V23990 P543 x3x D4 14

V23990-P543-*3* -PM
flow PIM 0
600V/10A
Features
flow PIM 0
● Clip-in housing
● Trench Fieldstop IGBT's for low saturation losses
● Optional w/o BRC
12mm housing
17mm housing
Target Applications
Schematic
● Industrial drives
● Embedded drives
Types
● V23990-P543-A38-PM
● V23990-P543-C38-PM w/o BRC
● V23990-P543-C39-PM w/o BRC
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
33
46
A
250
A
310
A2s
37
59
W
Tjmax
150
°C
VCE
600
V
16
20
A
tp limited by Tjmax
30
A
VCE ≤ 600V, Tj ≤ Top max
30
A
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
50Hz half sine wave
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
39
60
W
±20
V
6
360
µs
V
175
°C
Revision: 4
V23990-P543-*3* -PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
25
25
A
20
A
Inverter FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
Th=80°C
IF
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
22
Tc=80°C
32
W
Tjmax
175
°C
VCE
600
V
11
14
A
tp limited by Tjmax
18
A
VCE ≤ 600V, Tj ≤ Top max
18
A
31
47
W
±20
V
Brake IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpuls
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Th=80°C
Tc=80°C
Tj=Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Tj≤150°C
VGE=15V
6
µs
360
V
Tjmax
175
°C
VRRM
600
V
10
10
A
12
A
22
34
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Brake FWD
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
IF
IFRM
Ptot
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 4
V23990-P543-*3* -PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
0,8
1,16
1,13
0,90
0,78
8
11
1,6
Input Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
Thermal resistance chip to heatsink per chip
1500
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
mΩ
2
1,89
mA
K/W
Inverter IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
15
ICES
0
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
10
600
0
20
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1
1,59
1,78
2,2
0,08
350
Rgoff=16 Ω
Rgon=32 Ω
300
±15
10
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0,00015
15
14
11
14
155
170
89
98
0,16
0,22
0,24
0,29
ns
mWs
551
f=1MHz
25
0
40
Tj=25°C
pF
17
480
±15
10
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
62
nC
2,41
K/W
Inverter FWD
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
Copyright by Vincotech
10
Rgon=32 Ω
300
±15
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
10
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1,61
1,51
10
11
142
219
0,46
0,80
703
397
0,09
0,17
3,33
3
2,25
V
A
ns
µC
A/µs
mWs
K/W
Revision: 4
V23990-P543-*3* -PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1
1,55
1,72
2,1
Brake IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,00043
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
6
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,06
350
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=16 Ω
Rgon=32 Ω
±15
300
6
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
11
10
8
10
118
130
93
117
0,07
0,10
0,15
0,18
ns
mWs
368
f=1MHz
0
Tj=25°C
25
pF
28
11
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
42
nC
3,07
K/W
Brake FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
Rgon=32 Ω
600
IRRM
Reverse recovery time
Peak rate of fall of recovery current
6
Rgon=32 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
6
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1,69
1,61
2,5
60
7
8
97
151
0,23
0,23
522
321
0,05
0,09
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
4,29
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
Tj=25°C
3,5
mW/K
4000
K
B(25/50)
Tol. ±3%
Tj=25°C
B(25/100)
Tol. ±3%
Tj=25°C
Tj=25°C
4
%
mW
B-value
Copyright by Vincotech
5
210
B-value
