V23990 P709 F40 P1 14

V23990-P709-F40-PM
preliminary datasheet
flow90PACK 1 2nd gen
1200V/25A
Features
flow90PACK 1 2nd gen
● Trench Fieldstop IGBT4 Technology
● Supports designs with 90° mounting angle between
heatsink and PCB
● Clip-in PCB mounting
● Clip or screw hetasink mounting
Target Applications
Schematic
● Motor Drives
Types
● V23990-P709-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
30
38
A
tp limited by Tjmax
75
A
VCE ≤ 1200V, Tj ≤ Top max
75
A
78
119
W
±20
V
10
800
μs
V
175
°C
1200
V
24
31
A
50
A
52
79
W
175
°C
Inverter IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Inverter FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,3
2,01
2,25
2,3
Inverter IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0085
25
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,002
120
Rgoff=32 Ω
Rgon=32 Ω
600
±15
25
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
138
139
31
33
247
320
72
136
1,98
2,88
1,44
2,46
ns
mWs
1430
f=1MHz
25
0
115
Tj=25°C
pF
85
±15
960
25
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
152
nC
1,21
K/W
Inverter FWD
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
25
Rgon=32 Ω
600
±15
di(rec)max
/dt
Erec
RthJH
25
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
1,83
1,77
21
26
278
454
2,31
4,45
179
96
0,84
1,69
2,3
V
A
ns
μC
A/μs
mWs
1,83
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
5
200
mW
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
Vincotech NTC Reference
copyright Vincotech
Tj=25°C
3
%
Tj=25°C
Tc=100°C
Power dissipation constant
-5
K
B
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
75
IC (A)
IC (A)
75
63
63
50
50
38
38
25
25
13
13
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
5
250
μs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
25
V CE (V)
4
IC (A)
IF (A)
75
20
60
15
45
10
30
5
15
Tj = Tjmax-25°C
Tj = 25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
4
250
10
μs
V
copyright Vincotech
6
8
10
V GE (V)
0
12
At
tp =
4
0,5
250
1
1,5
2
2,5
3
V F (V)
3,5
μs
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
8
E (mWs)
8
Eon High T
6
Eon High T
6
Eon Low T
Eon Low T
4
4
Eoff High T
Eoff Low T
Eoff High T
2
2
Eoff Low T
0
0
0
13
25
38
I C (A)
50
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
32
64
96
128
RG( Ω )
160
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
25
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
2,5
2,5
E (mWs)
Erec
E (mWs)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2,0
2
1,5
1,5
Tj = Tjmax -25°C
Erec
Tj = Tjmax -25°C
Tj = 25°C
Erec
1,0
1
0,5
0,5
Erec
Tj = 25°C
0,0
0
0
13
25
38
I C (A)
50
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
copyright Vincotech
32
64
96
128
RG( Ω )
160
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
5
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( μs)
t ( μs)
1,00
tdoff
tdon
tdoff
tdon
0,10
tf
0,10
tf
tr
tr
0,01
0,01
0,00
0,00
0
13
25
38
I C (A)
50
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
32
64
96
128
RG( Ω )
160
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1,0
t rr( μs)
t rr( μs)
0,6
trr
0,5
0,8
trr
0,4
Tj = Tjmax -25°C
0,6
trr
Tj = Tjmax -25°C
trr
0,3
0,4
0,2
Tj = 25°C
0,2
0,1
Tj = 25°C
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
13
25/150
600
±15
32
copyright Vincotech
25
38
I C (A)
0
50
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
32
25/150
600
25
±15
64
96
128
R g on ( Ω )
160
°C
V
A
V
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
7
Qrr( μC)
Qrr( μC)
5
Qrr
6
Qrr
Tj = Tjmax -25°C
4
5
3
4
Tj = Tjmax -25°C
Tj = 25°C
Qrr
Qrr
3
2
2
Tj = 25°C
1
1
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
13
25/150
600
±15
32
25
38
I C (A)
50
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
Output inverter FWD
0
32
At
Tj =
VR =
IF =
VGE =
25/150
600
25
±15
64
96
128
R g on ( Ω)
160
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
75
IrrM (A)
IrrM (A)
30
IRRM
Tj = Tjmax - 25°C
25
60
Tj = Tjmax -25°C
IRRM
20
45
Tj = 25°C
15
30
10
15
5
IRRM
IRRM
Tj = 25°C
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
13
25/150
600
±15
32
copyright Vincotech
25
38
I C (A)
50
°C
V
V
Ω
7
0
32
At
Tj =
VR =
IF =
VGE =
25/150
600
25
±15
64
96
128
R gon ( Ω )
160
°C
V
A
V
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
5000
direc / dt (A/ μs)
direc / dt (A/μ s)
1200
dI0/dt
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIo/dtLow T
dIrec/dt
1000
dI0/dt
dIrec/dt
4000
di0/dtHigh T
800
3000
600
2000
dIrec/dtLow T
400
1000
200
dIrec/dtHigh T
0
At
Tj =
VCE =
VGE =
Rgon =
13
25/150
600
±15
32
25
I C (A)
