V23990 K305 F D3 14

V23990-K305-F-PM
MiniSKiiP® 2 PACK
600V/100A
MiniSKiiP® 2 Housing
Features
● SixPack (inverter) topology
● Solder less interconnection
● Designed for motor drives up to 11 kW
● Fully compatible with Semikron pedant 28AC066V1
● Temperature sensor
● Standard (6.5mm) and thin (2.8mm) lids,16mm housing
● Optional with pre-applied thermal grease
Schematic
Target Applications
● Industrial Motor Drives
● Power Generation
● UPS
Types
● V23990-K305-F-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
91
100
A
150
A
154
234
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
600
V
91
100
A
157
A
T1,T2,T3,T4,T5,T6 IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
D1,D2,D3,D4,D5,D6 FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
119
181
175
1
W
°C
Revision: 3.1
V23990-K305-F-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 3.1
V23990-K305-F-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
T1,T2,T3,T4,T5,T6 IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
±20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
0,0016
100
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,48
1,67
700
Rgoff=8 Ω
Rgon=8 Ω
300
±15
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
0,2
mA
nA
Ω
none
tr
td(off)
tf
Fall time
VCE=VGE
197
199
29
33
261
216
87
97
2,40
3,11
2,51
3,07
ns
mWs
3140
f=1MHz
0
Tj=25°C
25
200
pF
93
±15
480
50
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
310
nC
0,6
K/W
D1,D2,D3,D4,D5,D6 FWD
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
100
Rgoff=8 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
1,35
1,36
94
114
144
289
6,29
11,43
3061
2051
1,19
2,20
2,3
V
A
ns
µC
A/µs
mWs
0,8
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
T=25°C
R100=1670 Ω
T=100°C
-3
3
%
T=100°C
1670,3125
Ω
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
R100
P
Vincotech NTC Reference
Copyright by Vincotech
E
3
Revision: 3.1
V23990-K305-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
300
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
300
IC (A)
IF (A)
100
4
250
80
200
60
150
40
100
20
50
0
0
0
2
At
Tj =
tp =
VCE =
25/125
250
10
4
6
8
V GE (V)
10
0,0
At
Tj =
tp =
°C
µs
V
Copyright by Vincotech
4
0,5
25/125
250
1,0
1,5
2,0
V F (V)
2,5
°C
µs
Revision: 3.1
V23990-K305-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
10
E (mWs)
E (mWs)
10
Eon High T
8
8
Eon Low T
Eon High T
6
6
Eon Low T
Eoff High T
Eoff High T
4
4
Eoff Low T
Eoff Low T
2
2
0
0
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
IC =
99
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6 FWD
D1,D2,D3,D4,D5,D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
4,0
E (mWs)
4,0
Erec
3,2
3,2
2,4
2,4
Erec
1,6
1,6
0,8
0,8
0,0
Erec
Erec
0,0
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Copyright by Vincotech
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
IC =
99
A
5
Revision: 3.1
V23990-K305-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
tdoff
tdoff
tdon
tdon
tf
0,1
0,1
tr
tf
tr
0,01
0,01
0,001
0,001
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω )
40
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
IC =
99
A
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
0,5
t rr( µs)
0,4
trr
0,3
trr
0,4
trr
trr
0,2
0,3
0,2
0,2
0,1
0,1
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/125
300
±15
8
100
150
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
8
25/125
300
99
±15
16
24
32
R g on ( Ω )
40
°C
V
A
V
Revision: 3.1
V23990-K305-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
12
Qrr( µC)
Qrr( µC)
20
Qrr
Qrr
16
9
12
Qrr
6
Qrr
8
3
4
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
50
25/125
300
±15
8
100
I C (A)
150
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
D1,D2,D3,D4,D5,D6 FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/125
300
99
±15
16
24
32
R g on ( Ω)
40
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
250
IrrM (A)
IrrM (A)
150
IRRM
200
120
IRRM
90
150
60
100
IRRM
50
30
IRRM
0
0
0
40
At
Tj =
VCE =
VGE =
Rgon =
25/125
300
±15
8
80
120
160
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
8
25/125
300
99
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 3.1
V23990-K305-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
