INTERSIL HA9P2850-5

HA-2850
Data Sheet
September 1998
File Number
2844.4
470MHz, Low Power, High Slew Rate
Operational Amplifier
Features
The HA-2850 is a wideband, high slew rate, operational
amplifier featuring superior speed and bandwidth
characteristics. Bipolar construction, coupled with dielectric
isolation, delivers outstanding performance in circuits with a
closed loop gain of 10 or greater.
• High Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . 340V/µs
A 340V/µs slew rate and a 470MHz gain bandwidth product
ensure high performance in video and wideband amplifier
designs. Differential gain and phase are a low 0.04% and
0.04 degrees respectively, making the HA-2850 ideal for
video applications. A full ±10V output swing, high open loop
gain, and outstanding AC parameters, make the HA-2850 an
excellent choice for high speed Data Acquisition Systems.
• Low Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 0.6mV
For military grade product, refer to the HA-2850/883 data
sheet. Intersil AnswerFAX (321-724-7800) Document #3595.
Applications
Pinout
• Wideband Amplifiers
HA-2850
(SOIC)
TOP VIEW
NC
1
-IN
2
+IN
3
V-
4
+
1
• Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . . 7.5mA
• Open Loop Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 25kV/V
• Wide Gain-Bandwidth (AV ≥ 10) . . . . . . . . . . . . . . 470MHz
• Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . 5.4MHz
• Input Noise Voltage . . . . . . . . . . . . . . . . . . . . 11nV / Hz
• Differential Gain/Phase. . . . . . . . . . . 0.04%/0.04 Degrees
• Lower Power Enhanced Replacement for AD840 and
EL2040
• Pulse and Video Amplifiers
• High Speed Sample-Hold Circuits
• Fast, Precise D/A Converters
8
NC
7
V+
6
OUT
5
NC
Ordering Information
PART NUMBER
(BRAND)
HA9P2850-5
(H28505)
TEMP.
RANGE (oC)
0 to 75
PACKAGE
8 Ld SOIC
PKG.
NO.
M8.15
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999
HA-2850
Absolute Maximum Ratings
Thermal Information
Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . . . . . . . 35V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
8 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . .
157
Maximum Junction Temperature (Die) . . . . . . . . . . . . . . . . . . . .175oC
Maximum Junction Temperature (Plastic Package, Note 2) . .150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range
HA-2850-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 75oC
Recommended Supply Voltage Range . . . . . . . . . . . . ±6V To ±15V
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
2. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below 150oC for plastic
packages.
VSUPPLY = ±15V, RL = 1kΩ, CL ≤ 10pF, Unless Otherwise Specified
Electrical Specifications
HA-2850-5
TEMP. (oC)
MIN
TYP
MAX
UNITS
25
-
0.6
2
mV
Full
-
2
6
mV
Average Offset Voltage Drift
Full
-
20
-
µV/oC
Bias Current (Note 9)
25
-
5
14.5
µA
Full
-
8
20
µA
25
-
1
4
µA
Full
-
-
8
µA
Input Resistance
25
-
10
-
kΩ
Input Capacitance
25
-
1
-
pF
Common Mode Range
Full
±10
-
-
V
PARAMETER
TEST CONDITIONS
INPUT CHARACTERISTICS
Offset Voltage (Note 9)
Offset Current
Input Noise Voltage (Note 9)
f = 1kHz, RSOURCE = 0Ω
25
-
11
-
nV⁄ Hz
Input Noise Current (Note 9)
f = 1kHz, RSOURCE = 10kΩ
25
-
6
-
pA ⁄ Hz
Note 4
25
20
25
-
kV/V
Full
15
20
-
kV/V
Full
75
80
-
dB
25
10
-
-
V/V
VO = 90mV, AV = 100
25
-
470
-
MHz
Output Voltage Swing (Note 9)
Note 4
Full
±10
±11
-
V
Output Current (Note 9)
Note 4
Full
±10
±20
-
mA
25
-
30
-
Ω
TRANSFER CHARACTERISTICS
Large Signal Voltage Gain
Common-Mode Rejection Ratio (Note 9)
VCM = ±10V
Minimum Stable Gain
Gain Bandwidth Product (Note 9)
OUTPUT CHARACTERISTICS
Output Resistance
Full Power Bandwidth (Note 5)
Note 4
25
4.8
5.4
-
MHz
Differential Gain
AV = +10, Note 3
25
-
0.04
-
%
Differential Phase
AV = +10, Note 3
25
-
0.04
-
Degrees
Harmonic Distortion (Note 9)
AV = +10, VO = 2VP-P, f = 1MHz
25
-
-74
-
dBc
2
HA-2850
VSUPPLY = ±15V, RL = 1kΩ, CL ≤ 10pF, Unless Otherwise Specified (Continued)
Electrical Specifications
HA-2850-5
TEMP. (oC)
MIN
TYP
MAX
UNITS
Rise Time
25
-
5
-
ns
Overshoot
25
-
25
-
%
PARAMETER
TEST CONDITIONS
TRANSIENT RESPONSE (Note 6)
Slew Rate (Notes 8, 9)
Note 4
25
300
340
-
V/µs
Settling Time
10V Step to 0.1%
25
-
200
-
ns
Full
-
7.5
8.0
mA
Full
75
90
-
dB
POWER REQUIREMENTS
Supply Current (Note 9)
Power Supply Rejection Ratio (Note 9)
Note 7
NOTES:
3. Differential gain and phase are measured with a VM700A video tester, using a NTC-7 composite VITS.
4. RL = 1kΩ, VO = ±10V, 0V to ±10V for slew rate.
Slew Rate
5. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW = --------------------------- ; V PEAK = 10V .
2πV PEAK
6. Refer to Test Circuit section of data sheet.
7. VSUPPLY = ±10V to ±20V.
8. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
9. See “Typical Performance Curves” for more information.
Test Circuits and Waveforms
IN
+
OUT
-
900Ω
NOTES:
100Ω
11. AV = +10.
10. VS = ±15V.
12. CL < 10pF.
TEST CIRCUIT
INPUT
INPUT
OUTPUT
OUTPUT
Input = 1V/Div.
Output = 5V/Div.
50ns/Div.
Input = 10mV/Div.
Output = 100mV/Div.
50ns/Div.
LARGE SIGNAL RESPONSE
SMALL SIGNAL RESPONSE
3
HA-2850
Test Circuits and Waveforms
(Continued)
V+
0.001µF
NOTES:
13. AV = -10.
200Ω
14. Load Capacitance should be less than 10pF.
1µF
-
INPUT
+
OUTPUT
0.001µF
PROBE
MONITOR
500Ω
1µF
15. It is recommended that resistors be carbon composition and that
feedback and summing network ratios be matched to 0.1%.
16. SETTLING POINT (Summing Node) capacitance should be less
than 10pF. For optimum settling time results, it is recommended
that the test circuit be constructed directly onto the device pins.
A Tektronix 568 Sampling Oscilloscope with S-3A sampling
heads is recommended as a settle point monitor.
V2kΩ
5kΩ
SETTLING
POINT
SETTLING TIME TEST CIRCUIT
Typical Performance Curves
TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified
475
OPEN LOOP
GAIN (dB)
80
AVCL = 1000
60
AVCL = 100
40
20
AVCL= 1000
AVCL= 100
AVCL = 10
0
90
OPEN LOOP
180
1K
10K
100K
1M
10M
FREQUENCY (Hz)
PHASE (DEGREES)
AVCL = 10
0
GAIN BANDWIDTH PRODUCT (MHz)
100
425
400
5
100M 500M
6
7
8
9
10
11
12
13
14
15
SUPPLY VOLTAGE (±V)
FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS GAINS
FIGURE 2. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE
600
90
550
80
500
70
450
CMRR (dB)
GAIN BANDWIDTH
PRODUCT (MHz)
450
400
350
60
50
300
40
250
30
200
-60
-40
-20
0
20
40
60
80
100
120
140
TEMPERATURE (oC)
FIGURE 3. GAIN BANDWIDTH PRODUCT vs TEMPERATURE
4
20
100
1K
10K
100K
FREQUENCY (Hz)
FIGURE 4. CMRR vs FREQUENCY
1M
10M
HA-2850
Typical Performance Curves
TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified (Continued)
±PSRR
80
PSRR (dB)
NOISE VOLTAGE (nV/√Hz)
90
70
60
50
40
30
20
10
0
100
1K
10K
100K
FREQUENCY (Hz)
1M
60
60
