10 xx06PPA006SB M682Bx D2 14

10-**06PPA006SB-M682B*
datasheet
flow PIM0 + PFC 2nd
600 V / 6 A
Features
flow 0 housing
● Clip in PCB mounting
●Trench Fieldstop IGBT's for low saturation losses
● Latest generation superjunction MOSFET for PFC
17mm housing solder pins
Target Applications
12mm housing Press-fit pins
Schematic
● Industrial Drives
● Embedded Drives
Types
● 10-F006PPA006SB-M682B
● 10-PC06PPA006SB-M682B06Y
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T j = T jmax
T s = 80 °C
T c = 80 °C
t p = 10 ms
T j = 150 °C
T j = T jmax
34
35
A
200
A
200
A2s
43
66
W
150
°C
600
V
10
12
A
59
A
T j = 25 °C
418
mJ
T j = 25 °C
0,63
mJ
T j = 25 °C
3,4
A
T s = 80 °C
T c = 80 °C
T jmax
PFC Switch
Drain to source breakdown voltage
DC drain current
Pulsed drain current
V DS
ID
I Dpulse
Avalanche energy, single pulse
E AS
Avalanche energy, repetitive
E AR
Avalanche current, repetitive
I AR
MOSFET dv/dt ruggedness
T j = T jmax
T s = 80 °C
T c = 80 °C
t p limited by T jmax
I D = 3,4 A
V DD = 50 V
I D = 3,4 A
V DD = 50 V
dv /dt
T s = 80 °C
T c = 80 °C
50
V/ns
53
81
W
Power dissipation
P tot
Gate-source peak voltage
V GSS
±20
V
dv /dt
15
V/ns
T jmax
150
°C
Reverse diode dv/dt
Maximum Junction Temperature
copyright Vincotech
T j = T jmax
1
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
T c = 80 °C
8
8
A
18
A
T s = 80 °C
45
T c = 80 °C
68
PFC Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T s = 80 °C
T j = T jmax
t p limited by T jmax
T j = T jmax
T jmax
W
175
°C
PFC Shunt
DC forward current
Power dissipation per Shunt
IF
T c = 25 °C
10
A
P tot
T c = 25 °C
5
W
600
V
8
8
A
t p limited by T jmax
18
A
V CE ≤ 400 V, T j ≤ T op max
18
A
Inverter Switch
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CE
IC
I CRM
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T s = 80 °C
T c = 80 °C
T j = T jmax
T s = 80 °C
T c = 80 °C
T j = T jmax
T j ≤ 150 °C
V GE = 15V
T jmax
36
54
W
20
V
6
360
µs
V
175
°C
600
V
8
8
A
12
A
27
41
W
175
°C
500
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T s = 80 °C
T c = 80 °C
T j = T jmax
t p limited by T jmax
T s = 80 °C
T c = 80 °C
T j = T jmax
T jmax
DC link Capacitor
Max.DC voltage
V MAX
T c = 25 °C
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
4000
V
min 12,7
mm
9,16
min 12,7
mm
Isolation Properties
Isolation voltage
V is
t=2s
DC voltage
Creepage distance
12 mm housing Press-fit pins
17 mm housing solder pins
Clearance
Comparative tracking index
copyright Vincotech
CTI
>200
2
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Typ
Unit
Max
Rectifier Diode
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
V to
25
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink
R th(j-s)
25
1600
25
125
25
125
25
125
V
1,17
0,92
0,81
10,9
14,4
25
V
mΩ
0.05
phase - change
material
λ = 3,4 W/mK
1,61
mA
K/W
PFC Switch
Static drain to source ON resistance
r DS(on)
Gate threshold voltage
V (GS)th
Gate to Source Leakage Current
Zero Gate Voltage Drain Current
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
10
V GS = V DS
25
0,00063
25
I GSS
20
0
I DSS
0
600
25
400
25
125
25
125
25
125
25
125
25
125
25
125
tr
t d(off)
tf
E on
Turn-off energy loss
E off
Total gate charge
Q GE
Gate to source charge
Q GS
Gate to drain charge
Q GD
Input capacitance
C iss
Output capacitance
C oss
