10 xx06PPA006SB M682Bx D2 19

10-**06PPA006SB-M682B*
application sheet
Output Inverter Application
flow PIM0+PFC
600 V / 6 A
General conditions
3phase SPWM
VGEon = 15 V
VGEoff = -15 V
Rgon = 64 Ω
Rgoff = 64 Ω
Figure 1
IGBT
Figure 2
FWD
Typical average static loss as a function of output current
Typical average static loss as a function of output current
Ploss = f(Iout)
Ploss = f(Iout)
Ploss (W)
16
Ploss (W)
25
Mi*cosfi = 1
14
Mi*cosf i= -1
20
12
10
15
8
10
6
4
5
2
Mi*cosfi = 1
Mi*cosfi = -1
0
0
0
At
Tj =
2
4
125
6
8
10
12
0
14
16
Iout (A)
At
Tj =
°C
Mi*cosφ from -1 to 1 in steps of 0,2
2
4
125
6
8
10
12
14
Iout (A)
16
°C
Mi*cosφ from -1 to 1 in steps of 0,2
Figure 3
IGBT
Typical average switching loss
as a function of output current
Figure 4
Ploss = f(Iout)
Ploss (W)
10
Ploss (W)
FWD
Typical average switching loss
as a function of output current
fsw = 16kHz
Ploss = f(Iout)
3,0
2,5
fsw = 16kHz
8
2,0
6
1,5
4
1,0
2
0,5
fsw = 2kHz
fsw = 2kHz
0
0,0
0
2
4
6
8
10
12
14
16
0
Iout (A)
At
Tj =
125
At
Tj =
°C
DC link = 400
V
fsw from 2 kHz to 16 kHz in steps of factor 2
copyright Vincotech
2
125
4
6
8
10
12
14
Iout (A)
16
°C
DC link = 400
V
fsw from 2 kHz to 16 kHz in steps of factor 2
1
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
application sheet
Output Inverter Application
flow PIM0+PFC
Figure 5
Phase
Figure 6
Typical available 50Hz output current
as a function Mi*cosφ
Iout = f(Mi*cos φ)
Phase
Typical available 50Hz output current
as a function of switching frequency Iout = f(fsw)
Iout (A)
10
Iout (A)
600 V / 6 A
Th = 60°C
8
10
Th = 60°C
8
Th = 100°C
Th = 100°C
6
6
4
4
2
2
0
-1,0
-0,8
At
Tj =
125
-0,6
-0,4
-0,2
0,0
0,2
0,4
0,6
0
0,8
1,0
Mi*cos φ
1
At
Tj =
°C
DC link = 400
V
fsw =
4
kHz
Th from
60 °C to 100 °C in steps of 5 °C
125
fsw (kHz)
100
°C
DC link = 400
V
Mi*cos φ =0,8
Th from
60 °C to 100 °C in steps of 5 °C
Figure 7
Phase
Figure 8
-0,8
-0,6
8,1-8,2
Mi*cosfi
-1,0
Iout (A)
Phase
Typical available 0Hz output current as a function
of switching frequency
Ioutpeak = f(fsw)
Iout (Apeak)
Typical available 50Hz output current as a function of
Mi*cos φ and switching frequency
Iout = f(fsw, Mi*cos φ)
7,9-8,1
10
10
Th = 60°C
8
-0,4
-0,2
6
Th = 100°C
0,0
0,2
0,4
8,2-8,4
4
0,6
8,4-8,5
0,8
1
2
4
8
16
32
2
1,0
64
0
fsw (kHz)
At
Tj =
1
10
fsw (kHz)
125
°C
At
Tj =
DC link = 400
Th =
80
V
°C
DC link = 400
V
Th from
60 °C to 100 °C in steps of 5 °C
Mi =
copyright Vincotech
2
125
100
°C
0
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
application sheet
Output Inverter Application
flow PIM0+PFC
Figure 9
Inverter
Figure 10
Inverter
Typical efficiency as a function of output power
efficiency=f(Pout)
efficiency (%)
Typical available peak output power as a function of
heatsink temperature
Pout=f(Th)
Pout (kW)
600 V / 6 A
3,0
2kHz
2,5
100
