10 Rx126PA035SC M620F4x D2 14

10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
flow 90PACK 0
1200V/35A
Features
flow 90PACK 0
● 90° PCB mounting for easy heat sink assembly
● Clip-in PCB mounting (optional)
● Open emitter for easy current sensing
with clips
without clips
Target Applications
Schematic
● Standard Drive
● Servo Drive
● Bookshelf Inverter
Types
● 10-RZ126PA035SC-M620F41
● 10-R0126PA035SC-M620F40
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
38
49
A
tp limited by Tjmax
105
A
VCE ≤ 1200V, Tj ≤ Top max
70
A
101
153
W
±20
V
10
800
µs
V
Tjmax
175
°C
VRRM
1200
V
31
40
A
50
A
64
97
W
175
°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current *
Pulsed collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT *
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
* measured with phase-change material
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current *
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode *
Ptot
Tj=Tjmax
Maximum Junction Temperature
Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
* measured with phase-change material
Copyright by Vincotech
1
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+150
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 10,93
mm
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,5
1,95
2,24
2,3
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0012
35
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to heatsink per chip
RthJH
0,015
200
Rgoff=16 Ω
Rgon=16 Ω
±15
600
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
94
97
47
45
210
281
63
130
2,94
4,08
1,97
3,38
ns
mWs
1950
f=1MHz
0
Tj=25°C
25
pF
155
115
±15
40
270
nC
Phase-Change
Material
0,94
K/W
Thermal grease
thickness≤50um
λ = 1 W/mK
1,10
K/W
960
Tj=25°C
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
25
IRRM
trr
Qrr
Rgon=16 Ω
±15
600
di(rec)max
/dt
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,2
1,90
1,88
15
21
333
565
2,69
5,50
114
86
1,07
2,27
2,3
V
A
ns
µC
A/µs
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Phase-Change
Material
1,49
K/W
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
1,75
K/W
4700
Ω
mWs
Thermistor
Rated resistance
R
Tj=25°C
Deviation of R25
∆R/R
Tj=25°C
Power dissipation
P
Tj=25°C
200
mW
Tj=25°C
2
mW/K
Power dissipation constant
B-value
B(25/50)
B-value
B(25/100)
Tol. ±3%
Vincotech NTC Reference
Copyright by Vincotech
-5
5
%
Tj=25°C
3500
K
Tj=25°C
3560
K
G
3
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
100
IC (A)
IC (A)
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
µs
250
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
100
Tj = 25°C
IF (A)
IC (A)
35
4
30
80
Tj = Tjmax-25°C
25
60
20
15
40
10
20
Tj = 25°C
Tj = Tjmax-25°C
5
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
Copyright by Vincotech
4
1
250
2
3
4
V F (V)
5
µs
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
E (mWs)
12
E (mWs)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon High T
8
Eon High T
10
6
Eon Low T
Eon Low T
8
6
4
Eoff High T
Eoff High T
4
Eoff Low T
Eoff Low T
2
2
0
0
0
15
30
45
60
I C (A)
75
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
35
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
3,0
3,0
E (mWs)
E (mWs)
15
Erec
Tj = 150°C
2,5
2,5
2,0
2,0
Tj = 150°C
Erec
1,5
1,5
Erec
Tj = 25°C
Tj = 25°C
1,0
1,0
Erec
0,5
0,5
0,0
0,0
0
15
30
45
60
I C (A)
0
75
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Copyright by Vincotech
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
5
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
1,00
tdoff
t ( µs)
t ( µs)
tdoff
tdon
tf
tf
0,10
0,10
tr
tdon
tr
0,01
0,01
0,00
0,00
0
15
30
45
60
I C (A)
75
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,75
trr
t rr( µs)
t rr( µs)
0,8
trr
Tj = 150°C
0,6
0,6
Tj = 150°C
trr
0,45
0,5
trr
Tj = 25°C
0,3
0,3
Tj = 25°C
0,15
0,2
0,0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/150
600
±15
16
30
45
60
I C (A)
75
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
15
25/150
600
35
±15
30
45
60
R g on ( Ω )
75
°C
V
A
V
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
8
Qrr( µC)
Qrr( µC)
6
Qrr
Tj = 150°C
Qrr
5
6
Tj = 150°C
4
4
3
Tj = 25°C
Qrr
Qrr
2
Tj = 25°C
2
1
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
15
25/150
600
±15
16
30
45
60
I C (A)
75
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
15
25/150
600
35
±15
30
45
R g on ( Ω)
75
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
25
60
IrrM (A)
IrrM (A)
35
Tj = 150°C
30
20
IRRM
25
15
Tj = 25°C
20
IRRM
Tj=150°C
15
10
IRRM
Tj=25°C
10
IRRM
5
5
0
0
0
15
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
16
30
45
60
I C (A)
75
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
15
25/150
600
35
±15
30
45
60
R gon ( Ω )
75
°C
V
A
V
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
direc / dt (A/ µs)