Gate resistance
RG
R goff = 4 Ω
R gon = 4 Ω
2,4
3,0
6
mΩ
3,6
V
100
nA
1000
nA
17
16
2
2
103
113
6
9
0,045
0,091
0,006
0,007
ns
mWs
63
480
0/10
9,5
25
nC
7,6
32
1400
f = 1 MHz
R th(j-s)
10
203
398
25
t d(on)
Turn-on energy loss
Thermal resistance chip to heatsink
6
0
100
25
pF
85
phase - change
material
λ = 3,4 W/mK
6
Ω
1,32
K/W
PFC Diode
Forward voltage
Reverse leakage current
Peak recovery current
VF
I rm
t rr
Reverse recovery charge
Q rr
Peak rate of fall of recovery current
Thermal resistance chip to heatsink
600
I RRM
Reverse recovery time
Reverse recovered energy
6
R gon = 4 Ω
10
400
E rec
( di rf/dt )max
R th(j-s)
phase - change
material
λ = 3,4 W/mK
6
25
125
25
125
25
125
25
125
25
125
25
125
25
125
2,83
1,66
V
50
500
29
31
9
15
0,12
0,29
0,013
0,042
12276
7905
µA
A
ns
µC
mWs
A/µs
2,10
K/W
50
mΩ
PFC Shunt
R1 value
R
Temperature coeficient
tc
30
ppm/K
Internal heat resistance
R thi
10
K/W
L
3
nH
Inductance
copyright Vincotech
20 °C to 60 °C
3
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Unit
Typ
Max
5,8
6,5
Inverter Switch
Gate emitter threshold voltage
V GE(th)
Collector-emitter saturation voltage
V CEsat
V CE = V GE
15
0,00009
25
6
25
125
Collector-emitter cut-off current incl. Diode
I CES
0
600
25
Gate-emitter leakage current
I GES
20
0
25
Integrated Gate resistor
R gint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
1,52
1,71
R goff = 64 Ω
R gon = 64 Ω
±15
400
6
25
125
25
125
25
125
25
125
25
125
25
125
V
V
0,027
mA
300
nA
none
t d(on)
t d(off)
5
Ω
103
101
23
26
154
177
96
105
0,19
0,25
0,21
0,27
ns
mWs
368
f = 1 MHz
0
25
±15
480
25
28
pF
11
6
25
phase - change
material
λ = 3,4 W/mK
42
nC
2,66
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
6
R gon = 64 Ω
±15
400
( di rf/dt )max
E rec
R th(j-s)
6
25
125
25
125
25
125
25
125
25
125
25
125
1,25
phase - change
material
λ = 3,4 W/mK
1,62
1,53
3
4
236
341
0,32
0,60
12
30
0,09
0,17
1,95
V
A
ns
µC
A/µs
mWs
3,55
K/W
100
nF
22000
Ω
DC link Capacitor
C value
C
Thermistor
Rated resistance
R
Deviation of R100
Δ R/R
Power dissipation
P
25
R 100 = 1486 Ω
100
Power dissipation constant
%
mW
25
3,5
mW/K
B (25/50)
Tol. ±3%
25
B-value
B (25/100)
Tol. ±3%
25
copyright Vincotech
5
210
B-value
Vincotech NTC Reference
-5
25
K
4000
K
A
4
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Inverter Characteristics
Figure 1
Typical output characteristics
I C = f(V CE)
Inverter IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
18
IC (A)
IC (A)
18
Inverter IGBT
15
15
12
12
9
9
6
6
3
3
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Inverter IGBT
1
2
3
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Inverter Diode
18
IC (A)
IF (A)
6
4
5
15
4
12
3
9
2
6
Tj = Tjmax-25°C
Tj = 25°C
1
Tj = Tjmax-25°C
3
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0
At
tp =
µs
V
5
0,6
250
1,2
1,8
2,4
V F (V)
3
µs
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Inverter Characteristics
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
E (mWs)
0,7
E (mWs)
0,5
Inverter IGBT
Eon High T
Eon High T
Eoff High T
0,6
Eon Low T
0,5
Eoff Low T
0,4
Eon Low T
0,4
0,3
Eoff High T
0,3
0,2
0,2
Eoff Low T
0,1
0,1
0
0
0
2
4
6
8
10
0
12
32
64
96
128
160
192
224
I C (A)
With an inductive load at
Tj =
°C
25/125
V CE =
400
V
V GE =
±15
V
R gon =
64
Ω
R goff =
64
Ω
256
