435 KB

The following document contains information on Cypress products.
FUJITSU MICROELECTRONICS
DATA SHEET
DS04-71105-1Ea
ASSP for Power Supply Applications
Evaluation Board
MB39A104
■ DESCRIPTION
The MB39A104 evaluation board is a surface mount circuit board with 2 channels of down conversion circuit.Because output voltage set 5 V and 3.3 V, the current of Max 3 A is supplied from the power-supply voltage between
7 V to 19 V. MB39A104 has a circuit configuration with no sense resistor as it is provided with overcurrent protection,
eliminating the need for an external sense resistor.The board incorporates the protective functions that upon
detection of a short-circuit or activation of the under voltage lockout protection, the circuit protection feature shuts
off transistors to stop the output.In addition, each channel can be controlled to be turned on and off and can be
set for a soft-start.
■ EVALUATION BOARD SPECIFICATIONS
Rating
Typ
Max
7
12
19
V
420
500
580
kHz
(CH1)
4.90
5.0
5.09
(CH2)
3.24
3.3
3.36
(CH1)
1.0
⎯
3.0
(CH2)
1.0
⎯
3.0
(CH1)
⎯
⎯
50
(CH2)
⎯
⎯
33
(CH1)
7.8
12.4
23
(CH2)
7.8
12.4
23
0.43
0.73
1.43
(CH1)
5.54
5.75
5.88
(CH2)
5.60
5.78
5.90
Input voltage
Oscillation frequency
Output voltage
Output current
Output ripple voltage
Soft-start time
Short-circuit detection time
Detection current of
overcurrent protection*
Unit
Min
* : These values are simulated at VIN = 12 V (Typ) and Ron = 50 mΩ.
Copyright©2003-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved
2003.7
V
A
mV
ms
ms
A
MB39A104
■ TERMINAL DESCRIPTION
Symbol
Function
1
VIN
Source and IC driving power - supply terminal
2
GND
Main GND terminal
3
CS1, CS2
4
GND
5
OUT1, OUT2
Output terminal
6
GND1, GND2
DC/DC converter GND terminal
7
VREF
Reference voltage output terminal
8
SGND
IC control side GND terminal
9
DTC1, DTC2
External duty control terminal
10
CTL
Channel OFF terminal
GND
Power - supply control terminal
■ SWITCH DESCRIPTION
SWITCH
FUNCTION
ON
OFF
SW1
power - supply control
H(operation)
L(Standby)
SW2
CH1 control
L(operation)
H(Standby)
SW3
CH2 control
L(operation)
H(Standby)
■ SETUP AND CHECKUP
(1) Setup
• Connect power supply terminal to VIN and GND.Connect OUT1 or OUT2 to the required loading device or
measuring instrument.
• Set SW1, SW2, SW3 to OFF.
(2) Checkup
Set SW1, SW2, SW3 to ON, and turn on VIN. The IC works normally with the following outputs: OUT1 = 5 V
(Typ), OUT2 = 3.3 V(Typ).