Vincotech NTC Reference
-5
Tc=100°C
K
A
Revision: 4
V23990-P543-*3* -PM
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
25
IC (A)
IC (A)
25
20
20
15
15
10
10
5
5
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
14
V CE (V)
IF (A)
IC (A)
50
12
40
10
30
8
6
20
4
10
2
Tj = Tjmax-25°C
0
At
tp =
VCE =
Tj = Tjmax-25°C
Tj = 25°C
0
2
250
10
4
6
8
V GE (V)
0,0
10
At
tp =
µs
V
Copyright by Vincotech
Tj = 25°C
0
5
0,5
250
1,0
1,5
2,0
2,5
V F (V)
3,0
µs
Revision: 4
V23990-P543-*3* -PM
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,8
Eon High T
0,5
Eon High T
E (mWs)
E (mWs)
0,6
Eon Low T
0,6
Eoff High T
0,4
0,4
0,3
Eoff High T
Eoff Low T
0,2
0,2
0,1
Eoff Low T
Eon Low T
0,0
0,0
0
5
10
15
I C (A)
0
20
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
50
100
150
200
250
RG( Ω )
300
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
10
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,20
E (mWs)
E (mWs)
0,30
0,25
Tj = Tjmax -25°C
0,15
Erec
0,20
Erec
Tj = 25°C
0,15
0,10
Tj = Tjmax -25°C
Tj = 25°C
Erec
0,10
Erec
0,05
0,05
0,00
0,00
0
5
10
15
I C (A)
20
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Copyright by Vincotech
50
100
150
200
250
RG( Ω )
300
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
10
A
6
Revision: 4
V23990-P543-*3* -PM
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdoff
tf
tf
0,10
0,10
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
5
10
15
I C (A)
0
20
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
50
100
150
200
250
RG( Ω )
300
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
IC =
10
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
0,3
0,3
trr
Tj = Tjmax -25°C
trr
Tj = Tjmax -25°C
t rr( µs)
t rr( µs)
0,4
Tj = 25°C
trr
0,2
0,2
Tj = 25°C
trr
0,1
0,1
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
300
15
32
10
15
I C (A)
0
20
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
50
25/125
300
10
15
100
150
200
250
R g on ( Ω )
300
°C
V
A
V
Revision: 4
V23990-P543-*3* -PM
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr
Tj = Tjmax -25°C
1,0
Qrr( µC)
1,0
Qrr( µC)
1,2
Tj = Tjmax -25°C
Qrr
0,8
0,8
0,6
Qrr
0,6
Tj = 25°C
Qrr
0,4
Tj = 25°C
0,4
0,2
0,2
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
300
15
32
10
15
I C (A)
0
20
50
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
Output inverter FWD
100
25/125
300
10
15
150
200
R g on ( Ω)
300
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
15
IrrM (A)
12
250
Tj = Tjmax -25°C
IRRM
IRRM
IRRM
10
12
IRRM
Tj = 25°C
Tj = Tjmax - 25°C
8
9
Tj = 25°C
6
6
4
3
2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
300
15
32
10
15
I C (A)
0
20
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
50
25/125
300
10
15
100
150
200
250
R gon ( Ω )
300
°C
V
A
V
Revision: 4
V23990-P543-*3* -PM
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
1400
direc / dt (A/ µs)
1200
direc / dt (A/µ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
1200
1000
1000
800
800
600
600
400
400
200
200
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
300
15
32
10
I C (A)
15
0
20
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
50
25/125
300
10
15
100
150
200
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
101
ZthJH (K/W)
101
250 R ( Ω ) 300
gon
100
10
0
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
10-5
10110
At
D=
RthJH =
tp / T
2,41
Thermal grease
R (C/W)
0,06
0,26
0,97
0,52
0,35
0,26
10-3
K/W
IGBT thermal model values
Phase change interface
Tau (s)
5,2E+00
5,0E-01
1,0E-01
1,9E-02
3,4E-03
3,5E-04
Copyright by Vincotech
R (C/W)
0,05
0,21
0,78
0,42
0,28
0,21
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-4
R (C/W)
0,07
0,31
1,25
0,78
0,54
0,40
9
10-2
10-1
100
t p (s)
10110
tp / T
3,33