288
RG( Ω )
With an inductive load at
Tj =
°C
25/125
V CE =
400
V
V GE =
±15
V
IC =
6
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Inverter Diode
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
Tj = Tjmax -25°C
E (mWs)
E (mWs)
0,25
Erec
0,20
Inverter Diode
0,25
0,20
Tj = Tjmax -25°C
0,15
0,15
Erec
Erec
0,10
0,10
Tj = 25°C
Tj = 25°C
Erec
0,05
0,05
0,00
0,00
0
2
4
6
8
10
I C (A)
12
0
With an inductive load at
Tj =
25/125
°C
V CE =
400
V
V GE =
±15
V
R gon =
64
Ω
copyright Vincotech
32
64
96
128
160
192
224
256
288
RG( Ω )
With an inductive load at
Tj =
25/125
°C
V CE =
400
V
V GE =
±15
V
IC =
6
A
6
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Inverter Characteristics
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
t ( µs)
1,00
t ( µs)
1,00
Inverter IGBT
tdoff
tdoff
tf
tdon
0,10
tf
0,10
tr
tdon
tr
0,01
0,01
0,00
0,00
0
2
4
6
8
10
I C (A)
12
0
With an inductive load at
Tj =
125
°C
V CE =
400
V
V GE =
±15
V
R gon =
64
Ω
R goff =
64
Ω
32
64
96
128
160
192
224
256
288
RG( Ω )
With an inductive load at
Tj =
125
°C
V CE =
400
V
V GE =
±15
V
IC =
6
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Inverter Diode
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,5
trr
Tj = Tjmax -25°C
0,4
trr
t rr( µs)
t rr( µs)
0,5
Inverter Diode
Tj = Tjmax -25°C
0,4
trr
0,3
0,3
trr
0,2
Tj = 25°C
0,2
Tj = 25°C
0,2
0,1
0,1
0
0,0
0
At
Tj =
V CE =
V GE =
R gon =
2
25/125
400
±15
64
copyright Vincotech
4
6
8
10
I C (A)
0
12
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
32
64
96
25/125
400
6
±15
°C
V
A
V
128
160
192
224
256
288
R gon ( Ω )
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Inverter Characteristics
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
Inverter Diode
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
0,8
Qrr( µC)
Qrr( µC)
1
Inverter Diode
Tj = Tjmax -25°C
0,8
Qrr
Tj = Tjmax -25°C
0,6
Qrr
0,6
0,4
0,4
Qrr
Qrr
Tj = 25°C
0,2
Tj = 25°C
0,2
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
2
25/125
400
±15
64
4
6
8
10
I C (A)
0
12
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
Inverter Diode
32
64
25/125
400
6
±15
96
128
160
192
256
288
R gon ( Ω)
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
Inverter Diode
8
IrrM (A)
IrrM (A)
5
224
Tj = Tjmax -25°C
4
IRRM
6
IRRM
3
Tj = 25°C
4
Tj = Tjmax - 25°C
2
IRRM
2
Tj = 25°C
1
IRRM
0
0
0
At
Tj =
V CE =
V GE =
R gon =
2
25/125
400
±15
64
copyright Vincotech
4
6
8
10
I C (A)
0
12
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
32
64
25/125
400
6
±15
96
128
160
192
224
256
288
R gon ( Ω )
°C
V
A
V
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Inverter Characteristics
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
Inverter Diode
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
1200
direc / dt (A/ µs)
350
direc / dt (A/µ s)
Inverter Diode
dI0/dt
dIo/dtLow T
dIrec/dt
300
dI0/dt
dIrec/dt
1000
250
dIo/dtLow T
800
di0/dtHigh T
200
di0/dtHigh T
600
dIrec/dtLow T
150
400
dIrec/dtHigh T
100
200
dIrec/dtHigh T
50
dIrec/dtLow T
0
0
0
At
Tj =
V CE =
V GE =
R gon =
2
25/125
400
±15
64
4
6
8
10
I C (A)
0
12
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Inverter IGBT
32
64
25/125
400
6
±15
96
128
160
192
256
288
R gon ( Ω )
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Inverter Diode
101
