8161ZxxB V

GS8161ZxxB(T/D)-xxxV
18Mb Pipelined and Flow Through
Synchronous NBT SRAM
• User-configurable Pipeline and Flow Through mode
• NBT (No Bus Turn Around) functionality allows zero wait
read-write-read bus utilization
• Fully pin-compatible with both pipelined and flow through
NtRAM™, NoBL™ and ZBT™ SRAMs
• IEEE 1149.1 JTAG-compatible Boundary Scan
• 1.8 V or 2.5 V core power supply
• 1.8 V or 2.5 V I/O supply
• LBO pin for Linear or Interleave Burst mode
• Pin-compatible with 2M, 4M, and 8M devices
• Byte write operation (9-bit Bytes)
• 3 chip enable signals for easy depth expansion
• ZZ pin for automatic power-down
• JEDEC-standard 100-lead TQFP and 165-bump FP-BGA
packages
• RoHS-compliant TQFPand BGA packages available
The GS8161ZxxB(T/D)-xxxV may be configured by the user
to operate in Pipeline or Flow Through mode. Operating as a
pipelined synchronous device, in addition to the rising-edgetriggered registers that capture input signals, the device
incorporates a rising-edge-triggered output register. For read
cycles, pipelined SRAM output data is temporarily stored by
the edge triggered output register during the access cycle and
then released to the output drivers at the next rising edge of
clock.
De
sig
Functional Description
rail for proper operation. Asynchronous inputs include the
Sleep mode enable, ZZ and Output Enable. Output Enable can
be used to override the synchronous control of the output
drivers and turn the RAM's output drivers off at any time.
Write cycles are internally self-timed and initiated by the rising
edge of the clock input. This feature eliminates complex offchip write pulse generation required by asynchronous SRAMs
and simplifies input signal timing.
ct
Features
250 MHz–150 MHz
1.8 V or 2.5 V VDD
1.8 V or 2.5 V I/O
n—
Di
sco
nt
inu
ed
Pr
od
u
100-Pin TQFP & 165-Bump BGA
Commercial Temp
Industrial Temp
The GS8161ZxxB(T/D)-xxxV is implemented with GSI's high
performance CMOS technology and is available in JEDECstandard 100-pin TQFP and 165-bump FP-BGA packages.
me
nd
ed
for
Ne
w
The GS8161ZxxB(T/D)-xxxV is an 18Mbit Synchronous
Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL
or other pipelined read/double late write or flow through read/
single late write SRAMs, allow utilization of all available bus
bandwidth by eliminating the need to insert deselect cycles
when the device is switched from read to write cycles.
Because it is a synchronous device, address, data inputs, and
read/ write control inputs are captured on the rising edge of the
input clock. Burst order control (LBO) must be tied to a power
Re
co
m
Parameter Synopsis
Pipeline
3-1-1-1
No
t
Flow Through
2-1-1-1
Rev: 1.03 9/2008
-250
-200
-150
Unit
tKQ(x18/x36)
tCycle
3.0
4.0
3.0
5.0
3.8
6.7
ns
ns
Curr (x18)
Curr (x32/x36)
tKQ
tCycle
280
330
230
270
185
210
mA
mA
5.5
5.5
6.5
6.5
7.5
7.5
ns
ns
Curr (x18)
Curr (x32/x36)
210
240
185
205
170
190
mA
mA
1/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
A
A
E1
E2
NC
NC
BB
BA
E3
VDD
VSS
CK
W
CKE
G
ADV
A
A
A
A
GS8161Z18BT-xxxV Pinout (Package T)
NC
NC
NC
Rev: 1.03 9/2008
Ne
w
me
nd
ed
for
A
NC
NC
VDDQ
VSS
NC
DQPA
DQA
DQA
VSS
VDDQ
DQA
DQA5
VSS
NC
VDD
ZZ
DQA
DQA
VDDQ
VSS
DQA
DQA
NC
NC
VSS
VDDQ
NC
NC
NC
A
A
A
A1
A0
TMS
TDI
VSS
VDD
TDO
TCK
A
A
A
A
A
A
A
Re
co
LBO
m
A
No
t
VSS
NC
NC
DQB
DQB
VSS
VDDQ
DQB
DQB
FT
VDD
NC
VSS
DQB
DQB
VDDQ
VSS
DQB
DQB
DQPB
NC
VSS
VDDQ
NC
NC
NC
De
sig
VDDQ
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1
80
2
79
3
78
4
77
5
76
6
75
7
74
8
73
9
72
1M x 18
10
71
Top View
11
70
12
69
13
68
14
67
15
66
16
65
17
64
18
63
19
62
20
61
21
60
22
59
23
58
24
57
25
56
26
55
27
54
28
53
29
52
30
51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
2/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
A
A
E1
E2
BD
BC
BB
BA
E3
VDD
VSS
CK
W
CKE
G
ADV
A
A
A
A
GS8161Z36BT-xxxV Pinout (Package T)
Rev: 1.03 9/2008
Ne
w
me
nd
ed
for
DQPB
DQB
DQB
VDDQ
VSS
DQB
DQB
DQB
DQB
VSS
VDDQ
DQB
DQB
VSS
NC
VDD
ZZ
DQA
DQA
VDDQ
VSS
DQA
DQA
DQA
DQA
VSS
VDDQ
DQA
DQA
DQPA
A
A
A
A1
A0
TMS
TDI
VSS
VDD
TDO
TCK
A
A
A
A
A
A
A
Re
co
LBO
m
A
No
t
VSS
DQC
DQC
DQC
DQC
VSS
VDDQ
DQC
DQC
FT
VDD
NC
VSS
DQD
DQD
VDDQ
VSS
DQD
DQD
DQD
DQD
VSS
VDDQ
DQD
DQD
DQPD
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1
80
2
79
3
78
4
77
5
76
6
75
7
74
8
73
9
72
512K x 36
10
71
Top View
11
70
12
69
13
68
14
67
15
66
16
65
17
64
18
63
19
62
20
61
21
60
22
59
23
58
24
57
25
56
26
55
27
54
28
53
29
52
30
51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
De
sig
DQPC
DQC
DQC
VDDQ
3/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Type
Description
A 0, A 1
In
Burst Address Inputs; Preload the burst counter
A
In
Address Inputs
CK
In
BA
In
Byte Write signal for data inputs DQA1–DQA9; active low
BB
In
Byte Write signal for data inputs DQB1–DQB9; active low
BC
In
Byte Write signal for data inputs DQC1–DQC9; active low
BD
In
Byte Write signal for data inputs DQD1–DQD9; active low
W
In
Write Enable; active low
E1
In
E2
In
Chip Enable—Active High. For self decoded depth expansion
E3
In
Chip Enable—Active Low. For self decoded depth expansion
G
In
Output Enable; active low
ADV
In
CKE
In
NC
—
DQA
I/O
DQB
I/O
DQC
I/O
DQD
I/O
ZZ
In
FT
In
LBO
In
MCH
—
VDD
VSS
n—
Di
sco
nt
inu
ed
Pr
od
u
Clock Input Signal
Chip Enable; active low
De
sig
Advance/Load; Burst address counter control pin
me
nd
ed
for
Ne
w
Clock Input Buffer Enable; active low
No Connect
Byte A Data Input and Output pins
Byte B Data Input and Output pins
Byte C Data Input and Output pins
Byte D Data Input and Output pins
Power down control; active high
Pipeline/Flow Through Mode Control; active low
Linear Burst Order; active low.