2
MB39A104
■ COMPONENT LAYOUT
• On-board Component Layout
L2
C8
D2
Q2
C9
OUT2
GND2
C19 R18
R13
R25
C20
R28
R14
R15 R16
DTC2
C17
C15
C14
R5
R26
R3
R7
Q4
R22
R21
C1
SW1
SW3
24
VREF
13
M1
3
C10
2
GND
VIN
1
CTL
12
1
R1
C16
C13
R19
R8
Q3
R20
R6
C12
R4
R24
R2
C11
SGND
SW2
C21
R27
R23
R10 R11
DTC1
R9
C18 R12
GND1
OUT1
Q1
D1
C4
C5
L1
(Continued)
3
MB39A104
(Continued)
Board Layout
Top Side
Inside VIN (LAYER3)
4
Inside GND (LAYER2)
Bottom Side
MB39A104
■ CONNECTION DIAGRAM
VIN
OUT2
L2
Q2 TPC8102
15 μH
C6
R3
0Ω
C7
+
10 μF
R25
0Ω
10 μF
GND
C9
82 μF
C8
82 μF
D2
RB053L-30
R26
0Ω
68 kΩ
SW1
R15
R16
100 kΩ
13 kΩ
R18
20
kΩ
C19
220 pF
R28
SGND
R7
0Ω
DTC2
24
M1
23
22
21
C14
1000
pF
20
19
18
2
3
4
5
6
7
15
14
13
9
10
11
12
R2
0Ω
Q1
TPC8102
10 μF
R1
24 kΩ
R24
0Ω
VIN
R20
200 kΩ
R8
220
kΩ
C16
0.1
μF
C21
1000
pF
R19
0Ω
SW2
Q3
2N7002
Ch1
OFF
SW2
C18
R12
220 pF 20 kΩ
R9
68 kΩ
R10
R11
150 kΩ 56 kΩ
L1
10 μF
C1
100 pF
C15
C12
1000
pF
R27
DTC1
C3
R21
0Ω
C13
R6
0Ω
+
SW3
16
8
R4
2.7
kΩ
C11
0.1
μF
R23
0Ω
17
2N7002
Ch2
OFF
SW3
C10
0.1 μF
MB39A104
1
C17
0.1
μF
R13
220
kΩ
R5
2.7
kΩ
VIN
R22
200 kΩ
Q4
C20
0.1
μF
VREF
C2
+
GND2
R14
CTL
+
3.3 V
15 μH
C5
82 μF
C4
82 μF
D1
RB053L-30
+
OUT1
5V
+
GND1
5
MB39A104
■ PARTS LIST
Part No.
Part
name
Specification
Manufacturer
Package
Part number
M1
IC
MB39A104
FUJITSU
MICROELECTRONICS
FPT-24P-M03
MB39A104PFV
Q1, Q2
P-ch FET
VDS = − 30 V,
Qg = 43 nC (Typ)
TOSHIBA
SO-8
TPC8102
Q3, Q4
N-ch FET
VDS = 60 V,
ID = 0.24 A (Max)
Siliconix
TO-236
2N7002E
D1, D2
Diode
VF = 0.42 V (Max),
at IF = 3 A
ROHM
PMDS
RB053L-30
L1, L2
Inductor
15 μH
SUMIDA
SMD
CDRH104R-150
C1
Ceramic
condenser
100 pF (50 V)
TDK
1608 type
C1608CH1H101J
C2, C6
OS-CONTM
10 μF (20 V)
SANYO
SMD
20SVP10M
C3, C7
Ceramic
condenser
10 μF (25 V)
TDK
3225 type
C3325JF1E106Z
C4, C8
OS-CONTM
82 μF (6.3 V)
SANYO
SMD
6SVP82M
C5, C9
OS-CONTM
82 μF (6.3 V)
SANYO
SMD
6SVP82M
C10, C11, C20
Ceramic
condenser
0.1 μF (50 V)
TDK
1608 type
C1608JB1H104K
C12
Ceramic
condenser
1000 pF (50 V)
TDK
1608 type
C1608JB1H102K
Note
Not
mounted
Not
mounted
C13, C15
C14
Ceramic
condenser
1000 pF (50 V)
TDK
1608 type
C1608JB1H102K
C16, C17
Ceramic
condenser
0.1 μF (50 V)
TDK
1608 type
C1608JB1H104K
C18
Ceramic
condenser
220 pF (50 V)
TDK
1608 type
C1608JB1H221K
Not
mounted
C19
Ceramic
condenser
220 pF (50 V)
TDK
1608 type
C1608JB1H221K
Not
mounted
C21
Ceramic
condenser
1000 pF (50 V)
TDK
1608 type
C1608JB1H102K
R1
Resistor
24 kΩ (0.5%)
ssm
1608 type
RR0816P243D
R2, R3, R6, R7
Jumper
0Ω
KOA
1608 type
RK73Z1J-0D
R4, R5
Resistor
2.7 kΩ (0.5%)
ssm
1608 type
RR0816P272D
R8
Resistor
220 kΩ (0.5%)
ssm
1608 type
RR0816P224D
(Continued)
6
MB39A104
(Continued)
Part No.