Zth(j-s) (K/W)
Zth(j-s) (K/W)
101
224
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10
10-2
10-5
At
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
2,66
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
K/W
-2
10-5
10-4
At
D =
R th(j-s) =
tp/T
IGBT thermal model values
3,55
10-2
10-1
100
t p (s)
101 10
K/W
FWD thermal model values
R (K/W)
Tau (s)
R (K/W)
Tau (s)
1,12E-01
1,79E+00
1,62E-01
1,97E+00
4,34E-01
1,79E-01
7,21E-01
1,62E-01
8,19E-01
4,95E-02
1,17E+00
3,94E-02
6,08E-01
9,45E-03
5,18E-01
6,69E-03
3,80E-01
2,26E-03
4,51E-01
1,33E-03
3,08E-01
3,96E-04
5,35E-01
2,17E-04
copyright Vincotech
10-3
9
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Inverter Characteristics
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T s)
10
IC (A)
Ptot (W)
80
Inverter IGBT
8
60
6
40
4
20
2
0
0
0
At
Tj =
50
175
100
150
T s ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Inverter Diode
50
175
15
100
150
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T s)
Inverter Diode
10
IF (A)
Ptot (W)
50
T s ( o C)
40
8
30
6
20
4
10
2
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T s ( o C)
200
°C
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Inverter Characteristics
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Inverter IGBT
Figure 26
Gate voltage vs Gate charge
Inverter IGBT
V GE = f(Q g)
IC (A)
VGE (V)
18
10
16
2
14
120 V
1mS
10mS
100uS
12
100mS
480 V
DC
101
10
8
100
6
4
10-1
2
0
10-1
10
0
At
D =
Ts =
V GE =
Tj =
101
V CE (V)
102
10
0
3
At
IC =
single pulse
80
ºC
±15
V
T jmax
Figure 27
Inverter IGBT
10
6
20
30
40
50
60
A
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
Q g (nC)
Inverter IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
I sc = f(V GE)
tsc (µS)
IC (sc)
14
100
12
80
10
60
8
6
40
4
20
2
0
0
10
At
V CE =
Tj ≤
11
12
600
V
175
ºC
copyright Vincotech
13
14
V GE (V)
15
12
At
V CE ≤
Tj =
11
13
14
600
V
175
ºC
15
16
17
18
19 V (V) 20
GE
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Inverter Characteristics
Figure 29
Reverse bias safe operating area
IGBT
I C = f(V CE)
IC (A)
25
20
IC MAX
Ic CHIP
Ic
MODULE
15
10
VCE MAX
5
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
T jmax-25
copyright Vincotech
ºC
12
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
PFC Characteristics
Figure 1
Typical output characteristics
I D = f(V DS)
PFC MOSFET
Figure 2
Typical output characteristics
I D = f(V DS)
PFC MOSFET
35
ID (A)
ID (A)
35
30
30
25
25
20
20
15
15
10
10
5
5
0
0
0
At
tp =
Tj =
V GS from
2
4
6
V DS (V)
8
0
10
At
tp =
Tj =
V GS from
250
µs
25
°C
0 V to 20 V in steps of 2 V
Figure 3
Typical transfer characteristics
PFC MOSFET
2
4
6
8
PFC Diode
35
IF (A)
ID (A)
10
10
250
µs
125
°C
0 V to 20 V in steps of 2 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
I D = f(V GS)
V DS (V)
30
8
25
6
20
15
4
Tj = Tjmax-25°C
10
Tj = Tjmax-25°C
2
Tj = 25°C
5
Tj = 25°C
0
0
0
1
At
tp =
V DS =
250
10
copyright Vincotech
2
3
4
5
V GS (V)
6
0
At
tp =
µs
V
13
1
250
2
3
4
V F (V)
5
µs
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
PFC Characteristics
Figure 5
Typical switching energy losses
as a function of drain current
E = f(I D)
PFC MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
0,15
PFC MOSFET
0,12
Eon
E (mWs)
E (mWs)
Eon
Tj = Tjmax -25°C
0,12
0,09
0,09
Eon
0,06
