10 Rx126PA015SC M628F4x D2 14

10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
1200V/15A
flow90PACK 0
Features
flow 90PACK 0
● 90° PCB mounting for easy heat sink assembly
● Clip-in PCB mounting (optional)
● Open emitter for easy current sensing
without clips
Target Applications
with clips
Schematic
● Standard Drive
● Servo Drive
● Bookshelf Inverter
Types
● 10-R0126PA015SC-M628F40
● 10-RZ126PA015SC-M628F41
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
23
25
A
tp limited by Tjmax
45
A
VCE ≤ 1200V, Tj ≤ Top max
30
A
69
104
W
±20
V
10
800
µs
V
Tjmax
175
°C
VRRM
1200
V
23
30
A
30
A
53
81
W
175
°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current *
Pulsed collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT *
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
* measured with phase-change material
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current *
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode *
Ptot
Tj=Tjmax
Maximum Junction Temperature
Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
* measured with phase-change material
Copyright by Vincotech
1
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 10,93
mm
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,5
1,93
2,23
2,3
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0005
15
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to heatsink per chip
RthJH
0,01
200
Rgoff=32 Ω
Rgon=32 Ω
600
±15
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
86
85
34
35
202
272
70
124
1,18
1,76
0,81
1,39
ns
mWs
900
f=1MHz
0
25
Tj=25°C
80
pF
55
15
960
85
nC
Phase-Change
Material
1,38
K/W
Thermal grease
thickness≤50um
λ = 1 W/mK
1,63
K/W
15
Tj=25°C
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
15
IRRM
trr
Qrr
Rgon=32 Ω
600
±15
di(rec)max
/dt
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,2
1,86
1,78
10
13
297
508
1,46
2,94
58
45
0,57
1,18
2,3
V
A
ns
µC
A/µs
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Phase-Change
Material
1,78
K/W
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
2,09
K/W
4700
Ω
mWs
Thermistor
Rated resistance
R
Tj=25°C
Deviation of R25
∆R/R
Tj=25°C
Power dissipation
P
Tj=25°C
200
mW
Tj=25°C
2
mW/K
Tj=25°C
3500
K
Tj=25°C
3560
K
Power dissipation constant
B-value
B(25/50)
B-value
B(25/100)
Tol. ±3%
Vincotech NTC Reference
Copyright by Vincotech
-5
5
%
G
3
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
50
IC (A)
IC (A)
50
40
40
30
30
20
20
10
10
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
0
5
1
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
V CE (V)
5
µs
250
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
60
IC (A)
IF (A)
15
50
12
40
9
30
6
20
Tj = Tjmax-25°C
3
Tj = 25°C
10
Tj = Tjmax-25°C
0
Tj = 25°C
0
0
At
tp =
VCE =
2
250
10
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
Copyright by Vincotech
4
1
250
2
3
V F (V)
4
µs
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
5
E (mWs)
E (mWs)
5
Eon High T
4
4
Eon High T
3
3
Eon Low T
Eon Low T
Eoff High T
2
2
Eoff Low T
Eoff High T
1
1
Eoff Low T
0
0
0
5
10
15
20
30
25
0
25
50
75
100
125
I C (A)
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
RG( Ω )
150
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
15
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1,5
E (mWs)
E (mWs)
2,0
Tj = Tjmax -25°C
1,2
1,5
Erec
Erec
Tj = Tjmax -25°C
0,9
1,0
0,6
Tj = 25°C
Tj = 25°C
Erec
Erec
0,5
0,3
0,0
0,0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Copyright by Vincotech
25
50
75
100
125
RG( Ω )
150
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
15
A
5
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( µs)
t ( µs)
1,00
tdoff
tdon
tf
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
25
50
75
100
125
RG( Ω )
150
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
15
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
Tj = Tjmax -25°C
t rr( µs)
0,8
t rr( µs)
0,8
trr
0,6
0,6
0,4
0,4
Tj = Tjmax -25°C
trr
Tj = 25°C
Tj = 25°C
trr
trr
0,2
0,2
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/150
600
±15
32
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
25
25/150
600
15
±15
50
75
100
125
R g on ( Ω )
150
°C
V
A
V
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
4
Qrr( µC)
Qrr( µC)
4
Tj = Tjmax -25°C
Qrr
Tj = Tjmax -25°C
3
3
Qrr
2
2
Tj = 25°C
Qrr
Tj = 25°C
Qrr
1
1
0
0
0
5
At
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
32
10
15
20
25
I C (A)
0
30
25
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
50
25/150
600
15
±15
75
100
R g on ( Ω)
150
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
20
IrrM (A)
15
125
Tj = Tjmax -25°C
IRRM
12
IRRM
15
IRRM
Tj = Tjmax - 25°C
9
IRRM
Tj = 25°C
10
6
Tj = 25°C
5
3
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/150
600
±15
32
10
15
20
25
I C (A)