800
direc / dt (A/µ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
700
dIrec/dt
3000
dI0/dt
dIrec/dt
2500
600
2000
500
1500
400
300
1000
200
500
100
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
20
30
25/150
600
±15
16
°C
V
V
Ω
40
50
60 I C (A)
0
70
At
Tj =
VR =
IF =
VGE =
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
Zth-JH (K/W)
10
10
-2
30
40
50
60
R gon ( Ω )
70
°C
V
A
V
Output inverter FWD
101
100
-1
25/150
600
35
±15
20
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D=
RthJH =
tp / T
0,94
K/W
RthJH =
1,10
K/W
IGBT thermal model values
Thermal grease
Phase change interface
R (C/W)
Tau (s)
R (C/W)
Tau (s)
0,11
9,5E-01
0,13
9,5E-01
0,41
1,2E-01
0,49
1,2E-01
0,30
4,8E-02
0,35
4,8E-02
0,07
5,9E-03
0,08
5,9E-03
0,04
5,6E-04
0,04
5,6E-04
Copyright by Vincotech
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp / T
1,49
K/W
RthJH =
1,75
K/W
FWD thermal model values
Thermal grease
Phase change interface
R (C/W)
Tau (s)
R (C/W)
Tau (s)
0,06
3,1E+00
0,07
3,1E+00
0,12
4,3E-01
0,14
4,3E-01
0,70
7,0E-02
0,83
7,0E-02
0,32
1,9E-02
0,38
1,9E-02
0,16
4,2E-03
0,19
4,2E-03
0,11
5,7E-04
0,13
5,7E-04
8
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
60
Ptot (W)
IC (A)
200
50
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
125
150
100
40
75
30
50
20
25
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
17,5
IC (A)
VGE (V)
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
15
10
2
240V
12,5
100uS
100mS
10
10mS
960V
1mS
1
10
DC
7,5
10
0
5
10
-1
2,5
0
10
0
101
At
D=
Th =
VGE =
103
102
0
V CE (V)
At
IC =
single pulse
ºC
80
±15
V
Tjmax
ºC
Tj =
Output inverter IGBT
Figure 27
25
50
35
75
100
125
175Q (nC)200
g
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
150
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
tsc (µS)
IC (sc)
17,5
350
15
300
12,5
250
10
200
7,5
150
5
100
2,5
50
0
0
12
13
14
15
16
17
18
19
20
12
V GE (V)
13
14
15
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
10
16
17
18
19
V GE (V)
20
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
80
IC MAX
70
Ic CHIP
60
Ic
VCE MAX
MODULE
50
40
30
20
10
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3phase SPWM
Thermistor
Thermistor
Figure 30
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
5000
4000
3000
2000
1000
0
25
45
65
Copyright by Vincotech
85
105
T (°C)
125
11
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 16 Ω
Rgon
Rgoff
= 16 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
120
175
tdoff
%
%
VCE
IC
150
100
VGE 90%
VCE 90%
125
80
VCE
IC
100
VGE
60
75
40
tdon
tEoff
50
20
25
IC 1%
0
-20
-0,2
VCE 3%
IC10%
VGE10%
VGE
0
tEon
-25
0
0,2
0,4
0,6
0,8
2,8
3
3,2
3,4
time(us)
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
35
0,28
0,66
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
-15
15
600
35
0,10
0,39
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,6
Turn-on Switching Waveforms & definition of tr
140
175
%
%
120
IC
Ic
150
VCE
fitted
100
125
IC 90%
VCE
80
100
IC90%
IC 60%
60
75
tr
40
IC 40%
50
20
25
IC10%
0
IC10%
tf
0
-20
-25
0,1
0,2
0,3
0,4
0,5
0,6
3
3,1
3,2
3,3
time (us)
VC (100%) =
IC (100%) =
tf =
600
35
0,13
Copyright by Vincotech
3,4
3,5
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
12
600
35
0,05
V
A
µs
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
180
120
%
Poff
%
Eoff
100
Pon
140
80
Eon
100
60
40
60
20
VGE 90%
20
VGE 10%
0
tEoff
VCE 3%
tEon
IC 1%
-20
-20
-0,2
0
0,2
0,4
0,6
2,8
0,8
3
3,2
3,4
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
20,99
3,38
0,66
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter IGBT
Figure 7
Gate voltage vs Gate charge (measured)
3,6
time(us)
20,99
4,08
0,39
kW
mJ
µs
Output inverter FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
120
VGE (V)
20
%
Id
15
80
trr
10
40
5
Vd
fitted
0
IRRM10%
0
-40
IRRM90%
-5
IRRM100%
-80
-10
-120
-15
-20
30
80
130
180
230
2,5
280
3
3,5
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-15
15
600
35
252,70
Copyright by Vincotech
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
13
600
35
-21
0,57
4
time(us)
4,5
V
A
A
µs
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
100
Erec
100
Qrr
Id
80
tErec
tQrr
50
60
40
0
20
-50
Prec
0
-100
-20
2,5
3
3,5
4
4,5
2,5
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
35
5,50
1,00
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
14
3
3,5
20,99
2,27
1,00
4
4,5
time(us)
kW
mJ
µs
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste ,housing without clips
without thermal paste ,housing with clips
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
M620F41
M620F40
M620F41
M620F40
Outline
without clips
with clips
Pinout
Copyright by Vincotech
15
Revision: 2
10-RZ126PA035SC-M620F41
10-R0126PA035SC-M620F40
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
16
Revision: 2
Similar pages