Must Connect High (165 BGA only)
In
Core power supply
In
Ground
In
Output driver power supply
No
t
VDDQ
ct
Symbol
Re
co
m
100-Pin TQFP Pin Descriptions
Rev: 1.03 9/2008
4/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
2
3
4
5
6
7
8
9
10
11
A
NC
A
E1
BB
NC
E3
CKE
ADV
A
A
A
A
B
NC
A
E2
NC
BA
CK
W
G
A
A
NC
B
C
NC
NC
VDDQ
VSS
VSS
VSS
VSS
VSS
VDDQ
NC
DQPA
C
D
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
D
E
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
E
F
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
F
G
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
G
H
FT
MCH
NC
VDD
VSS
VSS
VSS
VDD
NC
NC
ZZ
H
J
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
J
K
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
K
L
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
L
M
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
M
N
DQPB
NC
P
NC
NC
R
LBO
NC
me
nd
ed
for
Ne
w
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
1
De
sig
165 Bump BGA—x18 Commom I/O—Top View (Package D)
VSS
NC
NC
NC
VSS
VDDQ
NC
NC
N
A
A
TDI
A1
TDO
A
A
A
NC
P
A
A
TMS
A0
TCK
A
A
A
A
R
Re
co
m
VDDQ
No
t
11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch
Rev: 1.03 9/2008
5/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
165 Bump BGA—x32 Common I/O—Top View (Package D)
2
3
4
5
6
7
8
9
10
11
A
NC
A
E1
BC
BB
E3
CKE
ADV
A
A
NC
B
NC
A
E2
BD
BA
CK
W
G
A
A
C
NC
NC
VDDQ
VSS
VSS
VSS
VSS
VSS
VDDQ
D
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
VDD
E
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
F
DQC
DQC
VDDQ
VDD
VSS
VSS
G
DQC
DQC
VDDQ
VDD
VSS
H
FT
MCH
NC
VDD
J
DQD
DQD
VDDQ
K
DQD
DQD
L
DQD
M
A
B
NC
NC
C
VDDQ
DQB
DQB
D
VDD
VDDQ
DQB
DQB
E
VSS
VDD
VDDQ
DQB
DQB
F
VSS
VSS
VDD
VDDQ
DQB
DQB
G
VSS
VSS
VSS
VDD
NC
NC
ZZ
H
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
J
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
K
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
L
DQD
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
M
N
NC
NC
P
NC
NC
R
LBO
NC
me
nd
ed
for
Ne
w
n—
Di
sco
nt
inu
ed
Pr
od
u
NC
De
sig
ct
1
VSS
NC
NC
NC
VSS
VDDQ
NC
NC
N
A
A
TDI
A1
TDO
A
A
A
NC
P
A
A
TMS
A0
TCK
A
A
A
A
R
Re
co
m
VDDQ
No
t
11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch
Rev: 1.03 9/2008
6/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
165 Bump BGA—x36 Common I/O—Top View (Package D)
2
3
4
5
6
7
8
9
10
11
A
NC
A
E1
BC
BB
E3
CKE
ADV
A
A
NC
B
NC
A
E2
BD
BA
CK
W
G
A
A
C
DQPC
NC
VDDQ
VSS
VSS
VSS
VSS
VSS
VDDQ
D
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
VDD
E
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
F
DQC
DQC
VDDQ
VDD
VSS
VSS
G
DQC
DQC
VDDQ
VDD
VSS
H
FT
MCH
NC
VDD
J
DQD
DQD
VDDQ
K
DQD
DQD
L
DQD
M
A
B
NC
DQPB
C
VDDQ
DQB
DQB
D
VDD
VDDQ
DQB
DQB
E
VSS
VDD
VDDQ
DQB
DQB
F
VSS
VSS
VDD
VDDQ
DQB
DQB
G
VSS
VSS
VSS
VDD
NC
NC
ZZ
H
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
J
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
K
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
L
DQD
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
M
N
DQPD
NC
P
NC
NC
R
LBO
NC
me
nd
ed
for
Ne
w
n—
Di
sco
nt
inu
ed
Pr
od
u
NC
De
sig
ct
1
VSS
NC
NC
NC
VSS
VDDQ
NC
DQPA
N
A
A
TDI
A1
TDO
A
A
A
NC
P
A
A
TMS
A0
TCK
A
A
A
A
R
Re
co
m
VDDQ
No
t
11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch
Rev: 1.03 9/2008
7/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
Rev: 1.03 9/2008
W
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
8/34
G
CKE
CK
E3
E2
E1
BD
BC
BB
BA
ADV
No
LBO
t
A0–An
K
K
Q
K
SA1
SA0
Control Logic
Data Coherency
Read, Write and
Match
Register 1
Write Address
K
18
SA1’
SA0’
Write Drivers
Sense Amps
K
K
D
Q
K
FT
Write Data
Register 1
Write Data
Register 2
n—
Di
sco
nt
inu
ed
Pr
od
u
Memory
Array
De
sig
FT
Ne
w
Register 2
Write Address
Burst
Counter
me
nd
ed
for
Re
co
m
K
D
ct
DQa–DQn
GS8161ZxxB(T/D)-xxxV
GS8161Z18/32/36B(T/D)-xxxV NBT SRAM Functional Block Diagram
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Functional Details
ct
Clocking
Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to
suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.