D1,D2,D3,D4,D5,D6 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
6000
direc / dt (A/ µs)
direc / dt (A/µ s)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
dI0/dt
dIrec/dt
5000
10000
dI0/dt
dIrec/dt
8000
dIrec/dtLow T
4000
6000
dIo/dtLow T
3000
4000
2000
dIrec/dtHigh T
di0/dtHigh T
2000
1000
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/125
300
±15
8
100
150
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/125
300
99
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
D1,D2,D3,D4,D5,D6 FWD
ZthJH (K/W)
Zth-JH (K/W)
101
10
0
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
t p (s)
1
1010
At
D=
RthJH =
tp / T
0,6
K/W
10
tp / T
0,8
IGBT thermal model values
FWD thermal model values
Thermal grease
Thermal grease
R (C/W)
0,04
0,09
0,23
0,15
0,07
0,02
0,03
R (C/W)
0,08
0,26
0,33
0,08
0,05
Tau (s)
6,5E+00
1,0E+00
2,0E-01
5,9E-02
1,2E-02
2,2E-03
2,7E-04
Copyright by Vincotech
K/W
8
Tau (s)
2,9E+00
3,2E-01
8,4E-02
1,1E-02
7,9E-04
Revision: 3.1
V23990-K305-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
120
IC (A)
Ptot (W)
320
100
240
80
160
60
40
80
20
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
120
IF (A)
Ptot (W)
240
150
200
100
160
80
120
60
80
40
40
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C) 200
0
At
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 3.1
V23990-K305-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
103
IC (A)
VGE (V)
15
10uS
100uS
12
102
120V
1mS
100mS
DC
10mS
480V
9
101
6
100
3
0
10-1 0
10
10
At
D=
Th =
VGE =
1
10
V CE (V)
2
0
103
120
180
240
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Tj =
60
99
A
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
50
Copyright by Vincotech
75
100
T (°C)
125
10
Revision: 3.1
V23990-K305-F-PM
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Rgon
= 8Ω
Rgoff
= 8Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
240
120
tdoff
%
%
VCE
IC
200
100
VGE 90%
VCE 90%
160
80
IC
120
60
VCE
tEoff
40
VGE
80
20
tdon
40
IC 1%
VGE
IC10%
VGE10%
VCE 3%
0
0
tEon
-20
-0,05
0,1
0,25
0,4
0,55
0,7
-40
2,85
0,85
3
3,15
3,3
3,45
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
300
99
0,22
0,47
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,6
time(us)
time (us)
-15
15
300
99
0,20
0,40
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
120
240
fitted
%
%
Ic
210
100
IC
VCE
IC 90%
180
80
150
IC 60%
60
40
120
VCE
IC90%
90
IC 40%
tr
60
20
30
IC10%
0
tf
0
-30
3,15
-20
0,2
VC (100%) =
IC (100%) =
tf =
0,25
0,3
300
99
0,10
Copyright by Vincotech
0,35
0,4
0,45
0,5
0,55
IC10%
3,2
3,25
time (us)
3,3
3,35
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
11
300
99
0,03
V
A
µs
Revision: 3.1
V23990-K305-F-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
150
%
Poff
100
Pon
%
Eoff
120
Eon
80
90
60
60
40
30
20
VGE 10%
VCE 3%
VGE 90%
0
0
tEon
tEoff
IC 1%
-20
-0,15
-30
0
0,15
0,3
0,45
0,6
2,8
0,75
2,95
3,1
3,25
3,4
3,55
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
29,71
3,07
0,47
3,7
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
29,71
3,11
0,40
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
80
Id
trr
40
fitted
0
Vd
IRRM10%
-40
-80
IRRM90%
IRRM100%
-120
-160
3,15
3,2
3,25
3,3
3,35
3,4
3,45
3,5
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
Copyright by Vincotech
12
300
99
-114
0,29
V
A
A
µs
Revision: 3.1
V23990-K305-F-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Qrr
%
%
Erec
100
90
Id
tQrr
tErec
50
60
0
Prec
30
-50
0
-100
-150
-30
3,1
Id (100%) =
Qrr (100%) =
tQrr =
3,3
3,5
99
11,43
0,33
Copyright by Vincotech
3,7
time(us)
3,9
3,1
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
13
3,3
3,5
29,71
2,20
0,33
3,7
time(us) 3,9
kW
mJ
µs
Revision: 3.1
V23990-K305-F-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K22-T-PM)
with std lid (black V23990-K22-T-PM) and P12
with thin lid (white V23990-K23-T-PM)
with thin lid (white V23990-K23-T-PM) and P12
Ordering Code
in DataMatrix as
in packaging barcode as
V23990-K305-F-/1A/
V23990-K305-F-/1B/
V23990-K305-F-/0A/
V23990-K305-F-/0B/
K305-F
K305-F
K305-F
K305-F
K305-F
K305-F
K305-F
K305-F
Outline
Pinout
Copyright by Vincotech
14
Revision: 3.1
V23990-K305-F-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
15
Revision: 3.1