ds90455-ds07-13728-3e.pdf

FUJITSU SEMICONDUCTOR
DATA SHEET
DS07-13728-3E
16-bit Proprietary Microcontroller
CMOS
F2MC-16LX MB90455 Series
MB90F455 (S) /F456 (S) /F457 (S)
MB90455 (S) /456 (S) /457 (S) /V495G
■ DESCRIPTION
MB90455 series devices are general-purpose high-performance 16-bit micro controllers designed for process
control of consumer products, which require high-speed real-time processing.
The system, inheriting the architecture of F2MC* family, employs additional instruction ready for high-level languages, expanded addressing mode, enhanced multiply-divide instructions, and enriched bit-processing instructions. Furthermore, employment of 32-bit accumulator achieves processing of long-word data (32 bits).
The peripheral resources of MB90455 series include the following:
8/10-bit A/D converter, UART 1, 8/16-bit PPG timer, 16-bit input-output timer (16-bit free-run timer, input capture
0, 1, 2, 3 (ICU)).
*: “F2MC”, an abbreviation for FUJITSU Flexible Microcontroller, is a registered trademark of FUJITSU Ltd.
■ FEATURES
• Clock
• Built-in PLL clock frequency multiplication circuit
• Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and
multiplication of 1 to 4 times of oscillation clock (for 4-MHz oscillation clock, 4 MHz to 16 MHz).
• Operation by sub-clock (8.192 kHz) is allowed.
• Minimum execution time of instruction: 62.5 ns (when operating with 4-MHz oscillation clock, and 4-time multiplied PLL clock).
(Continued)
■ PACKAGE
48-pin plastic-LQFP
(FPT-48P-M26)
MB90455 Series
• 16 Mbyte CPU memory space
• 24-bit internal addressing
• Instruction system best suited to controller
• Wide choice of data types (bit, byte, word, and long word)
• Wide choice of addressing modes (23 types)
• Enhanced multiply-divide instructions and RETI instructions
• Enhanced high-precision computing with 32-bit accumulator
• Instruction system compatible with high-level language (C language) and multitask
• Employing system stack pointer
• Enhanced various pointer indirect instructions
• Barrel shift instructions
• Increased processing speed
• 4-byte instruction queue
• Powerful interrupt function with 8 levels and 34 factors
• Automatic data transfer function independent of CPU
• Expanded intelligent I/O service function (EI2 OS): Maximum of 16 channels
• Low power consumption (standby) mode
• Sleep mode (a mode that halts CPU operating clock)
• Time-base timer mode (a mode that operates oscillation clock, sub clock, time-base timer and clock timer only)
• Clock mode (a mode that operates sub clock and clock timer only)
• Stop mode (a mode that stops oscillation clock and sub clock)
• CPU blocking operation mode
• Process
• CMOS technology
• I/O port
• General-purpose input/output port (CMOS output): 34 ports(MB90F455/F456/F457, MB90455/456/457) (including 4 high-current output ports) (When sub clock is not used, 36 ports(MB90F455S/F456S/F457S,
MB90455S/456S/457S))
• Timer
• Time-base timer, clock timer, watchdog timer: 1 channel
• 8/16-bit PPG timer: 8-bit x 4 channels, or 16-bit x 2 channels
• 16-bit reload timer: 2 channels
• 16-bit input/output timer
- 16-bit free run timer: 1 channel
- 16-bit input capture: (ICU): 4 channels
Interrupt request is issued upon latching a count value of 16-bit free run timer by detection of an edge on pin
input.
• UART 1: 1 channel
• Equipped with full-duplex double buffer
• Clock-asynchronous or clock-synchronous serial transmission is available
(Continued)
2
MB90455 Series
(Continued)
• DTP/External interrupt: 4 channels
• Module for activation of expanded intelligent I/O service (EI2OS), and generation of external interrupt.
• Delay interrupt generator module
• Generates interrupt request for task switching.
• 8/10-bit A/D converter: 8 channels
• Resolution is selectable between 8-bit and 10-bit.
• Activation by external trigger input is allowed.
• Conversion time: 6.125 µs (at 16-MHz machine clock, including sampling time)
• Program patch function
• Address matching detection for 2 address pointers.
3
MB90455 Series
■ PRODUCT LINEUP
Part Number
Parameter
Classification
MB90F455 (S) /
F456 (S) /F457 (S)
MB90455 (S) /
456 (S) /457 (S)
MB90V495G
Flash ROM
Mask ROM
Evaluation product
ROM capacity
MB90F455 (S) : 24 Kbytes MB90455 (S) : 24 Kbytes
MB90F456 (S) : 32 Kbytes MB90456 (S) : 32 Kbytes
MB90F457 (S) : 64 Kbytes MB90457 (S) : 64 Kbytes