W
BA
BB
BC
BD
Read
H
X
X
X
X
Write Byte “a”
L
L
H
H
H
Write Byte “b”
L
H
L
H
H
Write Byte “c”
L
H
H
L
H
Write Byte “d”
L
H
H
H
L
Write all Bytes
L
L
L
L
L
Write Abort/NOP
L
H
H
H
De
sig
Function
n—
Di
sco
nt
inu
ed
Pr
od
u
Pipeline Mode Read and Write Operations
All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle
read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device
activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2 and E3). Deassertion of any one of the Enable
inputs will deactivate the device.
H
me
nd
ed
for
Ne
w
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three
chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address
presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control
logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At
the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.
Re
co
m
Write operation occurs when the RAM is selected, CKE is asserted low, and the write input is sampled low at the rising edge of
clock. The Byte Write Enable inputs (BA, BB, BC & BD) determine which bytes will be written. All or none may be activated. A
write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality,
matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At
the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is
required at the third rising edge of clock.
No
t
Flow Through Mode Read and Write Operations
Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a read cycle and the use
of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new
address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow
Through mode the read pipeline is one cycle shorter than in Pipeline mode.
Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability
to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late
write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address
and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of
clock.
Rev: 1.03 9/2008
9/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Synchronous Truth Table
Type Address CK CKE ADV W Bx E1 E2 E3 G ZZ
External
L-H
L
Read Cycle, Continue Burst
B
Next
L-H
L
NOP/Read, Begin Burst
R
External
L-H
L
Dummy Read, Continue Burst
B
Next
L-H
L
Write Cycle, Begin Burst
W
External
L-H
L
Write Abort, Begin Burst
D
None
L-H
L
Write Cycle, Continue Burst
B
Next
L-H
L
Write Abort, Continue Burst
B
Next
L-H
L
Deselect Cycle, Power Down
D
None
L-H
L
Deselect Cycle, Power Down
D
None
L-H
L
Deselect Cycle, Power Down
D
None
L-H
L
Deselect Cycle, Continue
D
None
L-H
None
X
Current
L-H
Clock Edge Ignore, Stall
H
X
L
H
L
L
L
Q
Notes
H
X
X
X
X
X
L
L
Q
1,10
L
H
X
L
H
L
H
L
High-Z
2
H
X
X
X
X
X
H
L
High-Z
1,2,10
L
L
L
L
H
L
X
L
D
3
L
L
H
L
H
L
X
L
High-Z
1
H
X
L
X
X
X
X
L
D
1,3,10
H
X
H
X
X
X
X
L
High-Z 1,2,3,10
L
X
X
H
X
X
X
L
High-Z
L
X
X
X
X
H
X
L
High-Z
L
X
X
X
L
X
X
L
High-Z
Ne
w
Sleep Mode
L
ct
R
DQ
De
sig
Read Cycle, Begin Burst
n—
Di
sco
nt
inu
ed
Pr
od
u
Operation
L
H
X
X
X
X
X
X
L
High-Z
X
X
X
X
X
X
X
X
H
High-Z
H
X
X
X
X
X
X
X
L
-
1
4
No
t
Re
co
m
me
nd
ed
for
Notes:
1. Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Deselect cycle is executed first.
2. Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the W
pin is sampled low but no Byte Write pins are active so no write operation is performed.
3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during
write cycles.
4. If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the bus
will remain in High Z.
5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write
signals are Low
6. All inputs, except G and ZZ must meet setup and hold times of rising clock edge.
7. Wait states can be inserted by setting CKE high.
8. This device contains circuitry that ensures all outputs are in High Z during power-up.
9. A 2-bit burst counter is incorporated.
10. The address counter is incriminated for all Burst continue cycles.
Rev: 1.03 9/2008
10/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Pipelined and Flow Through Read Write Control State Diagram
D
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
B
Deselect
R
D
R
D
W
New Read
W
B
R
W
R
ƒ Transition
Current State (n)
No
t
Command
Re
co
m
Clock (CK)
Ne
w
2. W, R, B, and D represent input command
codes as indicated in the Synchronous Truth Table.
n+1
ƒ
Current State
D
1. The Hold command (CKE Low) is not
shown because it prevents any state change.
Next State (n+1)
n
B
Notes:
me
nd
ed
for
Input Command Code
W
Burst Write
De
sig
Burst Read
D
Key
New Write
R
B
B
W
n+2
ƒ
n+3
ƒ
ƒ
Next State
Current State and Next State Definition for Pipelined and Flow Through Read/Write Control State Diagram
Rev: 1.03 9/2008
11/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Pipeline Mode Data I/O State Diagram
R
High Z
(Data In)
D
R B
Intermediate
Data Out
(Q Valid)
W
D
Intermediate
Intermediate
W
Intermediate
ct
B W
n—
Di
sco
nt
inu
ed
Pr
od
u
Intermediate
R
High Z
B
D
Key
Ne
w
Input Command Code
ƒ Transition
Transition
Intermediate State (N+1)
me
nd
ed
for
Current State (n)
n
Next State (n+2)
n+1
Notes:
1. The Hold command (CKE Low) is not
shown because it prevents any state change.