Part
name
Specification
Manufacturer
Package
Part number
R9
Resistor
68 kΩ (0.5%)
ssm
1608 type
RR0816P683D
R10
Resistor
150 kΩ (0.5%)
ssm
1608 type
RR0816P154D
R11
Resistor
56 kΩ (0.5%)
ssm
1608 type
RR0816P563D
R12
Resistor
20 kΩ (0.5%)
ssm
1608 type
RR0816P203D
R13
Resistor
220 kΩ (0.5%)
ssm
1608 type
RR0816P224D
R14
Resistor
68 kΩ (0.5%)
ssm
1608 type
RR0816P683D
R15
Resistor
100 kΩ (0.5%)
ssm
1608 type
RR0816P104D
R16
Resistor
13 kΩ (0.5%)
ssm
1608 type
RR0816P133D
R18
Resistor
20 kΩ (0.5%)
ssm
1608 type
RR0816P203D
R19, R21
Jumper
0Ω
KOA
1608 type
RK73Z1J-0D
R20, R22
Resistor
200 kΩ (0.5%)
ssm
1608 type
RR0816P204D
R23, R24, R25,
R26
Jumper
0Ω
KOA
1608 type
RK73Z1J-0D
Note
Not
mounted
Not
mounted
Not
mounted
R27, R28
SW1, SW2,
SW3
DIP switch
4 pole
MATSUKYU
DMS-4H
Pin
Terminal
pins
WT-2-1
MacEight
WT-2-1
Note : OS-CON is a trademark of SANYO Electric Co., Ltd.
TOSHIBA
Siliconix
ROHM
SUMIDA
SANYO
TDK
ssm
KOA
MATSUKYU
MacEight
TOSHIBA CORPORATION Semiconductor Company
VISHAY Intertechnology, Inc
ROHM Co., Ltd.
Sumida Corporation
SANYO Electric Co., Ltd.
TDK Corporation
SUSUMU CO., LTD.
KOA Corporation
Matsukyu Co., Ltd.
MacEight Co., Ltd.
7
MB39A104
■ INITIAL SETTINGS
(1) Output voltage
CH1
VO1 (V) = 1.24 / R9 × (R9 + R10 + R11) =: 5.0 (V)
CH2
VO2 (V) = 1.24 / R14 × (R14 + R15 + R16) =: 3.3 (V)
(2) Oscillation frequency
fOSC (kHz) = 1200000 / (C1 (pF) × R1 (kΩ) ) =: 500 (kHz)
(3) Soft-start time
CH1
ts (s) = 0.124 × C16 (μF) =: 12.4 (ms)
CH2
ts (s) = 0.124 × C17 (μF) =: 12.4 (ms)
(4) Short-circuit detection time
tscp (s) = 0.73 × C21 (μF) =: 0.73 (ms)
(5) Detection current of overcurrent protection
CH1 (ILIM = 110 μA, RON = 50.0 mΩ, VIN = 12 V, VO1 = 5.0 V)
IOCP (A) = ILIM × R4 / RON − ( (VIN − VO1) × VO1) / (2 × VIN × fOSC × L1) =: 5.75 (A)
CH2 (ILIM = 110 μA, RON = 50.0 mΩ, VIN = 12 V, VO2 = 3.3 V)
IOCP (A) = ILIM × R5 / RON − ( (VIN − VO2) × VO2) / (2 × VIN × fOSC × L2) =: 5.78 (A)
8
MB39A104
■ REFERENCE DATA
(1) Conversion efficiency vs. load current characteristics (VIN = 12 V)
ch1
ch2
95
90
85
80
75
70
VIN = 12 V
Setting Vo1 = 5 V
SW1 = ON
SW2 = OFF
SW3 = OFF
65
60
55
50
10 m
100 m
1
10
Conversion efficiency-Load current (ch2)
Conversion efficiency η (%)
Conversion efficiency η (%)
Conversion efficiency-Load current (ch1)
100
100
95
90
85
80
75
70
VIN = 12 V
Setting Vo2 = 3.3 V
SW1 = ON
SW2 = OFF
SW3 = OFF
65
60
55
50
10 m
100 m
Load current IO1 (A)
