times as a
function of collector current
t = f(I D)
PFC MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
t ( µs)
1,000
t ( µs)
1,000
PFC MOSFET
0,100
0,100
tdoff
tdoff
tdon
tdon
0,010
0,010
tr
tf
ttfr
tf
0,001
0,001
0
inductive
Tj =
V DS =
V GS =
R gon =
R goff =
5
load
125
400
10
4
4
10
15
20
25
I D (A)
30
0
inductive
Tj =
V DS =
V GS =
IC =
°C
V
V
Ω
Ω
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
PFC FWD
3
6
load
125
400
10
15
°C
V
V
A
9
12
15
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
PFC FWD
0,018
t rr( µs)
t rr( µs)
0,010
R G ( Ω ) 18
trr
trr
0,015
0,008
trr
trr
0,012
Tj = Tjmax-25°C
0,006
Tj = 25°C
0,009
0,004
0,006
0,002
0,003
0,000
0,000
0
Tj =
V CE =
V GE =
R gon =
copyright Vincotech
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
Tj =
VR =
IF =
V GS =
°C
V
V
Ω
8
3
25/125
400
15
10
6
9
12
15
R gon ( Ω ) 18
°C
V
A
V
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
PFC
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
PFC FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
0,200
PFC FWD
Qrr ( µC)
Qrr ( µC)
0,150
0,160
0,120
Qrr
Qrr
0,120
Tj = 25°C
Qrr
Qrr
Tj = 25°C
0,090
Tj = Tjmax - 25°C
0,080
0,060
Tj = Tjmax -25°C
0,040
0,030
0,000
0,000
0
At
Tj =
V CE =
V GE =
R gon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
Tj =
°C
V
V
Ω
VR =
IF=
V GS =
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
PFC FWD
3
25/125
400
15
10
6
9
12
15
18
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
PFC FWD
Tj = 25°C
IrrM (A)
35
IrrM (A)
30
R gon ( Ω)
IRRM
30
25
IRRM
25
Tj = Tjmax - 25°C
20
IRRM
IRRM
20
15
Tj = 25°C
15
Tj = Tjmax -25°C
10
10
5
5
0
0
0
Tj =
V CE =
V GE =
R gon =
copyright Vincotech
5
25/125
400
10
4
10
15
20
25
0
I C (A) 30
Tj =
VR =
IF =
V GS =
°C
V
V
Ω
9
3
25/125
400
15
10
6
9
12
15
R go n ( Ω )
18
°C
V
A
V
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
PFC
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
PFC FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
PFC FWD
16000
direc / dt (A/ µs)
direc / dt (A/ µs)
12000
dIrec/dt25
14000
10000
dIr/dt25
12000
dIr/dt125
dIrec/dt125
Tj = Tjmax - 25°C
8000
10000
Tj = 25°C
dI0/dt25
8000
6000
dI0/dt125
6000
dI0/dt25
dI0/dt125
4000
Tj = Tjmax - 25°C
4000
2000
2000
Tj = 25°C
0
0
0
Tj =
V CE =
V GE =
R gon =
5
25/125
400
10
4
10
15
20
I C (A)
25
0
30
Tj =
VR =
IF =
V GS =
°C
V
V
Ω
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
PFC MOSFET
25/125
400
15
10
6
12
15
R g on ( Ω) 18
°C
V
A
V
PFC FWD
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
10
-5
D =
R thJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
tp/T
1,13
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
-2
K/W
-2
10-5
10-4
D =
R thJH =
tp/T
2,56
10-3
FWD thermal model values
R (K/W)
Tau (s)
R (K/W)
Tau (s)
0,026
0,127
0,544
0,266
0,107
0,062
8,47E+00
0,12
0,49
1,11
0,49
0,30
0,05
2,23E+00
1,17E+00
1,77E-01
4,73E-02
7,23E-03
5,51E-04
10
10-2
10-1
100
t p (s)
10110
K/W
IGBT thermal model values
copyright Vincotech
9
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
101
10
3
2,82E-01
6,57E-02
1,17E-02
2,09E-03
2,12E-04
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
PFC
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