2. W, R, B, and D represent input command
codes as indicated in the Truth Tables.
n+2
n+3
Command
ƒ
ƒ
ƒ
No
t
Re
co
m
Clock (CK)
De
sig
Intermediate
Current State
Intermediate
State
Next State
ƒ
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram
Rev: 1.03 9/2008
12/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Flow Through Mode Data I/O State Diagram
R B
R
High Z
(Data In)
Data Out
(Q Valid)
n—
Di
sco
nt
inu
ed
Pr
od
u
W
ct
B W
D
D
W
R
High Z
B
Key
Ne
w
Input Command Code
ƒ Transition
Current State (n)
me
nd
ed
for
Re
co
m
Command
n+1
ƒ
Current State
Notes:
1. The Hold command (CKE Low) is not
shown because it prevents any state change.
2. W, R, B, and D represent input command
codes as indicated in the Truth Tables.
Next State (n+1)
n
Clock (CK)
De
sig
D
n+2
ƒ
n+3
ƒ
ƒ
Next State
No
t
Current State and Next State Definition for: Pipeline and Flow through Read Write Control State Diagram
Rev: 1.03 9/2008
13/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Burst Cycles
Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from
read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address
generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when
driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write
the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into
Load mode.
Burst Order
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been
accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst
sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables
below for details.
Mode Pin Functions
Pin Name
Burst Order Control
LBO
Output Register Control
FT
Power Down Control
ZZ
De
sig
Mode Name
State
Function
L
Linear Burst
H
Interleaved Burst
L
Flow Through
H or NC
Pipeline
L or NC
Active
H
Standby, IDD = ISB
Burst Counter Sequences
Linear Burst Sequence
me
nd
ed
for
Ne
w
Note:
There is a pull-up device on the FT pin and a pull-down device on the ZZ pin, so this input pin can be unconnected and the chip will operate in
the default states as specified in the above table.
Interleaved Burst Sequence
A[1:0] A[1:0] A[1:0] A[1:0]
00
2nd address
01
3rd address
4th address
01
10
11
1st address
00
01
10
11
10
11
00
2nd address
01
00
11
10
10
11
00
01
3rd address
10
11
00
01
11
00
01
10
4th address
11
10
01
00
Re
co
m
1st address
A[1:0] A[1:0] A[1:0] A[1:0]
Note:
The burst counter wraps to initial state on the 5th clock.
No
t
Note:
The burst counter wraps to initial state on the 5th clock.
BPR 1999.05.18
Rev: 1.03 9/2008
14/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
ct
Sleep Mode
During normal operation, ZZ must be pulled low, either by the user or by it’s internal pull down resistor. When ZZ is pulled high,
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to
low, the SRAM operates normally after ZZ recovery time.
n—
Di
sco
nt
inu
ed
Pr
od
u
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of
Sleep mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.
When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands
may be applied while the SRAM is recovering from Sleep mode.
Sleep Mode Timing Diagram
tKH
tKC
tKL
CK
tZZR
tZZS
tZZH
De
sig
ZZ
No
t
Re
co
m
me
nd
ed
for
Ne
w
Designing for Compatibility
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipelinemode via the FT signal found
on Pin 14. Not all vendors offer this option, however most mark Pin 14 as VDD or VDDQ on pipelined parts and VSS on flow
through parts. GSI NBT SRAMs are fully compatible with these sockets.
Rev: 1.03 9/2008
15/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Absolute Maximum Ratings
(All voltages reference to VSS)
Description
Value
Unit
VDD
Voltage on VDD Pins
–0.5 to 4.6
V
VDDQ
Voltage on VDDQ Pins
–0.5 to VDD
VI/O
Voltage on I/O Pins
VIN
Voltage on Other Input Pins
IIN
Input Current on Any Pin
IOUT
Output Current on Any I/O Pin
PD
Package Power Dissipation
TSTG
Storage Temperature
TBIAS
Temperature Under Bias
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Symbol
V
–0.5 to VDDQ +0.5 (≤ 4.6 V max.)
V
–0.5 to VDD +0.5 (≤ 4.6 V max.)
V
+/–20
mA
+/–20
mA
1.5
W
–55 to 125
o
–55 to 125
o
C
C
De
sig
Note:
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of
this component.
Power Supply Voltage Ranges (1.8 V/2.5 V Version)
Symbol
Min.
Typ.
Max.
Unit
VDD1
1.7
1.8
2.0
V
VDD2
2.3
2.5
2.7
V
1.8 V VDDQ I/O Supply Voltage
VDDQ1
1.7
1.8
VDD
V
2.5 V VDDQ I/O Supply Voltage
VDDQ2
2.3
2.5
VDD
V
1.8 V Supply Voltage
me
nd
ed
for
2.5 V Supply Voltage
Ne
w
Parameter
Notes
No
t
Re
co
m
Notes:
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
Rev: 1.03 9/2008
16/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Symbol
Min.
Typ.
Max.
Unit
Notes
VDD Input High Voltage
VIH
0.6*VDD
—
VDD + 0.3
V
1
VDD Input Low Voltage
VIL
–0.3
—
0.3*VDD
1
n—
Di
sco
nt
inu
ed
Pr
od
u
Parameter
ct
VDDQ2 & VDDQ1 Range Logic Levels
V
Notes:
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
Recommended Operating Temperatures
Parameter
Symbol
Ambient Temperature (Commercial Range Versions)
TA
Ambient Temperature (Industrial Range Versions)
TA
Min.
Typ.
Max.
Unit
Notes
0
25
70
°C
2
–40
25
85
°C
2
De
sig
Notes:
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
VSS
50%
VSS – 2.0 V
Re
co
m
20% tKC
Capacitance
20% tKC
VDD + 2.0 V
me
nd
ed
for
VIH
Overshoot Measurement and Timing
Ne
w
Undershoot Measurement and Timing
50%
VDD
VIL
(TA = 25oC, f = 1 MHZ, VDD = 2.5 V)
Symbol
Test conditions
Typ.
Max.
Unit
Input Capacitance
CIN
VIN = 0 V
8
10
pF
Input/Output Capacitance
CI/O
VOUT = 0 V
12
14
pF
No
t
Parameter
Note:
These parameters are sample tested.