1
10
Load current IO2 (A)
(2) Load Reguration (VIN = 12 V)
ch1
ch2
Output voltage-Load current (ch1)
VIN = 12 V
Setting Vo1 = 5 V
SW1 = ON
SW2 = OFF
SW3 = OFF
5.02
5.01
5.00
4.99
4.98
4.97
4.96
4.95
10 m
100 m
1
Load current IO1 (A)
10
3.34
Output voltage VO2 (V)
Output voltage VO1 (V)
5.03
Output voltage-Load current (ch2)
VIN = 12 V
Setting Vo2 = 3.3 V
SW1 = ON
SW2 = OFF
SW3 = OFF
3.33
3.32
3.31
3.30
3.29
3.28
3.27
3.26
10 m
100 m
1
10
Load current IO2 (A)
9
MB39A104
(3) Line regulation
ch1
ch2
Output voltage-Input voltage (ch2)
3.34
5.01
3.33
Output voltage VO2 (V)
Output voltage VO1 (V)
Output voltage-Input voltage (ch1)
5.02
5.00
4.99
4.98
4.97
Io = 1.5 A
Setting Vo1 = 5 V
SW1 = ON
SW2 = OFF
SW3 = OFF
4.96
4.95
4.94
Io = 1.5 A
Setting Vo2 = 3.3 V
SW1 = ON
SW2 = OFF
SW3 = OFF
3.32
3.31
3.30
3.29
3.28
3.27
3.26
7
9
11
13
15
17
19
21
7
9
Input voltage VIN (V)
11
13
VIN = 12 V
Setting Vo1 = 2 Ω
Vo2 = 2 Ω
SW1 = ON
SW2 = OFF
SW3 = OFF
4
2
0
Vo2
(V) 2
Vo1
Vo2
0
CTL
(V) 5
CTL
0
0
10
10
17
Input voltage VIN (V)
(4) Soft - start/discharge operation waveforms
Vo1
(V)
15
20
30
40
50
60
70
80
90
100 (ms)
19
21
MB39A104
(5) Output ripple waveforms (VIN = 12 V)
ch1
Vo1
(mV)
20
IO = 0.5 A
0
−20
PchFET
Drain (V)
10
5
0
0
1
2
3
4
5
6
7
Vo1
(mV)
20
8
9
10 (μs)
IO = 1.5 A
0
−20
PchFET
Drain (V)
10
5
0
0
1
2
3
4
5
6
7
Vo1
(mV)
20
8
9
10 (μs)
IO = 3 A
0
−20
PchFET
Drain (V)
10
5
0
0
1
2
3
4
5
6
7
8
9
10 (μs)
11
MB39A104
ch2
Vo2
(mV)
20
IO = 0.5 A
0
−20
PchFET
Drain (V)
10
5
0
0
1
2
3
4
5
6
7
Vo2
(mV)
20
8
9
10 (μs)
IO = 1.5 A
0
−20
PchFET
Drain (V)
10
5
0
0
1
2
3
4
5
6
7
Vo2
(mV)
20
8
9
10 (μs)
IO = 3 A
0
−20
PchFET
Drain (V)
10
5
0
0
12
1
2
3
4
5
6
7
8
9
10 (μs)
MB39A104
(6) Output waveform at load sudden change (VIN = 12 V)
ch1
ch2
SW1 = ON
SW2 = OFF
SW3 = OFF
Vo1
(mV)
50
0
0
−50
−50
lo1
(A)
lo1
(A)
4
4
2
2
0
0
0
1
2
SW1 = ON
SW2 = OFF
SW3 = OFF
Vo1
(mV)
50
3
4
5
6
7
8
9
10
(ms)
0
1
2
3
4
5
6
7
8
9
10
(ms)
(7) Overcurrent protection characteristics (VIN = 12 V)
ch2
6
SW1 = ON
SW2 = OFF
SW3 = OFF
RLIM1 = R4
5
4
3
2
1
0
0
500
1000
1500
RLIM1 (Ω)
2000
2500
3000
OCP detection current Iocp (A)
OCP detection current Iocp (A)
ch1
6
SW1 = ON
SW2 = OFF
SW3 = OFF
RLIM2 = R5
5
4
3
2
1
0
0
500
1000
1500
2000
2500
3000
RLIM2 (Ω)
13
MB39A104
■ COMPONENT SELECTION METHODS
1. Board view
CH2
Flyback diode
Output smoothing condenser
FET
Inductor
MB39A104
EV
Board
L2
C8
TPC8102
.