Eon
Tj =25°C
0,06
0,03
0,03
Eoff
Eoff
Eoff
Eoff
0
0
0
2
4
6
8
10
I D (A)
12
0
With an inductive load at
Tj =
25/125
°C
V DS =
400
V
V GS =
10
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
V DS =
400
V
V GS =
10
V
ID =
6
A
Figure 7
Typical reverse recovery energy loss
as a function of drain current
E rec = f(I D)
PFC MOSFET
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
0,05
E (mWs)
0,06
PFC MOSFET
Erec
Tj = Tjmax - 25°C
Erec
0,05
0,04
0,04
0,03
Tj = Tjmax -25°C
0,03
0,02
Erec
0,02
Tj = 25°C
0,01
0,01
Erec
Tj = 25°C
0,00
0,00
0
2
4
6
8
10
I D (A)
0
12
With an inductive load at
Tj =
25/125
°C
V DS =
400
V
V GS =
10
V
R gon =
4
Ω
R goff =
4
Ω
copyright Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
V DS =
400
V
V GS =
10
V
ID =
6
A
14
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
PFC Characteristics
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
1,00
t ( µs)
PFC MOSFET
t ( µs)
Figure 9
Typical switching times as a
as a function of drain current
t = f(I D)
PFC MOSFET
tdoff
tdoff
0,10
0,10
tdon
tdon
0,01
0,01
tf
tr
tr
0,00
0,00
0
2
4
6
8
10
I D (A)
12
0
With an inductive load at
Tj =
125
°C
V DS =
400
V
V GS =
10
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
RG (Ω )
16
20
With an inductive load at
Tj =
125
°C
V DS =
400
V
V GS =
10
V
ID =
6
A
Figure 11
Typical reverse recovery time as a
as a function of drain current
t rr = f(I c)
PFC Diode
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
t rr = f(R gon)
0,04
t rr( µs)
t rr( µs)
0,02
PFC Diode
trr
0,015
trr
0,03
Tj = Tjmax-25°C
0,01
0,02
trr
trr
0,005
0,01
Tj = 25°C
0
0,00
0
At
Tj =
V CE =
V GE =
R gon =
2
25/125
400
10
4
copyright Vincotech
4
6
8
10
I D (A)
12
0
At
Tj =
VR=
IF=
V GS =
°C
V
V
Ω
15
4
25/125
400
6
10
8
12
16
R gon ( Ω )
20
°C
V
A
V
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
PFC Characteristics
Figure 13
Typical reverse recovery charge as a
as a function of drain current
Q rr = f(I D)
PFC Diode
Figure 14
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Q rr = f(R gon)
0,4
PFC Diode
0,4
Qrr ( µC)
Qrr ( µC)
Qrr
Tj = Tjmax - 25°C
0,3
Tj = Tjmax - 25°C
0,3
Qrr
0,2
0,2
Qrr
Tj = 25°C
Tj = 25°C
0,1
0,1
0
Qrr
0,0
0
At
At
Tj =
V DS =
V GS =
R gon =
2
25/125
400
10
4
4
6
8
10
I D (A)
12
0
4
At
Tj =
°C
V
V
Ω
25/125
400
6
10
VR=
IF=
V GS =
Figure 15
Typical reverse recovery current as a
as a function of drain current
I RRM = f(I D)
PFC Diode
8
12
20
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
I RRM = f(R gon)
40
R gon ( Ω)
16
PFC Diode
IrrM (A)
40
IrrM (A)
IRRM
Tj = Tjmax - 25°C
IRRM
30
30
Tj = 25°C
Tj = Tjmax -25°C
20
IRRM
20
Tj = 25°C
10
IRRM
10
0
0
0
At
Tj =
V DS =
V GS =
R gon =
2
25/125
400
10
4
copyright Vincotech
4
6
8
10
I D (A)
12
0
At
Tj =
VR=
IF=
V GS =
°C
V
V
Ω
16
4
25/125
400
6
10
8
12
16
R gon ( Ω )
20
°C
V
A
V
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
PFC Characteristics
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of drain current
dI 0/dt ,dI rec/dt = f(I D)
PFC Diode
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
PFC Diode
15000
direc / dt (A/ µs)
14000
direc / dt (A/ µs)
dI0/dt
dIrec/dt
12000
Tj = 25°C
dI0/dt
dIrec/dt
12000
10000
Tj = Tjmax - 25°C
9000
8000
Tj = 25°C
6000
6000
Tj = 25°C
4000
Tj = Tjmax - 25°C
Tj = Tjmax -25°C
3000
2000
0
0
0
At
Tj =