Rev: 1.03 9/2008
17/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
AC Test Conditions
Parameter
Conditions
Input high level
VDD – 0.2 V
Input low level
0.2 V
Input slew rate
1 V/ns
Input reference level
VDD/2
Output reference level
VDDQ/2
Output load
Fig. 1
DQ
DC Electrical Characteristics
IIL
FT, ZZ Input Current
IIN
Output Leakage Current
IOL
* Distributed Test Jig Capacitance
Test Conditions
Min
Max
VIN = 0 to VDD
–1 uA
1 uA
VDD ≥ VIN ≥ 0 V
–100 uA
100 uA
Output Disable, VOUT = 0 to VDD
–1 uA
1 uA
Symbol
Test Conditions
Min
Max
VOH1
IOH = –4 mA, VDDQ = 1.7 V
VDDQ – 0.4 V
—
VOH2
IOH = –8 mA, VDDQ = 2.375 V
1.7 V
—
VOL1
IOL = 4 mA
—
0.4 V
VOL2
IOL = 8 mA
—
0.4 V
De
sig
Input Leakage Current
(except mode pins)
VDDQ/2
Ne
w
Symbol
30pF*
50Ω
Notes:
1. Include scope and jig capacitance.
2. Test conditions as specified with output loading as shown in Fig.
1 unless otherwise noted.
3. Device is deselected as defined by the Truth Table.
Parameter
n—
Di
sco
nt
inu
ed
Pr
od
u
Output Load 1
ct
Figure 1
Parameter
1.8 V Output High Voltage
2.5 V Output High Voltage
1.8 V Output Low Voltage
No
t
Re
co
m
2.5 V Output Low Voltage
me
nd
ed
for
DC Output Characteristics (1.8 V/2.5 V Version)
Rev: 1.03 9/2008
18/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Operating Currents
-250
Device Selected;
All other inputs
≥VIH or ≤ VIL
Output open
Operating
Current
Symbol
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
Pipeline
IDD
IDDQ
290
40
300
40
240
30
250
30
190
20
200
20
mA
Flow Through
IDD
IDDQ
220
20
230
20
190
15
200
15
175
15
185
15
mA
Pipeline
IDD
IDDQ
260
20
270
20
215
15
225
15
170
15
180
15
mA
Flow Through
IDD
IDDQ
200
10
210
10
175
10
185
10
160
10
170
10
mA
Pipeline
ISB
40
50
40
50
40
50
mA
Flow Through
ISB
40
50
40
50
40
50
mA
Pipeline
IDD
85
90
75
80
60
65
mA
Flow Through
IDD
60
65
50
55
50
55
mA
Mode
(x32/
x36)
(x18)
Standby
Current
ZZ ≥ VDD – 0.2 V
Deselect
Current
Device Deselected;
All other inputs
≥ VIH or ≤ VIL
—
—
Unit
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
Notes:
1. IDD and IDDQ apply to any combination of VDD and VDDQ operation.
2. All parameters listed are worst case scenario.
ct
Test Conditions
-150
–40
to
85°C
n—
Di
sco
nt
inu
ed
Pr
od
u
Parameter
-200
0
to
70°C
Rev: 1.03 9/2008
19/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
AC Electrical Characteristics
Clock to Output Valid
tKQ
Clock to Output Invalid
tKQX
Clock to Output in Low-Z
tLZ1
Setup time
tS
Hold time
tH
-150
Unit
Min
Max
Min
Max
Min
Max
4.0
—
5.0
—
ct
tKC
-200
6.7
—
ns
n—
Di
sco
nt
inu
ed
Pr
od
u
Clock Cycle Time
-250
—
3.0
—
3.0
—
3.8
ns
1.5
—
1.5
—
1.5
—
ns
1.5
—
1.5
—
1.5
—
ns
1.4
—
1.4
—
1.5
—
ns
0.2
—
0.4
—
0.5
—
ns
5.5
—
6.5
—
7.5
—
ns
—
5.5
—
6.5
—
7.5
ns
2.0
—
2.0
—
2.0
—
ns
2.0
—
2.0
—
2.0
—
ns
1.5
—
1.5
—
1.5
—
ns
0.5
—
0.5
—
0.5
—
ns
1.3
—
1.3
—
1.5
—
ns
1.7
—
1.7
—
1.7
—
ns
De
sig
Flow Through
Symbol
1.5
2.5
1.5
3.0
1.5
3.0
ns
Clock Cycle Time
tKC
Clock to Output Valid
tKQ
Clock to Output Invalid
tKQX
1
Clock to Output in Low-Z
tLZ
Setup time
tS
Hold time
tH
Clock HIGH Time
tKH
Clock LOW Time
tKL
Clock to Output in
High-Z
tHZ1
G to Output Valid
tOE
—
2.5
—
3.0
—
3.8
ns
G to output in Low-Z
tOLZ1
0
—
0
—
0
—
ns
G to output in High-Z
ZZ setup time
tOHZ1
ZZ recovery
—
2.5
—
3.0
—
3.8
ns
2
5
—
5
—
5
—
ns
2
1
—
1
—
1
—
ns
tZZR
20
—
20
—
20
—
ns
tZZS
tZZH
me
nd
ed
for
ZZ hold time
Ne
w
Pipeline
Parameter
No
t
Re
co
m
Notes:
1. These parameters are sampled and are not 100% tested.
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold
times as specified above.
