80 M006PNB010SAx K615x D3 14

80-M006PNB010SA*-K615*
datasheet
MiniSKiiP® PIM 0
600 V / 10 A
MiniSKiiP®0 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT's for low saturation losses
● Optional 2- and 3-leg rectifier
Target Applications
Schematic
● Industrial Drives
● Embedded Drives
Types
80-M006PNB010SA01-K615D, 2-leg rectifier
80-M006PNB010SA-K615C, 3-leg rectifier
Maximum Ratings
T j = 25 °C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
25
25
A
220
A
240
A2s
46
70
W
150
°C
600
V
15
15
A
30
A
30
A
48
72
W
Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge (non-repetitive) forward current
I FSM
2
t p = 10 ms
T j = 25 °C
2
I t-value
I t
Power dissipation
P tot
Maximum Junction Temperature
T j = T jmax
T s = 80 °C
T c = 80 °C
T j = T jmax
T s = 80 °C
T c = 80 °C
T jmax
Inverter Switch
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
copyright Vincotech
t p limited by T jmax
V CE ≤ 1200V, T j ≤ T op max
Turn off safe operating area
Maximum Junction Temperature
T j = T jmax
T s = 80 °C
T c = 80 °C
T j = T jmax
T j ≤ 150 °C
V GE = 15 V
T jmax
1
T s = 80 °C
T c = 80 °C
±20
V
6
360
µs
V
175
°C
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Maximum Ratings
T j = 25 °C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Inverter Diode
Peak Repetitive Reverse Voltage
V RRM
T j=T jmax
T s = 80 °C
T c = 80 °C
15
15
A
t p limited by T jmax
T s = 25 °C
30
A
T j=T jmax
T s = 80 °C
T c = 80 °C
38
57
W
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
IF
I FRM
P tot
Thermal Properties
Isolation Properties
Insulation voltage
V is
DC Voltage
Creepage distance
Clearance
Comparative Tracking Index
copyright Vincotech
CTI
tp=2s
4000
V
min 12,7
mm
min 12,7
mm
>200
2
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Unit
Typ
Max
1,43
1,44
0,92
0,79
20,29
26,11
1,64
Rectifier Diode
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
V to
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance junction to sink
1500
R th(j-s)
Thermal grease
thickness≤50um
λ = 1 W/mK
V GE(th)
V CE=V GE
25
125
25
125
25
125
25
125
V
V
mΩ
0,05
1,5
mA
K/W
Inverter Switch
Gate emitter threshold voltage
Collector-emitter saturation voltage
V CEsat
0,00015
15
10
Collector-emitter cut-off current incl. Diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance junction to sink
R th(j-s)
5
5,8
6,5
1,19
1,64
1,89
1,99
0,0006
300
none
tr
t d(off)
25
150
25
150
25
150
25
150
R goff = 32 Ω
R gon = 32 Ω
±15
300
10
25
150
25
150
25
150
25
150
25
150
25
150
V
V
mA
nA
Ω
90
91
22
25
133
156
120
144
0,26
0,38
0,26
0,34
ns
mWs
551
f = 1 MHz
0
25
25
40
pF
17
±15
25
55
Thermal grease
thickness≤50um
λ = 1 W/mK
62
2
nC
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance junction to sink
10
R gon = 32 Ω
±15
300
( di rf/dt )max
E rec
R th(j-s)
10
25
150
25
150
25
150
25
150
25
150
25
150
1,39
1,32
6,77
9,87
233
352
0,66
1,46
105
109
0,13
0,30
Thermal grease
thickness≤50um
λ = 1 W/mK
V
A
ns
µC
A/µs
mWs
2,5
K/W
Thermistor
Rated resistance
R
25
R 25 = 1000 Ω
R 100 = 1670 Ω
25
100
1000
-3
-2
Ω
3
2
Deviation of R
Δ R/R
R100
R 100
25
1670
Ω
0,76
% /K
A-value
B (25/50)
25
7,635*10-3
1/K
B-value
B (25/100)
25
1,731*10-5
1/K²
Temperature coefficient
Vincotech PTC Reference
copyright Vincotech
%
E
3
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Inverter Switch / Inverter Diode
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
IGBT
Typical output characteristics
I C = f(V CE)
25
IC (A)
IC (A)
25
20
20
15
15
10
10
5
5
0
0
0
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
V CE (V)
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
