V23990 K428 A40 D4 14

V23990-K428-A40-PM
MiniSKiiP® 3 PIM
1200V / 50A
MiniSKiiP® 3 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
Target Applications
Schematic
● Industrial Drives
Types
● V23990-K428-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
69
A
450
A
1020
A2s
77
W
Tjmax
150
°C
VCE
1200
V
52
A
150
A
133
W
±20
V
10
800
µs
V
175
°C
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Tj=Tjmax
Tj=150°C
VGE=15V
Tjmax
1
Th=80°C
Revision: 4.1
V23990-K428-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
46
A
335
A
100
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
D1,D2,D3,D4,D5,D6,D7
Repetitive peak reverse voltage
DC forward current
VRRM
IF
Tj=Tjmax
Th=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 4.1
V23990-K428-A40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,1
1,02
0,9
0,74
0,004
0,006
1,35
D8,D9,D10,D11,D12,D13
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
35
1500
RthJH
Thermal grease
thickness≤50µm
λ=1W/mK
VGE(th)
VCE=VGE
V
V
Ω
0,1
1,1
mA
K/W
0,90
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
Collector-emitter cut-off current incl. Diode
ICES
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
50
15
1200
0
20
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1,6
1,91
2,39
2,4
0,06
600
Rgoff=8Ω
Rgon=8Ω
±15
600
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
4
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0,0017
106
111
18
25
228
298
84
125
2,66
4,46
2,78
4,58
ns
mWs
2770
f=1MHz
25
0
205
Tj=25°C
pF
160
Tj=25°C
±15
Thermal grease
thickness≤50µm
λ=1W/mK
380
nC
0,71
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
50
IRRM
trr
Qrr
Rgon=8Ω
±15
600
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,5
Thermal grease
thickness≤50µm
λ=1W/mK
2,19
2,21
61,3
70,7
144
312
3,74
8,8
3494
950
1,38
3,48
2,9
V
A
ns
µC
A/µs
mWs
0,95
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
T=100°C
P
Power dissipation constant
-3
3
%
Ω
1670,313
T=25°C
mW/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
Vincotech NTC Reference
copyright Vincotech
E
3
Revision: 4.1
V23990-K428-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
150
IC (A)
IC (A)
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
4
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
D1,D2,D3,D4,D5,D6,D7 FWD
150
IC (A)
IF (A)
50
3
40
120
30
90
20
60
10
30
0
0
0
At
Tj =
tp =
VCE =
2
25/150
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
Tj =
tp =
°C
µs
V
4
0,8
25/150
250
1,6
2,4
3,2
V F (V)
4
°C
µs
Revision: 4.1
V23990-K428-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
10
T1,T2,T3,T4,T5,T6,T7 IGBT
E (mWs)
E (mWs)
10
Eon High T
Eon High T
8
Eoff High T
8
6
Eon Low T
6
Eon Low T
Eoff High T
Eoff Low T
4
4
Eoff Low T
2
2
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
A
50
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
5
D1,D2,D3,D4,D5,D6,D7 FWD
E (mWs)
E (mWs)
5
Erec
4
4
3
3
Erec
Erec
2
2
1
1
Erec
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
copyright Vincotech
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
5
Revision: 4.1
V23990-K428-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG(Ω )
32
40
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
A
50
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,8
t rr( µs)
t rr( µs)
0,8
D1,D2,D3,D4,D5,D6,D7 FWD
trr
0,6
0,6
trr
trr
0,4
0,4
trr
0,2
0,2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
600
±15
8
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
8
25/150
600
50
±15
16
24
32
R g on ( Ω )
40
°C
V
A
V
Revision: 4.1
V23990-K428-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
15
D1,D2,D3,D4,D5,D6,D7 FWD
Qrr( µC)
Qrr( µC)
12
10
12
Qrr
Qrr
8
9
6
6
Qrr
4
Qrr
3
2
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
600
±15
8
40
60
80
I C (A)
100
0
8
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
16
25/150
600
50
±15
24
32
R g on ( Ω)
40
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
150
IrrM (A)
IrrM (A)
100
120
80
IRRM
60
90
IRRM
40
60
20
30
IRRM
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
600
±15
8
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
8
25/150
600
50
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 4.1
V23990-K428-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
10000
direc / dt (A/ µs)
direc / dt (A/µ s)
5000
D1,D2,D3,D4,D5,D6,D7 FWD
dI0/dt
dIrec/dt
4000
dI0/dt
dIrec/dt
8000
3000
6000
2000
4000
1000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
600
±15
8
40
60
I C (A)
80
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/150
600
50
±15
16
24
D1,D2,D3,D4,D5,D6,D7 FWD
ZthJH (K/W)
Zth-JH (K/W)
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
40