Rev: 1.03 9/2008
20/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Pipeline Mode Timing (NBT)
Write A
Write B
Write B+1
Read C
Cont
Read D
Write E
Read F
Write G
Deselect
tKL
tKH
tKC
ct
CK
n—
Di
sco
nt
inu
ed
Pr
od
u
tH
tS
CKE
tH
tS
E*
tH
tS
ADV
tH
tS
W
tH
tS
Bn
tH
tS
A
A0–An
B
C
D
tS
D(A)
F
D(B)
D(B+1)
G
tHZ
tKQX
Q(C)
Q(D)
D(E)
Q(F)
D(G)
tOLZ
tOHZ
tOE
Ne
w
DQa–DQd
E
tLZ
tKQ
De
sig
tH
G
No
t
Re
co
m
me
nd
ed
for
*Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1
Rev: 1.03 9/2008
21/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Flow Through Mode Timing (NBT)
Write A
Write B
Write B+1
Read C
Cont
Read D
Write E
Read F
Write G
tKL
tKH
tKC
tH
tS
CKE
tH
tS
E*
tH
tS
ADV
tH
tS
W
tH
tS
Bn
tH
A0–An
B
C
tH
tS
D(A)
D(B)
D(B+1)
Ne
w
DQ
D
tKQ
tLZ
De
sig
tS
A
G
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
CK
E
F
tKQX
tHZ
Q(C)
Q(D)
G
tKQ
tLZ
D(E)
tKQX
Q(F)
D(G)
tOLZ
tOE
tOHZ
me
nd
ed
for
*Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1
JTAG Port Operation
Re
co
m
Overview
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output drivers
are powered by VDDQ.
No
t
Disabling the JTAG Port
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked.
TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused,
TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected.
Rev: 1.03 9/2008
22/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
JTAG Pin Descriptions
Pin Name
I/O
Description
TCK
Test Clock
In
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate
from the falling edge of TCK.
TMS
Test Mode Select
In
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP
controller state machine. An undriven TMS input will produce the same result as a logic one input
level.
In
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers
placed between TDI and TDO. The register placed between TDI and TDO is determined by the
state of the TAP Controller state machine and the instruction that is currently loaded in the TAP
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce
the same result as a logic one input level.
Test Data In
TDO
Test Data Out
n—
Di
sco
nt
inu
ed
Pr
od
u
TDI
ct
Pin
Output that is active depending on the state of the TAP state machine. Output changes in
Out response to the falling edge of TCK. This is the output side of the serial registers placed between
TDI and TDO.
Note:
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.
JTAG Port Registers
Ne
w
De
sig
Overview
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the
TDI and TDO pins.
me
nd
ed
for
Instruction Register
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the
controller is placed in Test-Logic-Reset state.
Bypass Register
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.
No
t
Re
co
m
Boundary Scan Register
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.
Rev: 1.03 9/2008
23/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
·
·
·
·
·
·
·
n—
Di
sco
nt
inu
ed
Pr
od
u
·
ct
JTAG TAP Block Diagram
Boundary Scan Register
·
1
·
·
2 1 0
0
M*
0
Bypass Register
Instruction Register
TDI
TDO
ID Code Register
·
· ··
2 1 0
De
sig
31 30 29
Control Signals
TMS
Test Access Port (TAP) Controller
Ne
w
TCK
* For the value of M, see the BSDL file, which is available at by contacting us at [email protected].
Bit #
No
t
Re
co
m
ID Register Contents
GSI Technology
JEDEC Vendor
ID Code
Not Used
Presence Register
me
nd
ed
for
Identification (ID) Register
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0
X
1
X
Rev: 1.03 9/2008
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
24/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
0 0 1 1 0 1 1 0 0 1
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Tap Controller Instruction Set
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Overview
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load
address, data or control signals into the RAM or to preload the I/O buffers.
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this
device is listed in the following table.
JTAG Tap Controller State Diagram
Test Logic Reset
1
0
0
Run Test Idle
1
Select DR
1
Select IR
0
0
1
De
sig
Shift DR
Ne
w
1
me
nd
ed
for
1
0
Shift IR
0
1
1
Exit1 DR
0
Exit1 IR
0
0
Pause DR
1
Exit2 DR
1
Update DR
1
Capture IR
0
0
Pause IR
1
Exit2 IR
0
1
0
0
Update IR
1
0
No
t
Re
co
m
1
Capture DR
0
1
Instruction Descriptions
BYPASS
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
Rev: 1.03 9/2008
25/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then
places the boundary scan register between the TDI and TDO pins.
EXTEST
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is
still determined by its input pins.
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output
drivers on the falling edge of TCK when the controller is in the Update-IR state.
De
sig
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associated.
Ne
w
IDCODE
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.
me
nd
ed
for
SAMPLE-Z
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (highZ) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR
state.
RFU
No
t
Re
co
m
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.
Rev: 1.03 9/2008
26/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
JTAG TAP Instruction Set Summary
Code
Description
Notes
EXTEST
000
Places the Boundary Scan Register between TDI and TDO.
1
IDCODE
001
Preloads ID Register and places it between TDI and TDO.
1, 2
SAMPLE-Z
010
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
Forces all RAM output drivers to High-Z.
1
RFU
011
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
1
SAMPLE/
PRELOAD
100
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
1
GSI
101
GSI private instruction.
1
RFU
110
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Instruction
1
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
BYPASS
111
Places Bypass Register between TDI and TDO.
Notes:
1. Instruction codes expressed in binary, MSB on left, LSB on right.
2. Default instruction automatically loaded at power-up and in test-logic-reset state.
1
Rev: 1.03 9/2008
27/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
JTAG Port Recommended Operating Conditions and DC Characteristics (1.8/2.5 V Version)
Symbol
Min.
Max.