PFC MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
I C = f(T h)
150
IC (A)
Ptot (W)
25
120
20
90
15
60
10
30
5
0
0
0
Tj =
50
150
100
150
T h ( o C)
200
0
50
Tj =
V GS =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
PFC FWD
150
10
100
150
T h ( o C)
200
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
PFC FWD
25
IF (A)
80
Ptot (W)
PFC MOSFET
70
20
60
50
15
40
10
30
20
5
10
0
0
0
Tj =
copyright Vincotech
50
175
100
150
T h ( o C)
200
0
Tj =
ºC
11
50
175
100
150
T h ( o C)
200
ºC
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
PFC
Figure 25
Safe operating area as a function
of drain-source voltage
I D = f(V DS)
PFC MOSFET
Figure 26
PFC MOSFET
Gate voltage vs Gate charge
V GS = f(Q g)
103
ID (A)
VGS (V)
10
8
102
120V
6
480V
10uS
10mS
101
1mS
100uS
4
100mS
DC
10
0
10
-1
2
0
0
100
D =
Th =
V GS =
Tj =
copyright Vincotech
102
V DS (V)
10
10
20
30
40
50
60
Qg (nC)
3
ID =
single pulse
80
ºC
V
10
T jmax
ºC
12
15
A
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Rectifier diode
101
60
100
IF (A)
75
ZthJC (K/W)
90
45
30
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
Tj = Tjmax-25°C
15
Tj = 25°C
0
10-2
0,0
0,5
tp =
250
1,0
1,5
2,0
10
-5
10
D =
R thJH =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Rectifier diode
-4
10
-3
10
-2
10
-1
10
t p (s)
1
10 10
tp/T
1,728
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
100
0
Rectifier diode
60
IF (A)
Ptot (W)
V F (V)
50
80
40
60
30
40
20
20
10
0
0
0
Tj =
copyright Vincotech
50
150
100
150
T h ( o C)
200
0
Tj =
ºC
13
50
150
100
150
T h ( o C)
200
ºC
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
Thyristor
Figure 1
Typical thyristor forward current as
a function of forward voltage
I F= f(V F)
Thyristor
Figure 2
Thyristor transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Thyristor
101
ZthJC (K/W)
IF (A)
50
40
100
30
Tj = Tjmax-25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
10-1
Tj = 25°C
10
0
10-2
0,0
tp =
0,3
0,6
250
µs
0,9
1,2
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Thyristor
10-5
10-4
D =
R thJH =
tp/T
10-3
1,57
10-2
10-1
10110
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
100
t p (s)
100
Thyristor
50
IF (A)
Ptot (W)
V F (V ) 1,8
1,5
80
40
60
30
40
20
20
10
0
0
0
Tj =
copyright Vincotech
50
150
100
150
o
T h ( C)
200
0
Tj =
ºC
14
50
150
100
150
o
T h ( C)
200
ºC
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
Thyristor
Figure 5
Gate trigger characteristics
Thyristor
VG(V)
102
20V;20 Ohm
75W
(0,1ms)
10
1
PG(tp)
VGT
25W
(8ms)
50W
(0,5ms)
100
TJ=25oC
TJ=125oC
TJ=-40oC
VGD
IGT
IGD
10-1 -3
10
10
-2
10
-1
100
10
1
IG(A)
10
2
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
15
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
Switching Definitions PFC
General
Tj
R gon
R goff
conditions
= 125 °C
= 4Ω
= 4Ω
Figure 1
PFC MOSFET
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
PFC MOSFET
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
140
280
tdoff
%
%
120
IC
240
100
200
VCE 90%
VGE 90%
80
IC
160
60
120
VCE
40
IC 1%
tEoff
20
80
tdon
VGE
40
0
VGE10%
VCE
IC10%
0
VGE
-20
VCE5%
tEon
-40
-0,1
-0,05
0
0,05
-40
2,95
0,1
2,97
2,99
3,01
3,03
3,05
