80 M012PNB008SC K619C41 D2 14

80-M012PNB008SC-K619C41
MiniSKiiP®0 PIM
1200V/8A
MiniSKiiP®0 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT's for low saturation losses
● Optional 2- and 3-leg rectifier
Target Applications
Schematic
● Industrial Drives
● Embedded Drives
Types
80-M012PNB008SC-K619C41, 3-leg rectifier
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
25
25
A
220
A
240
A2s
46
70
W
Tjmax
150
°C
VCE
1200
V
12
12
A
tp limited by Tjmax
24
A
VCE ≤ 1200V, Tj ≤ Top max
24
A
D7,D8,D9,D10,D11,D12
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
51
77
W
±20
V
10
800
µs
V
175
°C
Revision: 2.1
80-M012PNB008SC-K619C41
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
10
10
A
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
16
Th=80°C
Tc=80°C
A
38
57
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 2.1
80-M012PNB008SC-K619C41
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,43
1,44
0,92
0,79
20,29
26,11
1,64
D7,D8,D9,D10,D11,D12
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
Vto
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mΩ
0,05
Thermal grease
thickness≤50um
λ = 1 W/mK
V
1,5
mA
K/W
T1,T2,T3,T4,T5,T6
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Collector-emitter cut-off current incl. Diode
Turn-on delay time
Rise time
Turn-off delay time
Fall time
8
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1,68
1,93
2,30
2,18
0,2
2
120
Rgoff=32 Ω
Rgon=32 Ω
600
±15
8
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0,0003
61,2
60,8
29,2
29,8
170,8
240,2
59,8
119,6
0,46
0,75
0,41
0,73
ns
mWs
490
f=1MHz
0
50
Tj=25°C
25
pF
30
Tj=25°C
±15
Thermal grease
thickness≤50um
λ = 1 W/mK
55
nC
1,8
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
VF
8
IRRM
trr
Qrr
Rgon=32 Ω
±15
600
di(rec)max
/dt
Erec
RthJH
8
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
2,57
2,49
4,85
6,62
257,7
477,1
0,50
1,31
64
47
0,19
0,56
Thermal grease
thickness≤50um
λ = 1 W/mK
V
A
ns
µC
A/µs
mWs
2,5
K/W
Thermistor
Rated resistance
Tr=25°C
R
Deviation of R
∆R/R
R100
R100
R25=1000 Ω
R100=1670 Ω
Tr=25°C
Tr=100°C
Ω
1000
-3
-2
3
2
%
Tr=25°C
1670,313
Ω
0,76
% /K
A-value
Temperature coefficient
B(25/50)
Tol. %
Tr=25°C
7,635*10-3
1/K
B-value
B(25/100)
Tol. %
Tr=25°C
1,731*10-5
1/K²
Vincotech NTC Reference
Copyright by Vincotech
E
3
Revision: 2.1
80-M012PNB008SC-K619C41
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
25
IC (A)
IC (A)
25
20
20
15
15
10
10
5
5
0
0
0
1
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
25
IF (A)
IC (A)
9
4
Tj = 25°C
8
20
6
15
Tj = Tjmax-25°C
5
10
Tj = 25°C
3
5
2
Tj = Tjmax-25°C
0
0
0
tp =
VCE =
2
4
250
10
µs
V
Copyright by Vincotech
6
8
10
V GE (V)
12
0,0
tp =
4
1,0
250
2,0
3,0
4,0
V F (V)
5,0
µs
Revision: 2.1
80-M012PNB008SC-K619C41
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
2,0
E (mWs)
2,0
Eon High T
1,6
1,6
Eon High T
Eoff High T
1,2
1,2
Eon Low T
Eon Low T
0,8
0,8
Eoff High T
0,4
Eoff Low T
Eoff Low T
0,4
0,0
0,0
0
4
inductive load
Tj =
25/150
VCE =
600
VGE =
±15
Rgon =
32
Rgoff =
32
8
12
I C (A)
16
0
32
inductive load
Tj =
25/150
VCE =
600
VGE =
±15
IC =
8
°C
V
V
Ω
Ω
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6 FWD
64
96
RG( Ω )
160
°C
V
V
A
D1,D2,D3,D4,D5,D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1,0
E (mWs)
E (mWs)
1,0
128
0,8
0,8
Erec
Tj = Tjmax -25°C
0,6
0,6
0,4
Erec
0,4
Erec
Tj = Tjmax -25°C
Tj = 25°C
0,2
Erec
0,2
Tj = 25°C
0,0
0,0
0
4
inductive load
Tj =
25/150
VCE =
600
VGE =
±15
Rgon =
32
8
12
I C (A)
16
0
°C
V
V
Ω
Copyright by Vincotech
32
inductive load
Tj =
25/150
VCE =
600
VGE =
±15
IC =
8
5
64
96
128
RG( Ω )
160
°C
V
V
A
Revision: 2.1
80-M012PNB008SC-K619C41