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
R gon ( Ω )
32
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
10
-5
At
D=
RthJH =
tp / T
0,71
-2
K/W
10
-4
10
-3
R (C/W)
0,11
0,36
0,16
0,06
0,02
R (C/W)
0,06
0,21
0,44
0,17
0,07
8
10
-1
10
0
t p (s)
1
10 10
K/W
FWD thermal model values
copyright Vincotech
-2
tp / T
0,95
IGBT thermal model values
Tau (s)
7,7E-01
1,3E-01
4,6E-02
8,2E-03
1,1E-03
10
Tau (s)
2,5E+00
3,5E-01
7,8E-02
1,7E-02
3,6E-03
Revision: 4.1
V23990-K428-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
80
IC (A)
Ptot (W)
250
70
200
60
50
150
40
100
30
20
50
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
80
Ptot (W)
IF (A)
200
150
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 4.1
V23990-K428-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
103
IC (A)
VGE (V)
16
14
10
1
2
12
960V
240V
100uS
10
101
8
1mS
10
0
6
10mS
4
100mS
10
DC
-1
2
0
100
At
D=
Th =
VGE =
Tj =
10
1
102
103
0
100
150
200
250
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
50
V CE (V)
10
50
A
Revision: 4.1
V23990-K428-A40-PM
D8,D9,D10,D11,D12,D13
D8,D9,D10,D11,D12,D13
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
150
1
IF (A)
ZthJC (K/W)
10
D8,D9,D10,D11,D12,D13
120
100
90
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
30
0
0
0,3
0,6
0,9
1,2
1,5
V F (V)
10-2
1,8
10-5
At
25/125
250
Tj =
tp =
10-4
At
D=
RthJH =
°C
µs
D8,D9,D10,D11,D12,D13
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
100
t p (s)
101 10
tp / T
0,9
K/W
D8,D9,D10,D11,D12,D13
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
80
Ptot (W)
IF (A)
180
10-1
150
60
120
90
40
60
20
30
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
11
50
150
100
150
T h ( o C)
200
ºC
Revision: 4.1
V23990-K428-A40-PM
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
12
Revision: 4.1
V23990-K428-A40-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 8Ω
Rgoff
= 8Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
160
250
IC
130
tdoff
200
VCE
100
VGE 90%
VCE 90%
150
70
%
IC
%
40
VCE
100
tEoff
IC 1%
VGE
tdon
50
10
IC10%
VGE10%
VGE
VCE 3%
0
-20
tEon
-50
-0,2
-0,05
0,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,25
-15
15
600
50
0,30
0,68
0,4
0,55
0,7
-50
0,85
time (us)
2,8
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 3
2,9
3
3,1
3,2
-15
15
600
50
0,11
0,35
3,4
3,5 time(us)
3,6
V
V
V
A
µs
µs
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,3
Turn-on Switching Waveforms & definition of tr
140
250
Ic
120
fitted
VCE
200
100
IC
IC 90%
150
80
VCE
IC 60%
% 60
IC90%
% 100
tr
IC 40%
40
50
20
IC10%
IC10%
0
tf
0
-20
-50
0,2
0,25
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,3
600
50
0,13
0,35
0,4
0,45
0,5
time (us)
3
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
3,1
600
50
0,03
3,2
3,3
time(us)
V
A
µs
Revision: 4.1
V23990-K428-A40-PM
Switching Definitions Output Inverter
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 5
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
110
210
Pon
Poff
90
Eoff
170
70
130
Eon
50
90
%
%
30
50
VGE 90%
10
10
-10
Uce3%
Uge10%
tEon
IC 1%
tEoff
-30
-0,2
-0,05
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,25
0,4
time (us)
29,95
4,58
0,68
0,55
0,7
-30
2,88
0,85
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
2,98
3,08
29,95
4,46
0,35
3,18
time(us)
3,28
3,38
3,48
kW
mJ
µs
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 78
Turn-off Switching Waveforms & definition of trr
120
80
trr
40
Id
0
%
IRRM10%
-40
fitted
-80
Vd
IRRM90%
-120
IRRM100%
-160
3
3,2
3,4
3,6
3,8
4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
600
50
-71
0,31
V
A
A
µs
14
Revision: 4.1
V23990-K428-A40-PM
Switching Definitions Output Inverter
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 8
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
Qrr
100
100
tQrr
80
tErec
50
60
% 0
%
Id
40
-50
20
Prec
-100
0
-150
-20
3
3,2
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,4
50
8,80
1,00
3,6
time(us)
3,8
4
4,2
4,4
3
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
3,2
3,4
29,95
3,48
1,00
3,6
time(us)
3,8
4
4,2
4,4
kW
mJ
µs
Revision: 4.1
V23990-K428-A40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K32-T-PM)
with std lid (black V23990-K32-T-PM) and P12
with thin lid (white V23990-K33-T-PM)
with thin lid (white V23990-K33-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K428-A40-/0A/-PM
V23990-K428-A40-/1A/-PM
V23990-K428-A40-/0B/-PM
V23990-K428-A40-/1B/-PM
K428A40
K428A40
K428A40
K428A40
in packaging barcode as
K428A40-/0A/
K428A40-/1A/
K428A40-/0B/
K428A40-/1B/
Outline
Pinout
copyright Vincotech
16
Revision: 4.1
V23990-K428-A40-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
Revision: 4.1