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
V R RM
t E off =
0
10
400
15
0,07
0,09
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
PFC MOSFET
Turn-off Switching Waveforms & definition of t f
3,09
0
10
400
15
0,02
0,03
V
V
V
A
µs
µs
Figure 4
PFC MOSFET
Turn-on Switching Waveforms & definition of t r
140
260
%
%
VCE
120
3,07
time(us)
time (us)
IC
Ic
220
fitted
100
180
Ic 90%
80
140
Ic 60%
60
VCE
100
40
IC90%
Ic 40%
tr
60
20
Ic10%
20
0
IC10%
tf
-20
-0,005
0,005
0,015
0,025
-20
2,99
0,035
3,01
3,03
time (us)
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
400
15
0,003
3,05
3,07
time(us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
16
400
15
0,004
V
A
µs
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
Switching Definitions PFC
Figure 5
PFC MOSFET
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
PFC MOSFET
Turn-on Switching Waveforms & definition of t Eon
140
180
Pon
120
Eoff
140
100
Poff
Eon
80
100
%
%60
60
40
20
20
Uce3%
Uge10%
0
tEon
tEoff
Uge90%
-20
-0,2
-0,1
P off (100%) =
E off (100%) =
t E off =
0
time (us) Ic 1%
6,00
0,01
0,09
0,1
-20
2,95
0,2
2,98
3,04
3,07
3,1
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Figure 7
Gate voltage vs Gate charge (measured)
3,01
PFC MOSFET
6,002
0,06
0,0325
kW
mJ
µs
Figure 8
PFC FRED
Turn-off Switching Waveforms & definition of t rr
15
120
Id
80
trr
10
40
Uge (V)
Ud
0
5
IRRM10%
%
-40
-80
0
IRRM90%
-120
fitted
IRRM100%
-5
-160
-40
V GE off =
V GE on =
V C (100%) =
I C (100%) =
Qg =
copyright Vincotech
-20
0
0
10
400
15
59,01
20
Qg (nC)
40
60
80
3
V
V
V
A
nC
3,01
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
17
3,02
3,03
400
15
-22
0,01
3,04
3,05
3,06
time(us)
3,07
3,08
3,09
3,1
V
A
A
µs
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
Switching Definitions PFC
Figure 9
PFC FRED
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr= integrating time for Q rr)
Figure 10
PFC FRED
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
200
310
Erec
150
270
Id
Qrr
100
230
190
50
tQint
150
%
% 0
110
tErec
-50
70
-100
-150
-200
2,95
I d (100%) =
Q rr (100%) =
tQint =
copyright Vincotech
Prec
30
-10
3
3,05
15
0,09
0,07
time(us)
3,1
3,15
-50
2,95
3,2
A
µC
µs
2,98
P rec (100%) =
E rec (100%) =
t E rec =
18
3,01
3,04
time(us)
6,00
0,02
0,07
kW
mJ
µs
3,07
3,1
3,13
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without SCR, current sense in collector
with SCR, current sense in collector
Ordering Code
in DataMatrix as
10-FZ062TA099FH-P980D18
10-FZ062TA099FH01-P980D28
P980D18
P980D28
in packaging barcode as
P980D18
P980D28
Outline
#
V R RM
Pinout
Rectifier(FZ062TA099FH)
Pin nr. 21 & 24 without electrical connection
Rectifier(FZ062TA099FH01)
Boost stage(FZ062TA099FH & FH01)
Pin nr. 7 & 12 without electrical connection
copyright Vincotech
19
10 Febr. 2015 / Revision 4
10-FZ062TA099FH-P980D18/-FH01-P980D28
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics.
For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any
products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the
application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor
the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
20
10 Febr. 2015 / Revision 4