FWD
35
IC (A)
IF (A)
10
5
30
8
25
6
20
15
4
Tj = Tjmax-25°C
Tj = Tjmax-25°C
10
Tj = 25°C
2
5
Tj = 25°C
0
0
0
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0,0
tp =
µs
V
4
0,5
250
1,0
1,5
2,0
V F (V)
2,5
µs
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Inverter Switch / Inverter Diode
Figure 5
IGBT
Figure 6
IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
E (mWs)
1,0
E (mWs)
1,0
Eon High T
0,8
0,8
Eon High T
Eon Low T
0,6
0,6
Eoff High T
Eon Low T
0,4
0,4
Eoff High T
Eoff Low T
Eoff Low T
0,2
0,2
0,0
0,0
0
5
inductive
Tj =
V CE =
V GE =
R gon =
R goff =
10
15
I C (A)
20
0
load
25/150
300
±15
°C
V
V
32
32
Ω
Ω
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
FWD
32
64
inductive
Tj =
V CE =
V GE =
load
25/150
300
±15
°C
V
V
IC =
10
A
96
128
RG( Ω )
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
160
FWD
0,4
E (mWs)
E (mWs)
0,6
0,5
Tj = Tjmax -25°C
Erec
0,3
0,4
Erec
0,3
0,2
Erec
Tj = 25°C
Tj = Tjmax -25°C
0,2
Erec
0,1
0,1
Tj = 25°C
0,0
0,0
0
inductive
Tj =
V CE =
V GE =
R gon =
5
10
15
I C (A)
20
0
load
25/150
300
±15
32
copyright Vincotech
inductive
Tj =
V CE =
V GE =
IC =
°C
V
V
Ω
5
32
64
96
128
RG( Ω )
160
load
25/150
300
±15
10
°C
V
V
A
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Inverter Switch / Inverter Diode
Figure 9
IGBT
Figure 10
IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
t ( µs)
1,00
t ( µs)
1,00
tdoff
tdoff
tdon
tf
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
inductive
Tj =
V CE =
V GE =
R gon =
R goff =
5
10
load
150
300
±15
°C
V
V
32
32
Ω
Ω
15
I C (A)
20
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
0
FWD
32
64
inductive
Tj =
V CE =
V GE =
load
150
300
±15
°C
V
V
IC =
10
A
96
128
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
RG( Ω )
160
FWD
0,6
t rr( µs)
t rr( µs)
0,6
trr
0,5
0,5
0,4
0,4
trr
Tj = Tjmax -25°C
trr
trr
0,3
0,3
Tj = Tjmax -25°C
0,2
0,2
0,1
0,1
Tj = 25°C
Tj = 25°C
0,0
0,0
0
Tj =
V CE =
V GE =
R gon =
5
25/150
300
±15
32
copyright Vincotech
10
15
I C (A)
20
0
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
6
32
25/150
300
10
±15
64
96
128
R g on ( Ω ) 160
°C
V
A
V
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Inverter Switch / Inverter Diode
Figure 13
FWD
Figure 14
FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr( µC)
2,0
Qrr( µC)
2,5
Qrr
2,0
Tj = Tjmax -25°C
1,6
Qrr
1,5
1,2
Qrr
1,0
0,8
Tj = Tjmax -25°C
Qrr
Tj = 25°C
0,5
0,4
Tj = 25°C
0,0
0,0
0
At
5
Tj =
V CE =
V GE =
R gon =
10
15
I C (A)
20
0
32
64
25/150
300
°C
V
Tj =
VR=
25/150
300
°C
V
±15
32
V
Ω
IF=
V GE =
10
±15
A
V
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
96
128
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
R g on ( Ω) 160
FWD
25
IrrM (A)
IrrM (A)
12
IRRM
10
20
Tj = Tjmax - 25°C
Tj = Tjmax -25°C
8
IRRM
15
6
Tj = 25°C
10
4
Tj = 25°C
IRRM
5
2
IRRM
0
0
0
Tj =
V CE =
V GE =
R gon =
5
25/150
300
±15
32
copyright Vincotech
10
15
I C (A)
0
20
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
32
25/150
300
10
±15
64
96
128
R gon ( Ω )
160
°C
V
A
V
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Inverter Switch / Inverter Diode
Figure 17
FWD
Figure 18
FWD
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
2500
600
direc / dt (A/ µs)
direc / dt (A/µ s)
Typical rate of fall of forward
dI0/dt
dIrec/dt
500
dI0/dt
Tj = 25°C
dIrec/dt
2000
dIo/dtLow T
400
di0/dtHigh T
1500
300
1000
200
500
100
Tj = Tjmax - 25°C
dIrec/dtLow T
dIrec/dtHigh T
dIrec/dtHigh T
0
0
0
Tj =
V CE =
V GE =
R gon =
5
10
I C (A)
15
0
20
32
64
25/150
300
°C
V
Tj =
VR=
25/150
300
°C
V
±15
32
V
Ω
IF=
V GE =
10
±15
A
V