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
25
25/150
600
15
±15
50
75
100
125
R gon ( Ω )
150
°C
V
A
V
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
1500
direc / dt (A/ µs)
400
direc / dt (A/µ s)
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
1200
300
900
200
600
100
300
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/150
600
±15
32
10
15
20
25
I C (A)
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25
25/150
600
15
±15
50
75
100
R gon ( Ω )
150
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
101
ZthJH (K/W)
101
125
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10
10
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
1
K/W
RthJH =
1,63
At
D=
RthJH =
K/W
IGBT thermal model values
Thermal grease
Phase change interface
R (C/W)
Tau (s)
R (C/W)
Tau (s)
0,14
7,1E-01
0,16
7,1E-01
0,55
1,0E-01
0,65
1,0E-01
0,40
3,6E-02
0,47
3,6E-02
0,19
7,0E-03
0,22
7,0E-03
0,10
9,2E-04
0,12
9,2E-04
Copyright by Vincotech
-2
10-5
1010
tp / T
1,38
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp / T
1,78
K/W
RthJH =
2,09
K/W
FWD thermal model values
Thermal grease
Phase change interface
R (C/W)
Tau (s)
R (C/W)
Tau (s)
0,07
2,6E+00
0,08
2,6E+00
0,12
3,9E-01
0,15
3,9E-01
0,72
6,9E-02
0,84
6,9E-02
0,45
1,7E-02
0,53
1,7E-02
0,24
3,8E-03
0,29
3,8E-03
0,18
6,4E-04
0,21
6,4E-04
8
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
30
IC (A)
Ptot (W)
150
125
25
100
20
75
15
50
10
25
5
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
35
Ptot (W)
IF (A)
100
150
30
75
25
20
50
15
10
25
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
102
IC (A)
VGE (V)
17,5
10
240V
15
100uS
960V
1mS
1
12,5
DC
10
10mS
10
100mS
0
7,5
5
10
-1
2,5
0
10
0
0
At
D=
Th =
VGE =
10
1
10
2
10
At
IC =
single pulse
ºC
80
±15
V
Tjmax
ºC
Tj =
Output inverter IGBT
Figure 27
20
40
60
80
100
V CE (V)
3
15
120
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Q g (nC)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
175
tsc (µS)
IC (sc)
18
150
15
125
12
100
9
75
6
50
3
25
0
0
12
14
16
18
V GE (V)
20
12
14
16
At
VCE =
1200
V
At
VCE ≤
600
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
10
18
V GE (V)
20
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
35
IC MAX
30
Ic CHIP
25
Ic
MODULE
20
VCE MAX
15
10
5
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
5000
4000
3000
2000
1000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
11
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 32 Ω
Rgon
Rgoff
= 32 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
125
tdoff
%
IC
%
VCE
100
150
VGE 90%
VCE 90%
75
VCE
VGE
100
IC
VGE
50
IC 1%
tEoff
tdon
50
25
VCE 3%
VGE10%
IC10%
0
tEon
0
-50
-25
-0,2
0
0,2
0,4
0,6
2,9
0,8
3
3,1
3,2
3,3
3,4
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
15
0,27
0,63
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,5
time(us)
time (us)
-15
15
600
15
0,09
0,36
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
200
fitted
%
VCE
IC
Ic
%
100
150
IC 90%
75
VCE
100
IC 60%
IC90%
50
tr
IC 40%
50
25
IC10%
IC10%
0
0
tf
-25
-50
0
0,1
0,2
0,3
0,4
0,5
0,6
3
3,1
3,2
3,3
time (us)
VC (100%) =
IC (100%) =
tf =
600
15
0,12
Copyright by Vincotech
3,4
3,5
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
12
600
15
0,04
V
A
µs
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
200
%
IC 1%
Poff
100
%
Pon
Eoff
150
75
Eon
100
50
50
25
VCE 3%
VGE 10%
VGE 90%
0
0
tEon
tEoff
-25
-0,2
-50
0
0,2
0,4
0,6
0,8
2,8
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
8,98
1,39
0,63
3
3,4
3,6
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter IGBT
Figure 7
Gate voltage vs Gate charge (measured)
3,2
8,98
1,76
0,36
kW
mJ
µs
Output inverter FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
VGE (V)
20
%
15
Id
100
10
trr
50
5
Vd
0
0
IRRM 10%
-5
fitted
-50
IRRM 90%
-10
IRRM 100%
-100
-15
-150
-20
-25
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
25
-15
15
600
15
117,46
Copyright by Vincotech
50
75
100
Qg (nC)
3
125
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
13
3,2
3,4
600
15
-13
0,51
3,6
3,8
time(us)
4
V
A
A
µs
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Id
tErec
75
tQrr
50
Erec
100
Qrr
100
50
0
Prec
25
-50
0
-100
-25
3
3,2
3,4
3,6
3,8
4
4,2
3
3,2
3,4
3,6
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
15
2,94
1,00
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
14
8,98
1,18
1,00
3,8
4
time(us)
4,2
kW
mJ
µs
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste ,housing without clips
without thermal paste ,housing with clips
10-RZ126PA015SC-M628F41
10-R0126PA015SC-M628F40
M628F41
M628F40
M628F41
M628F40
Outline
without clips
with clips
Pinout
Copyright by Vincotech
15
Revision: 2
10-R0126PA015SC-M628F40
10-RZ126PA015SC-M628F41
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
16
Revision: 2
Similar pages