V DS =
V GS =
R gon =
2
25/125
400
10
4
4
6
8
10
I D (A)
0
12
At
Tj =
VR=
IF =
V GS =
°C
V
V
Ω
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
PFC MOSFET
25/125
400
6
10
8
12
16
R gon ( Ω)
20
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
PFC Diode
101
Zth(j-s) (K/W)
Zth(j-s) (K/W)
101
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10
4
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10-2
-2
10-5
At
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
1,32
K/W
IGBT thermal model values
10-5
10-4
At
D =
R th(j-s) =
tp/T
2,10
10-3
10-1
100
t p (s)
10110
K/W
FWD thermal model values
R (K/W)
Tau (s)
R (K/W)
Tau (s)
6,07E-02
2,94E+00
7,54E-02
2,95E+00
1,82E-01
4,56E-01
3,60E-01
3,15E-01
5,66E-01
1,17E-01
7,40E-01
7,85E-02
2,74E-01
2,61E-02
4,10E-01
1,41E-02
1,33E-01
6,31E-03
3,24E-01
3,24E-03
9,91E-02
8,98E-04
1,92E-01
8,47E-04
copyright Vincotech
10-2
17
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
PFC Characteristics
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
PFC MOSFET
Figure 22
Drain current as a
function of heatsink temperature
I D = f(T s)
15
Ptot (W)
ID (A)
120
PFC MOSFET
12
90
9
60
6
30
3
0
0
0
At
Tj =
50
150
100
150
T s ( o C)
200
0
At
Tj =
V GS =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
PFC Diode
50
150
10
100
150
200
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T s)
PFC Diode
10
IF (A)
Ptot (W)
100
T s ( o C)
80
8
60
6
40
4
20
2
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
200
0
At
Tj =
ºC
18
50
175
100
150
T s ( o C)
200
ºC
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
PFC Characteristics
Figure 25
Safe operating area as a function
of drain-source voltage
I D = f(V DS)
Figure 26
PFC MOSFET
Gate voltage vs Gate charge
V GS = f(Q g)
10
VGS (V)
3
ID (A)
10
PFC MOSFET
9
120V
8
102
100uS
10uS
480V
7
1mS
10mS
6
100mS
DC
10
5
1
4
3
10
0
2
1
0
10-1
102
100
At
D =
Ts =
V GS =
Tj =
0
103
V DS (V)
At
ID =
single pulse
80
ºC
V
10
T jmax
ºC
Figure 29
Reverse bias safe operating area
10
6
20
30
40
50
60
Qg (nC)
70
A
IGBT
I D = f(V DS)
ID (A)
25
ID MAX
ID
MODULE
15
ID CHIP
20
10
VDS MAX
5
0
0
100
200
300
400
500
600
700
V DS (V)
At
Tj =
T jmax-25
copyright Vincotech
ºC
19
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Rectifier Characteristics
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
Rectifier Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
80
1
Zth(j-s) (K/W)
IF (A)
10
Rectifier Diode
60
100
40
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
-1
20
Tj = Tjmax-25°C
Tj = 25°C
0
10-2
0
0,5
At
tp =
250
1
1,5
V F (V)
2
10
-5
At
D =
R th(j-s) =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Rectifier Diode
10
-4
10
-3
10
-2
10
-1
10
1
t p (s)
10 10
tp/T
1,61
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T s)
Rectifier Diode
40
IF (A)
Ptot (W)
100
0
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
o
T h ( C)
0
200
At
Tj =
ºC
20
50
150
100
150
T h ( o C)
200
ºC
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Thermistor Characteristics
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
21
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Switching Definitions Inverter
General conditions
Tj
=
125 °C
R gon
R goff
=
=
64 Ω
64 Ω
Figure 1
Inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