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1,00
t ( µs)
1,00
tdoff
0,10
tdoff
tdon
tf
0,10
tf
tr
tdon
tr
0,01
0,01
0,00
0,00
0
4
inductive load
Tj =
150
VCE =
600
VGE =
±15
Rgon =
32
Rgoff =
32
8
12
I C (A)
16
0
32
inductive load
Tj =
150
VCE =
600
VGE =
±15
IC =
8
°C
V
V
Ω
Ω
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
64
96
160
°C
V
V
A
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,8
RG( Ω )
128
0,8
trr
t rr( µs)
t rr( µs)
trr
0,6
0,6
Tj = Tjmax -25°C
Tj = Tjmax -25°C
trr
trr
0,4
0,4
0,2
0,2
Tj = 25°C
Tj = 25°C
0,0
0,0
0
4
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
32
8
12
I C (A)
16
°C
V
V
Ω
Copyright by Vincotech
6
0
32
Tj =
VR =
IF =
VGE =
25/150
600
8
±15
64
96
128
R g on ( Ω )
160
°C
V
A
V
Revision: 2.1
80-M012PNB008SC-K619C41
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr( µC)
2,0
Qrr( µC)
2,0
Qrr
1,6
1,6
Tj = Tjmax -25°C
Qrr
1,2
1,2
Tj = Tjmax -25°C
Qrr
0,8
0,8
Tj = 25°C
Qrr
0,4
0,4
Tj = 25°C
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
32
8
12
I C (A)
16
0
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6 FWD
32
25/150
600
8
±15
64
96
128
R g on ( Ω)
160
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
12
IrrM (A)
IrrM (A)
12
Tj = Tjmax - 25°C
9
9
Tj = Tjmax -25°C
6
6
Tj = 25°C
IRRM
IRRM
Tj = 25°C
IRRM
3
3
0
0
0
4
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
32
8
12
I C (A)
16
°C
V
V
Ω
Copyright by Vincotech
7
0
32
Tj =
VR =
IF =
VGE =
25/150
600
8
±15
64
96
128
R gon ( Ω )
160
°C
V
A
V
Revision: 2.1
80-M012PNB008SC-K619C41
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
400
1500
dI0/dt
direc / dt (A/ µs)
direc / dt (A/µ s)
D1,D2,D3,D4,D5,D6 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
320
dIrec/dt
1200
dIo/dtLow T
900
240
600
160
di0/dtHigh T
300
80
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
32
8
12
I C (A)
0
16
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
32
25/150
600
8
±15
64
96
R gon ( Ω ) 160
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
128
10
0
10
-1
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
10-5
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
-2
10-5
10110
tp / T
1,8
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D=
RthJH =
K/W
10-4
10-2
10-1
100
t p (s)
10110
tp / T
2,5
IGBT thermal model values
K/W
FWD thermal model values
Thermal grease
Thermal grease
R (C/W)
0,05
0,15
0,66
0,45
0,29
0,13
R (C/W)
0,06
0,33
1,08
0,56
0,39
0,11
Tau (s)
4,8E+00
5,9E-01
1,2E-01
3,8E-02
8,5E-03
1,7E-03
Copyright by Vincotech
10-3
8
Tau (s)
6,5E+00
2,9E-01
5,6E-02
1,1E-02
1,2E-03
2,9E-04
Revision: 2.1
80-M012PNB008SC-K619C41
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
14
IC (A)
Ptot (W)
100
12
80
10
60
8
6
40
4
20
2
0
0
0
Tj =
50
175
100
150
T h ( o C)
200
0
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
12
IF (A)
Ptot (W)
80
150
10
60
8
40
6
4
20
2
0
0
0
Tj =
50
175
100
150
T h ( o C)
200
0
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 2.1
80-M012PNB008SC-K619C41
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
102
IC (A)
VGE (V)
20
240V
10uS
16
101
960V
12
100uS
10
0
8
1mS
10mS
10-1
4
100mS
DC
10-2
0
100
D=
Th =
VGE =
101
V CE (V)
102
103
0
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Tj =
T1,T2,T3,T4,T5,T6 IGBT
Figure 27
10
20
8
30
40
60 Q g (nC) 70
A
T1,T2,T3,T4,T5,T6 IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
50
Typical short circuit collector current as a function of
gate-emitter voltage
Isc = f(VGE)
250
IC(sc)
tsc (µS)
17,5
15
200
12,5
150
10
7,5
100
5
50
2,5
0
0
12
14
16
18
V GE (V)
12
20
14
16
VCE =
1200
V
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
10
18
V GE (V)
20
Revision: 2.1
80-M012PNB008SC-K619C41