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
IGBT
96
R gon ( Ω ) 160
128
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Z th(j-s) (K/W)
101
Z th(j-s) (K/W)
101
FWD
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10-2
10-2
10-5
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
2
K/W
1,62
10-5
10-4
D =
R th(j-s) =
tp/T
2,5
10-3
10-2
K/W
10-1
100
FWD thermal model values
Thermal grease
Phase change interface
R (K/W)
0,04
0,15
0,71
0,61
0,26
0,22
R (K/W)
0,05
0,25
0,88
0,73
0,33
0,26
copyright Vincotech
R (K/W)
0,00
0,00
0,00
0,00
0,00
0,00
Tau (s)
0,0E+00
0,0E+00
0,0E+00
0,0E+00
0,0E+00
0,0E+00
8
τ (s)
9,0E+00
6,6E-01
1,2E-01
2,9E-02
4,8E-03
6,9E-04
10110
2,04
IGBT thermal model values
Thermal grease
Phase change interface
τ (s)
5,9E+00
5,2E-01
7,5E-02
1,8E-02
2,8E-03
2,7E-04
t p (s)
R (K/W)
0,00
0,00
0,00
0,00
0,00
0,00
Tau (s)
0,0E+00
0,0E+00
0,0E+00
0,0E+00
0,0E+00
0,0E+00
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Inverter Switch / Inverter Diode
Figure 21
IGBT
Figure 22
IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T s)
function of heatsink temperature
I C = f(T s)
20
Ptot (W)
IC (A)
100
80
15
60
10
40
5
20
0
0
0
Tj =
50
175
100
150
T s ( o C)
200
0
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
FWD
50
175
15
100
150
T s ( o C)
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T s)
FWD
20
IF (A)
Ptot (W)
75
200
60
15
45
10
30
5
15
0
0
0
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
200
0
Tj =
°C
9
50
175
100
150
T s ( o C)
200
°C
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Inverter Switch / Inverter Diode
Figure 25
Safe operating area as a function
IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q G)
102
IGBT
10mS
VGE (V)
IC (A)
17,5
1mS
10uS
100uS
15
100mS
DC
10
1
120V
12,5
480V
10
100
7,5
5
10-1
2,5
0
0
10-2
10
0
10
D =
single pulse
Th =
80
±15
T jmax
V GE =
Tj =
1
10
V CE (V)
2
10
20
30
40
50
60
103
IC =
10
70
Q G (nC)
80
A
ºC
V
ºC
Figure 27
IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
I sc = f(V GE)
250
tsc (µS)
IC(sc)
17,5
15
200
12,5
150
10
7,5
100
5
50
2,5
0
0
12
V CE =
Tj ≤
14
16
600
V
175
ºC
copyright Vincotech
18
V GE (V)
12
20
V CE ≤
Tj =
10
14
16
600
V
175
ºC
18
V GE (V)
20
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Rectifier Diode
Figure 1
Rectifier Diode
Figure 2
Rectifier Diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F= f(V F)
as a function of pulse width
Z th(j-s) = f(t p)
75
Zth(j-s) (K/W)
101
IF (A)
Tj = 25°C
60
Tj = Tjmax-25°C
100
45
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
15
0
0,0
0,5
1,0
1,5
2,0
2,5
10-2
V F (V) 3,0
10-5
tp =
250
µs
D =
R th(j-s) =
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Rectifier Diode
10-4
10-3
10-2
10-1
t p (s)
1
1010
tp/T
1,5
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T s)
105
100
Rectifier Diode
IF (A)
Ptot (W)
30
90
25
75
20
60
15
45
10
30
5
15
0
0
0
Tj =
30
150
copyright Vincotech
60
90
120
T s ( o C)
150
0
Tj =
ºC
11
30
150
60
90
120
T s ( o C)
150
ºC
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Thermistor
Figure 1
Thermistor
Thermistor
Equation of PTC resistance temperature dependency
Typical PTC characteristic
as a function of temperature
R T = f(T )
PTC-typical temperature characteristic
2000
2
R/Ω
R (T ) = 1000 Ω[1+ A *(T -25°C) +B *(T -25°C) ]
[Ω]
1800
1600
1400
1200
1000
25
45
copyright Vincotech
65
85
105
T (°C)
125
12
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Switching Definitions Output Inverter
General conditions
Tj
=
150 °C
R gon
R goff
=
=
32 Ω
32 Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
250