Thermal grease
Tau (s)
4,2E+00
4,1E-01
8,1E-02
1,5E-02
2,8E-03
2,8E-04
10-3
K/W
FWD thermal model values
Phase change interface
Tau (s)
8,2E+00
5,2E-01
9,3E-02
2,0E-02
3,2E-03
4,1E-04
R (C/W)
0,05
0,25
1,01
0,63
0,43
0,33
Tau (s)
6,6E+00
4,3E-01
7,6E-02
1,6E-02
2,6E-03
3,3E-04
Revision: 4
V23990-P543-*3* -PM
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
25
Ptot (W)
IC (A)
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
60
150
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 4
V23990-P543-*3* -PM
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
VGE (V)
18
IC (A)
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
16
10
120V
2
14
480V
12
1mS
10
10uS
100uS
1
10
100mS
8
DC
10
10mS
0
6
4
10-1
2
0
0
100
10
At
D=
Th =
VGE =
1
10
V CE (V)
2
10
At
IC =
Output inverter IGBT
Figure 27
40
60
80
100
Q g (nC)
single pulse
80
ºC
15
V
Tjmax
ºC
Tj =
20
3
10
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
175
IC(sc)
tsc (µS)
14
12
150
10
125
8
100
6
75
4
50
2
25
0
0
10
11
12
13
14
V GE (V)
15
12
14
16
At
VCE =
600
V
At
VCE ≤
600
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
11
18
V GE (V)
20
Revision: 4
V23990-P543-*3* -PM
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
25
IC MAX
Ic CHIP
20
Ic MODULE
15
VCE
MAX
10
5
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
Copyright by Vincotech
12
Revision: 4
V23990-P543-*3* -PM
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
15
IC (A)
IC (A)
15
12
12
9
9
6
6
3
3
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
3
4
8
25
IF (A)
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IC (A)
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
20
6
15
4
10
2
5
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
V GE (V)
10
0
At
tp =
µs
V
Copyright by Vincotech
13
1
250
2
3
V F (V)
4
µs
Revision: 4
V23990-P543-*3* -PM
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
0,30
E (mWs)
0,30
Eoff
Eon
0,25
0,25
Eon
Tj = Tjmax -25°C
Eoff
0,20
0,20
Eon
Eoff
Tj = Tjmax -25°C
0,15
0,15
Eoff
Eon
0,10
0,10
Tj = 25°C
Tj = 25°C
0,05
0,05
0,00
0,00
0
2
4
6
8
10
I C (A)
0
12
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
50
100
150
200
250
RG (Ω )
300
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
6
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,15
E (mWs)
E (mWs)
0,15
Erec
0,12
0,12
Tj = Tjmax - 25°C
Tj = Tjmax -25°C
0,09
0,09
Erec
Erec
0,06
0,06
Tj = 25°C
Tj = 25°C
Erec
0,03
0,03
0,00
0,00
0
2
4
6
8
10
I C (A)
0
12
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Copyright by Vincotech
50
100
150
200
250
RG (Ω )
300
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
6
A
14
Revision: 4
V23990-P543-*3* -PM
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdoff
tf
0,10
0,10
tf
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
2
4
6
8
10
I C (A)
0
12
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
100
150
200
250
R G ( Ω ) 300
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
IC =
6
A
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
10
50
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
At
Thermal grease
RthJH =
3,068
10-3
D=
K/W
Copyright by Vincotech
10-2
10-1
100
t p (s)
101 10
10
tp / T
Phase change interface
RthJH =
0,60
K/W
-5
10
-4
At
Thermal grease
RthJH =
4,29
15
10
-3
D=
K/W
10
-2
10
-1
10
0
t p (s)
1
10 10
tp / T
Phase change interface
RthJH =
1,27
K/W
Revision: 4
V23990-P543-*3* -PM
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
18
Ptot (W)
IC (A)
60
50
15
40
12
30
9
20
6
10
3
0
0
0
At
Tj =
50
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
175
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
12
IF (A)
Ptot (W)
50
T h ( o C)
10
40
8
30
6
20
4
10
2