D7,D8,D9,D10,D11,D12
D7,D8,D9,D10,D11,D12 diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
75
1
ZthJC (K/W)
IF (A)
10
D7,D8,D9,D10,D11,D12 diode
Tj = 25°C
60
Tj = Tjmax-25°C
100
45
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
30
10-1
15
0
10-2
0,0
tp =
0,5
1,0
250
µs
1,5
2,0
2,5
V F (V)
3,0
10-5
D=
RthJH =
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D7,D8,D9,D10,D11,D12 diode
10-4
10-3
10-2
100
t p (s)
101 10
tp / T
1,5
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D7,D8,D9,D10,D11,D12 diode
30
Ptot (W)
IF (A)
120
10-1
25
90
20
60
15
10
30
5
0
0
0
Tj =
30
150
60
90
o
120 T h ( C)
150
0
Tj =
ºC
Copyright by Vincotech
11
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 2.1
80-M012PNB008SC-K619C41
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
Thermistor
Equation of PTC resistance temperature dependency
PTC-typical temperature characteristic
R(T) = 1000 Ω[1+ A*(T-25°C) +B*(T-25°C) 2]
R/Ω
2000
[Ω]
1800
1600
1400
1200
1000
25
45
65
Copyright by Vincotech
85
105
T (°C)
125
12
Revision: 2.1
80-M012PNB008SC-K619C41
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 32 Ω
Rgoff
= 32 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
140
%
%
120
IC
tdoff
200
VCE
100
VGE 90%
VCE 90%
150
80
VCE
IC
100
60
tEoff
tdon
40
VGE
50
20
IC 1%
IC10%
VGE10%
0
VCE 3%
0
VGE
tEon
-50
-20
-0,2
-0,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,25
-15
15
600
8
0,24
0,63
V
V
V
A
µs
µs
0,4
0,55
time (us)
2,8
0,7
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Output inverter IGBT
Figure 3
3,1
-15
15
600
8
0,06
0,29
3,2
3,3
time(us)
3,4
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
140
200
fitted
%
2,9
Ic
%
120
VCE
150
100
IC
IC 90%
80
100
60
IC90%
VCE
IC 60%
tr
40
50
IC 40%
20
IC10%
0
IC10%
0
tf
-20
0,05
-50
0,1
0,15
0,2
0,25
0,3
0,35
0,4
3
3,05
3,1
3,15
time (us)
VC (100%) =
IC (100%) =
tf =
600
8
0,12
Copyright by Vincotech
3,2
3,25
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
600
8
0,03
V
A
µs
Revision: 2.1
80-M012PNB008SC-K619C41
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Poff
Pon
%
Eoff
100
150
80
120
Eon
60
90
40
60
20
30
VGE 90%
IC 1%
0
tEoff
-20
-0,2
tEon
-30
-0,05
0,1
0,25
0,4
0,55
0,7
2,9
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
VCE 3%
VGE 10%
0
4,83
0,74
0,63
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3,1
4,83
0,75
0,29
3,2
3,3
time(us)
3,4
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
fitted
Vd
0
IRRM10%
-40
IRRM90%
-80
-120
2,95
IRRM100%
3,1
3,25
3,4
3,55
3,7
3,85
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
Copyright by Vincotech
14
600
8
-7
0,48
V
A
A
µs
Revision: 2.1
80-M012PNB008SC-K619C41
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
%
%
Id
100
Qrr
100
80
tErec
tQrr
50
60
40
0
20
Prec
-50
0
-100
-20
2,9
Id (100%) =
Qrr (100%) =
tQrr =
3,1
3,3
8
1,31
1,00
Copyright by Vincotech
3,5
3,7
3,9
4,1
time(us)
4,3
2,9
3,1
3,3
3,5
3,7
3,9
4,1
4,3
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
4,83
0,56
1,00
kW
mJ
µs
Revision: 2.1
80-M012PNB008SC-K619C41
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
with 3-leg rectifier, std lid (black V23990-K02-T-PM)
with 3-leg rectifier, std lid (black V23990-K02-T-PM) and P12
with 3-leg rectifier, thin lid (white V23990-K03-T-PM)
with 3-leg rectifier, thin lid (white V23990-K03-T-PM) and P12
80-M012PNB008SC-K619C41-/0A/
80-M012PNB008SC-K619C41-/1A/
80-M012PNB008SC-K619C41-/0B/
80-M012PNB008SC-K619C41-/1B/
K619C41
K619C41
K619C41
K619C41
K619C41
K619C41
K619C41
K619C41
Outline
Pinout
Copyright by Vincotech
16
Revision: 2.1
80-M012PNB008SC-K619C41
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
17
Revision: 2.1