140
%
%
120
tdoff
IC
200
VCE
100
VCE 90%
VGE 90%
150
80
VCE
IC
100
60
tEoff
VGE
tdon
40
50
20
IC 1%
VGE
0
IC10%
VGE10%
0
VCE 3%
tEon
-50
-20
-0,2
-0,1
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0
0,1
0,2
0,3
0,4
time (µs)
2,8
0,5
2,9
3
3,1
-15
15
300
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
-15
15
300
V
V
V
10
0,15
0,48
A
µs
µs
I C (100%) =
t don =
t E on =
10
0,09
0,24
A
µs
µs
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
3,2
3,3
time(µs)
3,4
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
140
250
%
%
Ic
120
fitted
VCE
IC
200
100
IC 90%
150
80
IC 60%
60
VCE
100
IC90%
tr
IC 40%
40
50
20
IC10%
IC10%
0
-20
-0,05
0
tf
-50
0
0,05
0,1
0,15
0,2
0,25
0,3
3
3,05
3,1
3,15
time (µs)
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
300
10
0,13
3,2
3,25
time(µs)
V
A
µs
V C (100%) =
I C (100%) =
tr =
13
300
10
0,02
V
A
µs
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
120
180
%
Poff
100
Pon
%
Eoff
150
80
120
Eon
60
90
40
60
20
30
VGE 90%
IC 1%
0
tEoff
-20
-0,2
-0,1
0
0,1
0,2
0,3
0,4
0,5
3,01
0,32
0,48
tEon
-30
0,6
2,9
time (µs)
P off (100%) =
E off (100%) =
t E off =
VCE 3%
VGE 10%
0
kW
mJ
µs
3
P on (100%) =
E on (100%) =
t E on =
3,1
3,2
3,01
0,36
0,24
3,3
time(µs)
3,4
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
120
%
Id
80
trr
40
Vd
0
IRRM10%
fitted
-40
-80
IRRM90%
IRRM100%
-120
2,95
3,1
3,25
3,4
3,55
3,7
time(µs)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
14
300
10
-10
0,34
V
A
A
µs
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
120
%
%
Qrr
Id
Erec
100
100
80
tQrr
tErec
50
60
0
40
-50
20
Prec
-100
0
-20
-150
3
3,2
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
3,4
3,6
10
1,50
1,00
A
µC
µs
3,8
4
time(µs)
2,9
4,2
3,1
3,3
3,5
3,7
3,9
4,1
4,3
time(µs)
P rec (100%) =
E rec (100%) =
t E rec =
15
3,01
0,32
1,00
kW
mJ
µs
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Ordering Code and Marking - Outline - Pinout - Identification
Ordering Code & Marking
Version
Ordering Code
with 2-leg rectifier, std lid (black V23990-K02-T-PM)
80-M006PNB010SA01-K615D-/0A/
with 2-leg rectifier, std lid (black V23990-K02-T-PM) and P12
80-M006PNB010SA01-K615D-/1A/
with 2-leg rectifier, thin lid (white V23990-K03-T-PM)
80-M006PNB010SA01-K615D-/0B/
with 2-leg rectifier, thin lid (white V23990-K03-T-PM) and P12
80-M006PNB010SA01-K615D-/1B/
with 3-leg rectifier, std lid (black V23990-K02-T-PM)
80-M006PNB010SA-K615C-/0A/
with 3-leg rectifier, std lid (black V23990-K02-T-PM) and P12
80-M006PNB010SA-K615C-/1A/
with 3-leg rectifier, thin lid (white V23990-K03-T-PM)
80-M006PNB010SA-K615C-/0B/
80-M006PNB010SA-K615C-/1B/
with 3-leg rectifier, thin lid (white V23990-K03-T-PM) and P12
Text
Datamatrix
Name
Type&Ver
Date code
Vinco&Lot
Serial&UL
NN-NNNNNNNNNNNNNN
TTTTTTTVV
WWYY
Vinco LLLLL
SSSS UL
Type&Ver
Lot number
Serial
Date code
TTTTTTTVV
LLLLL
SSSS
WWYY
Outline
Pinout
Identification
ID
Component
Voltage
Current
Function
T1-T6
IGBT
600 V
10 A
Inverter Switch
D1-D6
FWD
600 V
10 A
Inverter Diode
D7-D12
Rectifier Diode
1600 V
25 A
Rectifier Diode
PTC
PTC
-
-
Thermistor
copyright Vincotech
16
Comment
12 Jan. 2016 / Revision 3
80-M006PNB010SA*-K615*
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
198
Standard
<SPQ
Sample
Handling instruction
Handling instructions for MiniSkiiP
®
0 packages see vincotech.com website.
Package data
Package data for MiniSkiiP ® 0 packages see vincotech.com website.
Document No.:
Date:
80-M006PNB010SAx-K615x-D3-14
12 Jan. 2016
Modification:
Pages
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
12 Jan. 2016 / Revision 3
Similar pages