99
16kHz
2,0
2kHz
98
1,5
97
1,0
16kHz
96
0,5
95
0,0
60
70
At
Tj =
125
DC link = 400
Mi =
1
cos φ=
fsw from
80
90
Th ( o C)
0
100
1
3
4
5
6
Pout (kW)
At
Tj =
°C
V
125
DC link = 400
Mi =
1
0,80
2 kHz to 16 kHz in steps of factor 2
cos φ=
fsw from
Figure 11
2
°C
V
0,80
2 kHz to 16 kHz in steps of factor 2
Inverter
Overload (%)
Typical available overload factor as a function of
motor power and switching frequency Ppeak / Pnom=f(Pnom,fsw)
400
350
300
250
200
Switching frequency (kHz)
150
Motor nominal power (HP/kW)
100
0,75 / 0,55
1,00 / 0,74
1,50 / 1,10
2,00 / 1,47
3,00 / 2,21
5,00 / 3,68
1
399
300
200
150
0
0
2
399
300
200
150
0
0
4
399
300
200
150
0
0
8
399
300
200
150
0
0
16
399
300
200
150
0
0
At
Tj =
125
DC link = 400
°C
V
Mi =
1
cos φ=
fsw from
Th =
0,8
1 kHz to 16kHz in steps of factor 2
80
°C
Motor eff =0,85
copyright Vincotech
3
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
application sheet
Boost PFC Application
flow PIM0 + PFC
600 V / 6 A
General conditions
Boost PFC
VGEon = 10 V
VGEoff = 0 V
Rgon = 4 Ω
Rgoff = 4 Ω
Vin = Vinpk*sinωt
Figure 1
MOSFET
Figure 2
Typical average static loss as a function of input current
Ploss = f(Iin)
FWD
Typical average static loss as a function of input current
Ploss = f(Iin)
35
Ploss (W)
Ploss (W)
90
Vinpk/Vout
=0.1
75
30
Vinpk/Vout=1
25
60
20
45
15
30
10
15
5
Vinpk/Vout
=0.1
Vinpk/Vout=1
0
0
0
At
Tj =
2
4
125
6
8
10
12
14
Iin (A)
16
0
At
Tj =
°C
Vinpk / Vout from 0,1 to 1 in steps of 0,1
125
6
8
10
12
14
Iin (A)
16
°C
MOSFET
Figure 4
FWD
Typical average switching loss
as a function of input current
Ploss = f(Iin)
30
Ploss = f(Iin)
15
Ploss (W)
Ploss (W)
4
Vinpk / Vout from 0,1 to 1 in steps of 0,1
Figure 3
Typical average switching loss
as a function of input current
2
fsw=160kHz
fsw=160kHz
25
12
20
9
15
6
10
3
5
fsw=20kHz
fsw=20kHz
0
0
0
At
Tj =
2
125
4
6
8
10
12
14
Iin (A)
0
16
4
6
8
10
12
14
16
Iin (A)
At
Tj =
°C
DC link = 400
V
fsw from 20 kHz to 160 kHz in steps of factor 2
copyright Vincotech
2
125
°C
DC link = 400
V
fsw from 20 kHz to 160 kHz in steps of factor 2
4
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
application sheet
Boost PFC Application
flow PIM0 + PFC
Figure 5
PFC
Typical available input current
as a function of Vinpk / Vout
600 V / 6 A
Figure 6
PFC
Typical available input current
as a function of switching frequency
Iin = f(Vinpk/Vout)
Iin = f(fsw)
10
Iin (A)
Iin(A)
10
Th=60°C
8
Th=60°C
8
Th=100°C
6
6
4
4
Th=100°C
2
2
0
0,1
0,2
At
Tj =
125
DC link = 400
fsw =
20
0,3
0,4
0,5
0,6
0,7
0,8
0
0,9
1,0
Vinpk/Vout
10
°C
At
Tj =
V
kHz
DC link = 400
Vinpk/Vout =0,8
Th from 60 °C to 100 °C in steps of 5 °C
PFC
PFC
Iin = f(fsw)
10
Iin(A)
Vinpk/Vout
0,2
0,3
Th=60°C
8
0,4
0,5
6,0-7,0
°C
Typical available input current
as a function of switching frequency
0,1
5,0-6,0