200
125
%
%
tdoff
VCE
IC
100
VGE 90%
150
VCE 90%
75
VGE
VCE
IC
100
VGE
50
tdon
tEoff
50
25
IC 1%
VCE 3%
IC10%
VGE10%
0
tEon
0
-50
-25
-0,2
0
0,2
0,4
time (us)
2,9
0,6
3
3,1
3,2
3,3
3,4
time(us)
V GE (0%) =
-15
V
V GE (0%) =
-15
V
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
15
400
6
0,18
V
V
A
µs
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
15
400
6
0,10
V
V
A
µs
t E off =
0,53
µs
t E on =
0,27
µs
Figure 3
Inverter IGBT
Turn-off Switching Waveforms & definition of t f
Figure 4
Inverter IGBT
Turn-on Switching Waveforms & definition of t r
125
200
fitted
%
%
VCE
IC
Ic
100
150
IC 90%
75
VCE
100
IC 60%
IC90%
50
tr
IC 40%
50
25
IC10%
IC10%
0
0
tf
-25
-50
0
0,1
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,2
400
6
0,11
0,3
0,4
time (us)
0,5
3
V
A
µs
V C (100%) =
I C (100%) =
tr =
22
3,05
3,1
400
6
0,03
3,15
3,2
3,25
time(us)
3,3
V
A
µs
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Switching Definitions Inverter
Figure 5
Inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
125
150
%
Pon
%
Eoff
100
125
Poff
Eon
100
75
75
50
50
IC 1%
25
25
VGE 90%
VCE 3%
VGE 10%
0
0
tEoff
-25
-0,2
tEon
-25
0
0,2
0,4
0,6
2,9
time (us)
3
3,1
3,2
P off (100%) =
2,41
kW
P on (100%) =
2,41
kW
E off (100%) =
t E off =
0,27
0,53
mJ
µs
E on (100%) =
t E on =
0,25
0,27
mJ
µs
3,3
time(us)
3,4
Figure 7
Inverter Diode
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Vd
0
IRRM 10%
fitted
IRRM 90%
IRRM 100%
-50
-100
-150
3
3,1
3,2
3,3
3,4
3,5
3,6
time(us)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
23
400
6
-4
0,34
V
A
A
µs
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Switching Definitions Inverter
Figure 8
Inverter Diode
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Inverter Diode
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
Erec
%
Qrr
Id
100
100
tErec
75
tQrr
50
50
0
25
Prec
-50
0
-100
-25
2,8
3
3,2
3,4
3,6
3,8
4
3
time(us)
3,2
3,4
3,6
I d (100%) =
6
A
P rec (100%) =
2,41
kW
Q rr (100%) =
t Q rr =
0,60
0,73
µC
µs
E rec (100%) =
t E rec =
0,17
0,73
mJ
µs
copyright Vincotech
24
3,8
time(us)
4
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Switching Definitions PFC
General conditions
Tj
=
125 °C
R gon
R goff
=
=
4Ω
4Ω
Figure 1
PFC MOSFET
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
PFC MOSFET
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
600
tdoff
%
ID
%
500
100
VGS 90%
VDS 90%
400
75
VGS
ID
300
50
tEoff
ID 1%
200
25
VGS
0
VDS
VDS
100
tdon
VGS10%
ID 10%
0
-25
VDS 3%
tEon
-50
-0,1
-0,05
0
0,05
0,1
time (us)
-100
2,98
0,15
3
3,02
3,06
time(us)
V GS (0%) =
0
V
V GS (0%) =
0
V
V GS (100%) =
V D (100%) =
I D (100%) =
t doff =
10
400
6
0,11
V
V
A
µs
V GS (100%) =
V D (100%) =
I D (100%) =
t don =
10
400
6
0,02
V
V
A
µs
t E off =
0,14
µs
t E on =
0,03
µs
Figure 3
PFC MOSFET
Turn-off Switching Waveforms & definition of t f
Figure 4
PFC MOSFET
Turn-on Switching Waveforms & definition of t r
125
600
fitted
%
100
3,04
%
VDS
ID
ID
500
ID 90%
75
400
ID 60%
50
300
ID 40%
200
25
ID 10%
0
VDS
100
tf
ID 10%
0
-25
-50
0,02
ID 90%
tr
0,04
0,06
0,08
0,1
0,12
-100
3,01
0,14
3,015
3,02
3,025
V D (100%) =
I D (100%) =
tf =
copyright Vincotech
400
6
0,01
3,03
3,035
3,04
time(us)
time (us)
V
A
µs
V D (100%) =
I C (100%) =
tr =
25
400
6
0,002
V
A
µs