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
16
50
175
100
150
Th ( o C)
200
ºC
Revision: 4
V23990-P543-*3* -PM
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
1
ZthJC (K/W)
IF (A)
10
80
100
60
40
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
Tj = Tjmax-25°C
Tj = 25°C
0
0,0
0,5
1,0
1,5
2,0
V F (V)
10
At
tp =
At
D=
RthJH =
µs
250
-5
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10
-4
10
-3
10
-2
10
10
0
t p (s)
1
1010
tp / T
1,89
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
100
-1
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
30
150
60
90
120
T h ( o C)
0
150
At
Tj =
ºC
Copyright by Vincotech
17
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 4
V23990-P543-*3* -PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e
[Ω]
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
18
Revision: 4
V23990-P543-*3* -PM
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Rgon
= 32 Ω
Rgoff
= 16 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
200
tdoff
%
VCE
IC
%
100
VGE 90%
150
VCE 90%
75
IC
VCE
100
50
tEoff
VGE
tdon
25
50
IC 1%
0
VGE10%
VGE
tEon
-25
-50
-0,1
VCE 3%
IC 10%
0
-50
0
0,1
0,2
0,3
0,4
0,5
0,6
2,6
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
15
300
10
0,26
0,52
2,7
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
2,8
2,9
0
15
300
10
0,02
0,24
V
V
V
A
µs
µs
3
time(us)
3,2
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,1
Turn-on Switching Waveforms & definition of tr
150
200
%
%
125
160
IC
fitted
100
120
IC 90%
VCE
75
IC 90%
80
IC 60%
tr
50
IC 40%
40
25
VCE
Ic
IC10%
0
IC 10%
0
tf
-25
-40
0,1
VC (100%) =
IC (100%) =
tf =
0,2
0,3
300
10
0,10
Copyright by Vincotech
0,4
time (us)
0,5
2,6
VC (100%) =
IC (100%) =
tr =
V
A
µs
19
2,7
2,8
300
10
0,02
2,9
3
time(us)
3,1
V
A
µs
Revision: 4
V23990-P543-*3* -PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
200
%
IC 1%
Poff
100
%
Eoff
Pon
160
80
120
Eon
60
80
40
40
20
VGE 10%
VGE 90%
VCE 3%
0
0
tEon
tEoff
-20
-0,2
-40
0
0,2
0,4
0,6
2,6
2,7
2,8
2,9
3
3,1
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
2,99
0,30
0,52
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter FWD
Figure 7
Gate voltage vs Gate charge (measured)
2,99
0,31
0,24
kW
mJ
µs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
120
20
VGE (V)
Id
80
15
trr
40
10
%
Vd
fitted
0
IRRM 10%
5
-40
0
-80
IRRM 90%
IRRM 100%
-5
-120
-20
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
20
0
15
300
10
70,94
Copyright by Vincotech
40
60
Qg (nC)
80
2,6
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
20
2,7
2,8
2,9
300
10
9
0,26
V
A
A
µs
3
3,1
time(us)
3,2
Revision: 4
V23990-P543-*3* -PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
Erec
%
100
Id
100
tErec
75
tQrr
50
50
Qrr
0
25
Prec
0
-50
-25
-100
-50
2,6
2,8
3
3,2
3,4
3,6
2,6
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
10
0,82
0,56
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
21
2,8
3
2,99
0,16
0,56
3,2
3,4
time(us)
3,6
kW
mJ
µs
Revision: 4
V23990-P543-*3* -PM
Ordering Code and Marking - Features - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste 12mm housing
V23990-P543-A38-PM
V23990-P543-C38-PM
V23990-P543-C39-PM
P543-A38
P543-C38
P543-C39
P543-A38
P543-C38
P543-C39
without thermal paste, w/o brake,12mm housing
without thermal paste, w/o brake, 17mm housing
Outline
Pin
Pin Table
X
Y
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
25,5
25,5
22,8
20,1
16,2
13,5
10,8
8,1
5,4
2,7
0
0
0
7,5
7,5
2,7
0
0
0
0
0
0
0
0
0
0
19,8
22,5
19,8
22,5
16
17
18
19
20
21
15
15
22,8
25,5
33,5
33,5
33,5
33,5
19,8
22,5
22,5
22,5
22,5
15
7,5
0
22
23
Pinout
Copyright by Vincotech
22
Revision: 4
V23990-P543-*3* -PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
23
Revision: 4