50
50
NOISE CURRENT
40
30
30
20
20
10
10
0
0
10
10M
FIGURE 5. PSRR vs FREQUENCY
1K
FREQUENCY (Hz)
10K
100K
350
325
325
SLEW RATE (V/µs)
SLEW RATE (V/µs)
100
FIGURE 6. INPUT NOISE vs FREQUENCY
350
300
275
250
225
-60
40
NOISE VOLTAGE
NOISE CURRENT (pA/√Hz)
110
100
300
275
250
225
-40
-20
0
20
40
60
80
100
120
140
5
6
7
8
TEMPERATURE (oC)
9
10
11
12
13
14
15
14
15
SUPPLY VOLTAGE (±V)
FIGURE 7. SLEW RATE vs TEMPERATURE
FIGURE 8. SLEW RATE vs SUPPLY VOLTAGE
6.5
8.0
2.5
5.5
BIAS CURRENT
1.5
5.0
0.5
4.5
OFFSET VOLTAGE
7.5
SUPPLY CURRENT (mA)
6.0
INPUT OFFSET VOLTAGE (mV)
INPUT BIAS CURRENT (µA)
3.5
7.0
6.5
125oC
6.0
25oC
5.5
-55oC
-0.5
4.0
-60
-40
-20
0
20
40
60
80
100 120 140
TEMPERATURE (oC)
FIGURE 9. INPUT OFFSET VOLTAGE AND INPUT BIAS
CURRENT vs TEMPERATURE
5
5.0
5
6
7
8
9
10
11
12
SUPPLY VOLTAGE (±V)
13
FIGURE 10. SUPPLY CURRENT vs SUPPLY VOLTAGE
HA-2850
Typical Performance Curves
-3
±15V, 1kΩ
±8V, 75Ω
NEGATIVE OUTPUT SWING (V)
POSITIVE OUTPUT SWING (V)
13
TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified (Continued)
11
±15V, 150Ω
9
±15V, 75Ω
7
±8V, 1kΩ
5
±8V, 150Ω
±8V, 150Ω
-5
±8V, 1kΩ
-7
±15V, 75Ω
-9
±15V, 150Ω
-11
±8V, 75Ω
3
-60
-40
-20
0
20
40
60
80
100
120
±15V, 1kΩ
-13
-60
140
-40
-20
0
TEMPERATURE (oC)
FIGURE 11. POSITIVE OUTPUT SWING vs TEMPERATURE
VSUPPLY = ±15V
80
100
120
140
-40
-50
THD (dBc)
OUTPUT VOLTAGE SWING (VP-P)
60
-30
20
15
40
FIGURE 12. NEGATIVE OUTPUT SWING vs TEMPERATURE
30
25
20
TEMPERATURE (oC)
VSUPPLY = ±8V
10
VO = 10VP-P
-60
VO = 2VP-P
-70
5
-80
VO = 0.5VP-P
VO = 1VP-P
0
1K
10K
100K
1M
FREQUENCY (Hz)
10M
-90
100K
100M
1M
FIGURE 13. MAXIMUM UNDISTORTED OUTPUT SWING vs
FREQUENCY
FIGURE 14. TOTAL HARMONIC DISTORTION vs FREQUENCY
3RD INTERMOD PRODUCT (dBc)
-30
-40
VO = 5VP-P
VO = 2VP-P
-50
VO = 1VP-P
-60
-70
-80
-90
500K
VO = 0.25VP-P
VO = 0.5VP-P
1M
10M
FREQUENCY (Hz)
FIGURE 15. INTERMODULATION DISTORTION vs FREQUENCY (TWO TONE)
6
10M
FREQUENCY (Hz)
HA-2850
Die Characteristics
DIE DIMENSIONS:
PASSIVATION:
65 mils x 52 mils x 19 mils
1650µm x 1310µm x 483µm
Type: Nitride over Silox
Silox Thickness: 12kÅ ±2kÅ
Nitride Thickness: 3.5kÅ ±1kÅ
METALLIZATION:
TRANSISTOR COUNT:
Type: Aluminum, 1% Copper
Thickness: 16kÅ ±2kÅ
34
PROCESS:
SUBSTRATE POTENTIAL
High Frequency Bipolar Dielectric Isolation
V-
Metallization Mask Layout
HA-2850
V+
OUT
-IN
+IN
V-
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
7