Unit Notes
1.8 V Test Port Input Low Voltage
VILJ1
–0.3
0.3 * VDD1
V
1
2.5 V Test Port Input Low Voltage
VILJ2
–0.3
0.3 * VDD2
V
1
1.8 V Test Port Input High Voltage
VIHJ1
0.6 * VDD1
VDD1 +0.3
V
1
VIHJ2
0.6 * VDD2
VDD2 +0.3
V
1
IINHJ
–300
1
uA
2
IINLJ
–1
100
uA
3
IOLJ
–1
1
uA
4
VOHJ
1.7
—
V
5, 6
VOLJ
—
0.4
V
5, 7
VOHJC
VDDQ – 100 mV
—
V
5, 8
VOLJC
—
100 mV
V
5, 9
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Parameter
2.5 V Test Port Input High Voltage
TMS, TCK and TDI Input Leakage Current
TMS, TCK and TDI Input Leakage Current
TDO Output Leakage Current
Test Port Output High Voltage
Test Port Output Low Voltage
Test Port Output CMOS High
Test Port Output CMOS Low
me
nd
ed
for
Ne
w
De
sig
Notes:
1. Input Under/overshoot voltage must be –2 V < Vi < VDDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC.
2. VILJ ≤ VIN ≤ VDDn
3. 0 V ≤ VIN ≤ VILJn
4. Output Disable, VOUT = 0 to VDDn
5. The TDO output driver is served by the VDDQ supply.
6. IOHJ = –4 mA
7. IOLJ = + 4 mA
8. IOHJC = –100 uA
9. IOLJC = +100 uA
JTAG Port AC Test Conditions
Parameter
Input high level
Input low level
Re
co
m
Input slew rate
Conditions
VDD – 0.2 V
JTAG Port AC Test Load
DQ
0.2 V
50Ω
1 V/ns
Input reference level
VDDQ/2
Output reference level
VDDQ/2
30pF*
VDDQ/2
* Distributed Test Jig Capacitance
No
t
Notes:
1. Include scope and jig capacitance.
2. Test conditions as shown unless otherwise noted.
Rev: 1.03 9/2008
28/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
JTAG Port Timing Diagram
tTKC
tTKH
tTKL
TCK
tTH
tTS
TMS
tTKQ
TDO
tTH
tTS
Parallel SRAM input
JTAG Port AC Electrical Characteristics
Symbol
Min
Max
TCK Cycle Time
tTKC
50
—
TCK Low to TDO Valid
tTKQ
—
TCK High Pulse Width
tTKH
20
TCK Low Pulse Width
tTKL
20
TDI & TMS Set Up Time
tTS
TDI & TMS Hold Time
tTH
Unit
ns
De
sig
Parameter
n—
Di
sco
nt
inu
ed
Pr
od
u
tTH
tTS
ct
TDI
ns
—
ns
—
ns
10
—
ns
10
—
ns
me
nd
ed
for
Ne
w
20
No
t
Re
co
m
Boundary Scan (BSDL Files)
For information regarding the Boundary Scan Chain, or to obtain BSDL files for this part, please contact our Applications
Engineering Department at: [email protected].
Rev: 1.03 9/2008
29/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
TQFP Package Drawing (Package T)
A1
Standoff
0.05
0.10
0.15
A2
Body Thickness
1.35
1.40
1.45
b
Lead Width
0.20
0.30
0.40
c
Lead Thickness
0.09
—
0.20
D
Terminal Dimension
21.9
22.0
22.1
D1
Package Body
19.9
20.0
20.1
E
Terminal Dimension
15.9
16.0
16.1
E1
Package Body
13.9
14.0
14.1
e
Lead Pitch
—
0.65
—
L
Foot Length
0.45
0.60
0.75
L1
Lead Length
—
1.00
—
Y
Coplanarity
θ
Lead Angle
n—
Di
sco
nt
inu
ed
Pr
od
u
Min. Nom. Max
e
b
A2
Y
De
sig
A1
0.10
0°
—
7°
E1
E
No
t
Re
co
m
me
nd
ed
for
Ne
w
Notes:
1. All dimensions are in millimeters (mm).
2. Package width and length do not include mold protrusion.
D
D1
Description
c
Pin 1
Symbol
L1
θ
ct
L
Rev: 1.03 9/2008
30/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Package Dimensions—165-Bump FPBGA (Package D)
A1 CORNER
TOP VIEW
BOTTOM VIEW
Ø0.10 M C
Ø0.25 M C A B
Ø0.40~0.60 (165x)
ct
1 2 3 4 5 6 7 8 9 10 11
A1 CORNER
14.0
1.0
1.0
10.0
13±0.05
0.20(4x)
No
t
Re
co
m
0.36~0.46
1.40 MAX.
SEATING PLANE
C
B
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
me
nd
ed
for
0.15 C
Ne
w
A
De
sig
15±0.05
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
n—
Di
sco
nt
inu
ed
Pr
od
u
11 10 9 8 7 6 5 4 3 2 1
Rev: 1.03 9/2008
31/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Ordering Information for GSI Synchronous Burst RAMs
TA3
250/5.5
C
TQFP
200/6.5
C
1.8 V or 2.5 V
TQFP
150/7.5
C
NBT
1.8 V or 2.5 V
TQFP
250/5.5
C
GS8161Z36BT-200V
NBT
1.8 V or 2.5 V
TQFP
200/6.5
C
512K x 36
GS8161Z36BT-150V
NBT
1.8 V or 2.5 V
TQFP
150/7.5
C
1M x 18
GS8161Z18BT-250IV
NBT
1.8 V or 2.5 V
TQFP
250/5.5
I
1M x 18
GS8161Z18BT-200IV
NBT
1.8 V or 2.5 V
TQFP
200/6.5
I
1M x 18
GS8161Z18BT-150IV
NBT
1.8 V or 2.5 V
TQFP
150/7.5
I
512K x 36
GS8161Z36BT-250IV
NBT
1.8 V or 2.5 V
TQFP
250/5.5
I
512K x 36
GS8161Z36BT-200IV
NBT
1.8 V or 2.5 V
TQFP
200/6.5
I
512K x 36
GS8161Z36BT-150IV
NBT
1.8 V or 2.5 V
TQFP
150/7.5
I
1M x 18
GS8161Z18BD-250V
NBT
1.8 V or 2.5 V
165 BGA
250/5.5
C
1M x 18
GS8161Z18BD-200V
NBT
1.8 V or 2.5 V
165 BGA
200/6.5
C
1M x 18
GS8161Z18BD-150V
NBT
1.8 V or 2.5 V
165 BGA
150/7.5
C
512K x 32
GS8161Z32BD-250V
NBT
1.8 V or 2.5 V
165 BGA
250/5.5
C
512K x 32
GS8161Z32BD-200V
NBT
1.8 V or 2.5 V
165 BGA
200/6.5
C
512K x 32
GS8161Z32BD-150V
NBT
1.8 V or 2.5 V
165 BGA
150/7.5
C
512K x 36
GS8161Z36BD-250V
NBT
1.8 V or 2.5 V
165 BGA
250/5.5
C
512K x 36
GS8161Z36BD-200V
NBT
1.8 V or 2.5 V
165 BGA
200/6.5
C
512K x 36
GS8161Z36BD-150V
NBT
1.8 V or 2.5 V
165 BGA
150/7.5
C
1M x 18
GS8161Z18BD-250IV
NBT
1.8 V or 2.5 V
165 BGA
250/5.5
I
1M x 18
GS8161Z18BD-200IV
NBT
1.8 V or 2.5 V
165 BGA
200/6.5
I
1M x 18
GS8161Z18BD-150IV
NBT
1.8 V or 2.5 V
165 BGA
150/7.5
I
512K x 32
GS8161Z32BD-250IV
NBT
1.8 V or 2.5 V
165 BGA
250/5.5
I
512K x 32
GS8161Z32BD-200IV
NBT