˚ 9D
56
12
C7
C9
OUT2
207
82
6
D2
150
N26
225
10
20
GND2
R13
C19
R18
683
104
224
R15
0
R25
C20
R28
R14
133
R16
204
R22
0
Q4
7EPTH
R5
C17
R26
0
0
R7
C15
272
R3
R21
C14
0
DTC2
SW1
C1
39A104
ES0209
M00
2
C10
1
CTL
12
1
M1
VIN
3
13
VREF
GND
4
SW3
24
R1
OFF MKK
C6
Q2
3
2
1
243
R19
204
0
R20
0
0
272
0
Q3
7EPTH
C16
C13
R6
C12
R4
R2
R24
C11
SGND
SW2
R8
C21
R27
R23
R10 R11
683
154
563
C18
R12
0
DTC1
R9
TPC8102
° 9D
56
12
Q1
D1
C3
207
82
6
225
10
20
GND1
150
N26
C2
224
OUT1
C5
C4
L1
R e v. 1 . 0
Inductor
FET
Flyback diode
CH1
Board Photograph
14
Output smoothing condenser
MB39A104
The following subsections show the component selection methods with the following common parametric values.
VIN = 19 V (Max) , Vo1 = 5.0 V, Vo2 = 3.3 V, Io = 3.0 A, fOSC = 500 kHz
2. P - ch MOSFET(TPC8102(TOSHIBA product))
VDS = − 30 V, VGS = ± 20 V, ID = 6 A, RDS (on) = 34 mΩ (Typ) , Qg = 43 nC (Typ)
Drain current:peak value
The peak drain current of this FET must be within its rated current.
If the FET’s peak drain current is ID, it is obtained by the following formula.
ch1 side
VIN − Vo1
ton
ID ≥ IO +
2L
≥ 3+
19 − 5
1
×
× 0.263
2 × 15 × 10 − 6
500 × 103
≥ 3.25 A
ch2 side
ID ≥ IO +
≥ 3+
VIN − Vo2
ton
2L
19 − 3.3
1
×
× 0.174
2 × 15 × 10 − 6
500 × 103
≥ 3.18 A
15
MB39A104
3. Inductor (CDRH104R - 150:SUMIDAproduct)
15 μH (tolerance ± 30%), rated current = 3.6 A
L value at entire road current condition: Set the peak-to-peak ripple current to less than half road current
ch1 side
2 (VIN − Vo1)
L≥
ton
IO
≥
2 × (19 − 5)
3
×
1
× 0.263
500 × 103
≥ 4.91 μH
ch2 side
L≥
≥
2 (VIN − Vo2)
ton
IO
1
2 × (19 − 3.3)
×
× 0.174
3
500 × 103
≥ 3.64 μH
The load current satisfying the continuous current condition
ch1 side
Vo1
IO ≥
toff
2L
≥
5
1
×
× (1 − 0.263)
2 × 15 × 10 − 6
500 × 103
≥ 245.7 mA
ch2 side
IO ≥
≥
Vo2
toff
2L
3.3
1
×
× (1 − 0.174)
2 × 15 × 10 − 6
500 × 103
≥ 181.7 mA
16
MB39A104
Ripple current: Peak value
The peak ripple current must be within the rated current of the inductor
If the peak ripple current is IL, it is obtained by the following formula.
ch1 side
VIN − Vo1
IL ≥ IO +
ton
2L
≥ 3+
19 − 5
1
×
× 0.263
2 × 15 × 10 − 6
500 × 103
≥ 3.25 A
ch2 side
IL ≥ IO +
≥ 3+
VIN − Vo2
ton
2L
19 − 3.3
1
×
× 0.174
2 × 15 × 10 − 6
500 × 103
≥ 3.18 A
Ripple current:Peak - to - peak value
If the peak - to - peak ripple current is ΔIL, it is obtained by the following formula.
ch1 side
VIN − Vo1
ton
ΔIL =
L
=
19 − 5
15 × 10 − 6
×
1
× 0.263
500 × 103
=: 0.491 A
ch2 side
ΔIL =
=
VIN − Vo2
ton
L
19 − 3.3
15 × 10 − 6
×
1
× 0.174
500 × 103
=: 0.364 A
17
MB39A104
4. Output smoothing condenser
82 μF, rated voltage = 6.3 V, ESR = 50 mΩ, maximum allowable ripple current = 1570 mArms
The output ripple voltage is ΔVO, output smoothing condenser is CL, ripple current is ICLrms, and series resistance
is ESR.