38
0
50
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Tj = Tjmax - 25°C
Tj = 25°C
dIrec/dtHigh T
0
0
32
25/150
600
25
±15
64
96
128
160
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
101
ZthJH (K/W)
101
R gon ( Ω )
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
-2
-2
10
10
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
1011
10-5
At
D=
RthJH =
tp / T
1,21
Thermal grease
R (C/W)
0,17
0,57
0,29
0,12
0,06
10-3
K/W
IGBT thermal model values
Phase change interface
Tau (s)
9,7E-01
1,6E-01
4,0E-02
6,6E-03
5,0E-04
copyright Vincotech
R (C/W)
0,13
0,46
0,24
0,10
0,05
10-4
R (C/W)
0,04
0,14
0,74
0,50
0,26
0,14
8
10-2
10-1
100
t p (s)
1011
tp / T
1,83
Thermal grease
Tau (s)
7,9E-01
1,3E-01
3,2E-02
5,3E-03
4,0E-04
10-3
K/W
FWD thermal model values
Phase change interface
Tau (s)
9,4E+00
1,1E+00
1,5E-01
4,3E-02
6,8E-03
5,6E-04
R (C/W)
0,03
0,12
0,60
0,41
0,21
0,11
Tau (s)
7,6E+00
8,8E-01
1,2E-01
3,4E-02
5,6E-03
4,6E-04
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
50
Ptot (W)
IC (A)
150
120
40
90
30
60
20
30
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
Ptot (W)
100
150
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
3
IC (A)
VGE (V)
10
102
20
18
240V
16
10uS
10mS
960V
14
100uS
1mS
12
101
10
DC
100mS
8
100
6
4
-1
10
2
0
10
0
At
D=
Th =
VGE =
Tj =
10
1
10
103
2
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Output inverter IGBT
Figure 27
30
60
25
90
120
150
Q g (nC)
210
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
180
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
225
IC(sc)
tsc (μS)
18
16
200
14
175
12
150
10
125
8
100
6
75
4
50
2
25
0
0
12
13
14
15
16
12
V GE (V) 17
13
14
15
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
copyright Vincotech
10
16
17
18
19 V
GE (V)
20
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
70
60
Ic MODULE
40
Ic CHIP
ICMAX
50
30
VCEMAX
20
10
0
0
200
400
600
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3phase SPWM
copyright Vincotech
800
1000
1200
1400
V CE (V)
11
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e
22000
[Ω]
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
45
copyright Vincotech
65
85
105
T (°C)
125
12
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 32 Ω
Rgon
Rgoff
= 32 Ω
Output inverter IGBT
Figure 1
120
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
220
tdoff
%
VCE
100
IC
180
VGE 90%
VCE 90%
80
IC
140
60
VCE
100
VGE
tEoff
%40
VGE
tdon
60
20
20
0
-20
-0,3
VCE 3%
IC10%
VGE10%
IC 1%
tEon
-20
-0,1
0,1
0,3
0,5
0,7
0,9
2,7
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
25
0,32
0,74
2,85
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
3
3,15
3,3
-15
15
600
25
0,14
0,41
3,45
time(us)
3,75
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,6
Turn-on Switching Waveforms & definition of tr
120
220
fitted
VCE
IC
100
180
IC 90%
80
140
60
IC 60%
VCE
100
%
40
IC 40%
IC90%
%
tr
60
20
IC10%
0
20
tf
Ic
-20
IC10%
-20
0,1
0,15
0,2
0,25
0,3
0,35
0,4
0,45
0,5
3
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
25
0,14
VC (100%) =
IC (100%) =
tr =
V
A
μs
13
3,05
3,1
3,15
600
25
0,03
V
A
μs
3,2
3,25 time(us) 3,3
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
180
120
Pon
IC 1%
100
Eoff
Poff
140
80
Eon
100
60
%
%
40
60
20
VGE 90%
20
VCE 3%
VGE 10%
0
tEoff
-20
-0,3
tEon
-20
-0,15
0
0,15
0,3
0,45
0,6
0,75
2,8
0,9
2,9
3
3,1
3,2
3,3
3,4
3,5
Poff (100%) =
Eoff (100%) =
tEoff =
15,07
2,46
0,74
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FWD
Figure 7
Gate voltage vs Gate charge (measured)
3,6
time(us)
time (us)
15,07
2,88
0,41
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
VGE (V)
120
Id
15
80
10
trr
40
5
Vd
0
fitted
0
%
IRRM 10%
-5
-40
-10
-80
-15
IRRM 90%
IRRM 100%
-20
-120
-50
0
50
100
150
200
2,8
3
3,2
3,4
600
25
-26
0,45
V
A
A
μs
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
-15
15
600
25
179,27
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
14
3,6
3,8
time(us)
4
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
120
Id
Qrr
Erec
100
80
tQrr
80
tErec
40
60
0
%
%
40
-40
Prec
20
-80
0
-120
-20
2,8
3
3,2
3,4
3,6
3,8
4
4,2
4,4
2,8
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
25
4,45
1,00
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
15
3
3,2
3,4
15,07
1,69
1,00
3,6
3,8
4
4,2
time(us)
4,4
kW
mJ
μs
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
V23990-P709-F40-PM
in DataMatrix as
P709F40
in packaging barcode as
P709F40
Outline
Pinout
copyright Vincotech
16
Revision: 1
V23990-P709-F40-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
Revision: 1