1.8 V or 2.5 V
165 BGA
200/6.5
I
512K x 32
GS8161Z32BD-150IV
NBT
1.8 V or 2.5 V
165 BGA
150/7.5
I
512K x 36
GS8161Z36BD-250IV
NBT
1.8 V or 2.5 V
165 BGA
250/5.5
I
Type
Voltage
Option
Package
1M x 18
GS8161Z18BT-250V
NBT
1.8 V or 2.5 V
TQFP
1M x 18
GS8161Z18BT-200V
NBT
1.8 V or 2.5 V
1M x 18
GS8161Z18BT-150V
NBT
512K x 36
GS8161Z36BT-250V
512K x 36
Re
co
m
me
nd
ed
for
Ne
w
De
sig
n—
Di
sco
nt
inu
ed
Pr
od
u
Part Number1
ct
Speed2
(MHz/ns)
Org
No
t
512K x 36
GS8161Z36BD-200IV
NBT
1.8 V or 2.5 V
165 BGA
200/6.5
I
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8161Z18BT150VT.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow Through mode-selectable by the user.
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.03 9/2008
32/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
Ordering Information for GSI Synchronous Burst RAMs (Continued)
Part Number1
Type
Voltage
Option
Package
Speed2
(MHz/ns)
TA3
512K x 36
GS8161Z36BD-150IV
NBT
1.8 V or 2.5 V
165 BGA
150/7.5
I
1M x 18
GS8161Z18BGT-250V
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
250/5.5
C
1M x 18
GS8161Z18BGT-200V
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
200/6.5
C
1M x 18
GS8161Z18BGT-150V
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
150/7.5
C
512K x 36
GS8161Z36BGT-250V
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
250/5.5
C
512K x 36
GS8161Z36BGT-200V
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
200/6.5
C
512K x 36
GS8161Z36BGT-150V
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
150/7.5
C
1M x 18
GS8161Z18BGT-250IV
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
250/5.5
I
1M x 18
GS8161Z18BGT-200IV
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
200/6.5
I
1M x 18
GS8161Z18BGT-150IV
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
150/7.5
I
512K x 36
GS8161Z36BGT-250IV
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
250/5.5
I
512K x 36
GS8161Z36BGT-200IV
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
200/6.5
I
512K x 36
GS8161Z36BGT-150IV
NBT
1.8 V or 2.5 V
RoHS-compliant TQFP
150/7.5
I
1M x 18
GS8161Z18BGD-250V
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
250/5.5
C
1M x 18
GS8161Z18BGD-200V
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
200/6.5
C
1M x 18
GS8161Z18BGD-150V
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
150/7.5
C
512K x 32
GS8161Z32BGD-250V
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
250/5.5
C
512K x 32
GS8161Z32BGD-200V
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
200/6.5
C
512K x 32
GS8161Z32BGD-150V
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
150/7.5
C
512K x 36
GS8161Z36BGD-250V
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
250/5.5
C
512K x 36
GS8161Z36BGD-200V
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
200/6.5
C
512K x 36
GS8161Z36BGD-150V
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
150/7.5
C
1M x 18
GS8161Z18BGD-250IV
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
250/5.5
I
1M x 18
GS8161Z18BGD-200IV
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
200/6.5
I
1M x 18
GS8161Z18BGD-150IV
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
150/7.5
I
512K x 32
GS8161Z32BGD-250IV
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
250/5.5
I
512K x 32
GS8161Z32BGD-200IV
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
200/6.5
I
512K x 32
GS8161Z32BGD-150IV
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
150/7.5
I
512K x 36
GS8161Z36BGD-250IV
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
250/5.5
I
512K x 36
GS8161Z36BGD-200IV
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
200/6.5
I
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
Ne
w
me
nd
ed
for
Re
co
m
ct
Org
No
t
512K x 36
GS8161Z36BGD-150IV
NBT
1.8 V or 2.5 V
RoHS-compliant 165 BGA
150/7.5
I
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8161Z18BT150VT.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow Through mode-selectable by the user.
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.03 9/2008
33/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology
GS8161ZxxB(T/D)-xxxV
18Mb Sync SRAM Data Sheet Revision History
DS/DateRev. Code: Old;
New
Types of Changes
Format or Content
Page;Revisions;Reason
• Creation of new datasheet
8161ZVxxB_r1;
8161ZxxB-xxxV
Content
• Updated Abs Max section
• Updated AC Characteristics table
• Changed ordering information to reflect new nomenclature
• (Rev1.01a: Corrected JTAG Op Cond table)
8161ZVxxB_r1.01;
8161ZVxxB_r1.02
Content
• Added MCH to Pin Description (pg. 4), removed Status column
from Ordering Information table, Updated 165 BGA Package
Drawing
8161ZVxxB_r1.02;
8161ZVxxB_r1.03
Content
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
8161ZVxxB_r1
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
• Updated for MP status
Rev: 1.03 9/2008
34/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2004, GSI Technology