ESR, CL, ICLrms values of single using are obtained by the following formula.
Series resistance
ch1 side
ΔVo
ESR ≤
−
ΔIL
≤
0.050
−
0.491
1
2πfCL
1
2π × 500 × 103 × 82 × 10 − 6
≤ 98.0 mΩ
Resistance of the above condenser is 50 mΩ and acceptable.
ch2 side
ESR ≤
≤
ΔVo
−
ΔIL
1
2πfCL
0.033
1
−
0.364
2π × 500 × 103 × 82 × 10 − 6
≤ 86.8 mΩ
Resistance of the above condenser is 50 mΩ and acceptable.
Condenser
ch1 side
CL ≥
≥
ΔIL
2πf (ΔVo − ΔIL × ESR)
0.491
2π × 500 × 103 × (0.050 − 0.491 × 0.05)
≥ 6.14 μF
Capacitance of the above condenser is 82 μF (Typ) and acceptable.
ch2 side
CL ≥
≥
ΔIL
2πf (ΔVo − ΔIL × ESR)
0.364
2π × 500 × 103 × (0.033 − 0.364 × 0.05)
≥ 7.83 μF
Capacitance of the above condenser is 82 μF (Typ) and acceptable.
18
MB39A104
Ripple current
ch1 side
(VIN − Vo1) ton
ICLrms ≥
2√3L
≥
(19 − 5) × 0.263
2√3 × 15 × 10−6 × 500 × 103
≥ 141.7 mArms
Maximum allowable ripple current of the above condenser is 1570 mArms and acceptable.
ch2 side
(VIN − Vo2) ton
ICLrms ≥
2√3L
≥
(19 − 3.3) × 0.174
2√3 × 15 × 10−6 × 500 × 103
≥ 105.1 mArms
Maximum allowable ripple current of the above condenser is 1570 mArms and acceptable.
19
MB39A104
5. Flyback diode(RB053L - 30:ROHM product)
VR (reverse DC voltage) = 30 V, average output current = 3.0 A, peak current = 10 A
VF (forward voltage) = 0.42V, at IF = 3.0 A
VR : value enough to satisfy the input voltage→30 V
On time of the diode is assumed to be tD(Max), the diode average current IDi is obtained by the following formula.
ch1 side
Vo1
) = 3 × (1 − 0.263) =: 2.21 A
IDi ≥ IO × (1 −
VIN
ch2 side
IDi ≥ IO × (1 −
Vo2
) = 3 × (1−0.174) =: 2.48 A
VIN
On time of the diode is assumed to be tD(Max), the diode peak current IDip is obtained by the following formula.
ch1 side
Vo1
IDip ≥ (IO +
toff) =: 3.24 A
2L
ch2 side
IDip ≥ (IO +
20
Vo2
toff) =: 3.18 A
2L
MB39A104
■ ORDERING INFORMATION
EV board part No.
MB39A104EVB
EVboard version No.
Remarks
MB39A104 EV Board Rev.1.0
21
MB39A104
MEMO
22
MB39A104
MEMO
23
FUJITSU MICROELECTRONICS LIMITED
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0722, Japan
Tel: +81-3-5322-3347 Fax: +81-3-5322-3387
http://jp.fujitsu.com/fml/en/
For further information please contact:
North and South America
FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD.
151 Lorong Chuan, #05-08 New Tech Park,
Singapore 556741
Tel: +65-6281-0770 Fax: +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/
Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Pittlerstrasse 47, 63225 Langen,
Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/microelectronics/
FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.
Rm.3102, Bund Center, No.222 Yan An Road(E),
Shanghai 200002, China
Tel: +86-21-6335-1560 Fax: +86-21-6335-1605
http://cn.fujitsu.com/fmc/
Korea
FUJITSU MICROELECTRONICS KOREA LTD.
206 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://www.fmk.fujitsu.com/
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.
10/F., World Commerce Centre, 11 Canton Road
Tsimshatsui, Kowloon
Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269
http://cn.fujitsu.com/fmc/tw
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS
or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or
other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual
property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising
in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current
levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of
the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
Edited
Strategic Business Development Dept.
Similar pages