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Switching Definitions PFC
Figure 5
PFC MOSFET
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
PFC MOSFET
Turn-on Switching Waveforms & definition of t Eon
200
500
%
%
Pon
400
150
300
Eoff
100
200
50
Eon
100
Poff
VGS 90%
0
-50
-0,1
VGS 10%
tEoff
-0,05
0
0,05
0,1
time (us)
VDS 3%
0
ID 1%
tEon
-100
2,98
0,15
3
3,02
P off (100%) =
2,45
kW
P on (100%) =
2,45
kW
E off (100%) =
t E off =
0,01
0,14
mJ
µs
E on (100%) =
t E on =
0,09
0,0325
mJ
µs
3,04
time(us)
3,06
Figure 7
PFC Diode
Turn-off Switching Waveforms & definition of t rr
200
%
Id
100
trr
0
Ud
IRRM10%
-100
-200
fitted
-300
-400
IRRM90%
IRRM100%
-500
-600
2,975
2,995
3,015
3,035
3,055
3,075
time(us)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
26
400
6
-31
0,02
V
A
A
µs
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Switching Definitions PFC
Figure 8
PFC Diode
Turn-on Switching Waveforms & definition of t Qrr
Figure 9
PFC Diode
Turn-on Switching Waveforms & definition of t Erec
(t Qrr= integrating time for Q rr)
(t Erec= integrating time for E rec)
350
200
%
%
Prec
300
150
Id
250
Qrr
100
200
tQint
150
50
Erec
100
tErec
0
50
-50
0
-50
-100
3
3,01
I d (100%) =
Q rr (100%) =
t Qint =
copyright Vincotech
3,02
3,03
3,04
3,05
3
3,06
time(us)
3,01
3,02
3,03
3,04
6
A
P rec (100%) =
2,45
kW
0,29
0,03
µC
µs
E rec (100%) =
t E rec =
0,04
0,03
mJ
µs
27
3,05
3,06
3,07
time(us)
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
10-F006PPA006SB-M682B
without thermal paste 17mm housing with solder pins
with thermal paste 17mm housing with solder pins
10-F006PPA006SB-M682B-/3/
without thermal paste 12mm housing with Press-fit pins
10-PC06PPA006SB-M682B06Y
VIN
Date code
Name&Ver
UL
Lot
Serial
VIN
WWYY
NNNNNNVV
UL
LLLLL
SSSS
Type&Ver
Lot number
Serial
Date code
TTTTTTTVV
LLLLL
SSSS
WWYY
Text
Datamatrix
Outline
Pin
Pin table
X
Y
Function
1
33,5
0
DC-
2
30,7
0
PFC-
3
28
0
S1
4
25,3
0
S2
5
22,6
0
INV-
6
19,9
0
G7
7
17,2
0
S7
8
13,5
0
G6
9
10,8
0
E6
10
8,1
0
G5
11
5,4
0
E5
12
2,7
0
G4
13
0
0
E4
14
0
8,6
NTC1
15
0
11,45
NTC2
16
0
19,8
G1
17
0
22,5
U
18
6
19,8
G2
19
6
22,5
V
20
12
19,8
G3
21
12
22,5
W
22
17,7
22,5
INV+
23
20,5
22,5
PFC+
24
26,5
22,5
PFC IN
25
33,5
22,5
DC+
26
33,5
15
L1
27
33,5
7,5
L2
copyright Vincotech
17mm housing
12mm housing
28
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Pinout
Identification
ID
Component
Voltage
Current
Function
T1,T2,T3,T4,T5,T6
IGBT
600 V
6A
Inverter Switch
D1,D2,D3,D4,D5,D6
FWD
600 V
6A
Inverter Diode
T7
MOSFET
600 V
190 mΩ
PFC Switch
D7
FWD
600 V
6A
PFC Diode
D8,D9,D10,D11
Rectifier
1600 V
25 A
Rectifier Diode
R1
Resistor
C1
Capacitor
NTC
Thermistor
copyright Vincotech
Comment
PFC Shunt
500 V
Capacitor (DC)
Thermistor
29
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
135
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 0 packages see vincotech.com website.
Package data
Package data for flow 0 packages see vincotech.com website.
UL recognition and file number
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.
Document No.:
Date:
Modification:
Pages
10-xx06PPA006SB-M682Bx-D2-14
30 May. 2016
New brand, PCM Rth values
all
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in la
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
copyright Vincotech
30
30 May. 2016 / Revision 2