1000
V
Figure 8
Typical available input current as a function of
of Vinpk / Vout and switching frequencyIin = f(fsw, Vinpk/Vout)
Iin (A)
125
fsw (kHz)
Th from 60 °C to 100 °C in steps of 5 °C
Figure 7
4,0-5,0
100
6
0,6
7,0-8,0
0,7
4
Th=100°C
0,8
8,0-9,0
0,9
10
20
40
80
160
2
1,0
320
0
fsw (kHz)
At
Tj =
10
100
125
°C
At
Tj =
DC link = 400
Th =
80
V
°C
DC link = 400
Vinpk/Vout =0,4
125
fsw (kHz)
1000
°C
V
Th from 60 °C to 100 °C in steps of 5 °C
copyright Vincotech
5
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
application sheet
Boost PFC Application
flow PIM0 + PFC
Figure 9
PFC
Figure 10
Typical available electric input power as a function of
heatsink temperature
Pin = f(Th)
2,0
PFC
Typical efficiency as a function of input power
efficiency = f(Pin)
100
efficiency (%)
20kHz
Pin (kW)
600 V / 6 A
20kHz
99
1,5
160kHz
98
1,0
160kHz
97
0,5
96
0,0
95
60
At
Tj =
70
125
DC link = 400
Vinpk/Vout =0,8
80
90
Th ( o C)
100
0
1
°C
At
Tj =
V
kHz
DC link = 400
Vinpk/Vout =0,8
fsw from 20 kHz to 160 kHz in steps of factor 2
125
2
3
Pin (kW)
4
°C
V
kHz
fsw from 20 kHz to 160 kHz in steps of factor 2
Figure 11
PFC
Figure 12
Typical available electric input power as a function of
heatsink temperature
Pin = f(Th)
PFC
Typical efficiency as a function of input power
efficiency = f(Pin)
100
Pin (kW)
1,0
efficiency (%)
20kHz
0,8
98
20kHz
160kHz
0,6
96
0,4
94
0,2
92
160kHz
0,0
90
60
At
Tj =
70
125
DC link = 400
Vinpk/Vout =0,4
80
90
Th ( o C)
100
0,0
At
Tj =
°C
V
125
DC link = 400
Vinpk/Vout =0,4
fsw from 20 kHz to 160 kHz in steps of factor 2
copyright Vincotech
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
Pin (kW)
1,8
°C
V
fsw from 20 kHz to 160 kHz in steps of factor 2
6
30 May. 2016 / Revision 2
10-**06PPA006SB-M682B*
application sheet
Boost PFC Application
flow PIM0 + PFC
Figure 13
Rectifier
600 V / 6 A
Figure 14
Typical average static loss as a function of input current
Ploss = f(Iin)
Rectifier Bridge
Typical efficiency as a function of input power
efficiency = f(Pin)
8
efficiency (%)
Ploss (W)
100,0
Vinpk/Vout=
0,8
99,5
6
99,0
4
98,5
Vinpk/Vout=
0,4
98,0
2
97,5
0
97,0
0
2
At
Tj =
4
6
125
8
10
12
14
Iin (A)
16
0
At
Tj =
°C
Figure 15
Overall
125
2
3
Pin (kW)
4
°C
Figure 16
Typical efficiency as a function of input power
efficiency = f(Pin)
Overall
Typical efficiency as a function of input power
efficiency = f(Pin)
100
100
efficiency (%)
efficiency (%)
1
99
98
96
98
20kHz
20kHz
94
97
92
96
160kHz
160kHz
90
95
88
94
0
At
Tj =
1
125
DC link = 400
Vinpk/Vout =0,8
2
3
Pin (kW)
0,0
4
0,4
0,6
°C
At
Tj =
°C
V
kHz
DC link = 400
Vinpk/Vout =0,4
V
kHz
fsw from 20 kHz to 160 kHz in steps of factor 2
copyright Vincotech
0,2
0,8
1,0
1,2
1,4
1,6
Pin (kW)
1,8
fsw from 20 kHz to 160 kHz in steps of factor 2
7
30 May. 2016 / Revision 2
Similar pages