RAM capacity
2 Kbytes
6 Kbytes
MB90F455/F456/F457 :
MB90455/456/457 :
2 systems
2 systems
MB90F455S/F456S/F457S : MB90455S/456S/457S :
1 system
1 system
2 systems
Clock
Process
CMOS
Package
Operating power supply voltage
Special power supply for
emulator*1
LQFP-48 (0.50 mm width)
PGA256
3.5 V to 5.5 V
4.5 V to 5.5 V

None
Number of basic instructions
Instruction bit length
Instruction length
Data bit length
CPU functions
: 351 instructions
: 8 bits and 16 bits
: 1 byte to 7 bytes
: 1 bit, 8 bits, 16 bits
Minimum instruction execution time : 62.5 ns (at 16-MHz machine clock)
Interrupt processing time : 1.5 µs at minimum (at 16-MHz machine clock)
Low power consumption
(standby) mode
Sleep mode/Clock mode/Time-base timer mode/
Stop mode/CPU intermittent
I/O port
General-purpose input/output ports (CMOS output) : 34 ports (36 ports*2)
including 4 high-current output ports (P14 to P17)
Time-base timer
18-bit free-run counter
Interrupt cycle : 1.024 ms, 4.096 ms, 16.834 ms, 131.072 ms
(with oscillation clock frequency at 4 MHz)
Watchdog timer
Reset generation cycle: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms
(with oscillation clock frequency at 4 MHz)
16-bit input/
output timer
16-bit free-run
timer
Number of channels: 1
Interrupt upon occurrence of overflow
Input capture
Number of channels: 4
Retaining free-run timer value set by pin input (rising edge, falling edge, and
both edges)
16-bit reload timer
Number of channels: 2
16-bit reload timer operation
Count clock cycle: 0.25 µs, 0.5 µs, 2.0 µs
(at 16-MHz machine clock frequency)
External event count is allowed.
Clock timer
15-bit free-run counter
Interrupt cycle: 31.25 ms, 62.5 ms, 12 ms, 250 ms, 500 ms, 1.0 s, 2.0 s
(with 8.192 kHz sub clock)
(Continued)
4
MB90455 Series
(Continued)
Part Number
Parameter
MB90F455 (S) /
F456 (S) /F457 (S)
MB90455 (S) /
456 (S) /457 (S)
MB90V495G
8/16-bit PPG timer
Number of channels: 2 (four 8-bit channels are available also)
PPG operation is allowed with four 8-bit channels or one 16-bit channel.
Outputting pulse wave of arbitrary cycle or arbitrary duty is allowed.
Count clock: 62.5 ns to 1 µs
(with 16 MHz machine clock)
Delay interrupt generator
module
Interrupt generator module for task switching. Used for Real-time OS.
DTP/External interrupt
Number of inputs: 4
Activated by rising edge, falling edge, “H” level or “L” level input.
External interrupt or expanded intelligent I/O service (EI2OS) is available.
8/10-bit A/D converter
Number of channels: 8
Resolution: Selectable 10-bit or 8-bit.
Conversion time: 6.125 µs (at 16-MHz machine clock, including sampling time)
Sequential conversion of two or more successive channels is allowed. (Setting
a maximum of 8 channels is allowed.)
Single conversion mode
: Selected channel is converted only once.
Sequential conversion mode: Selected channel is converted repetitively.
Halt conversion mode
: Conversion of selected channel is stopped and
activated alternately.
UART 1
Number of channels: 1
Clock-synchronous transfer: 62.5 Kbps to 2 Mbps
Clock-asynchronous transfer: 9,615 bps to 500 Kbps
Communication is allowed by bi-directional serial communication function and
master/slave type connection.
*1 : Settings of DIP switch S2 for using emulation pod MB2145-507. For details, See MB2145-507 Hardware Manual
(2.7 Power Pin solely for Emulator).
*2 : MB90F455S/F456S/F457S, MB90455S/456S/457S
5
MB90455 Series
■ PACKAGES AND PRODUCT MODELS
Package
MB90F455 (S) /F456 (S) /F457 (S)
MB90455 (S) /456 (S) /457 (S)
FPT-48P-M26
: Yes × : No
Note : Refer to “ PACKAGE DIMENSION” for details of the package.
■ PRODUCT COMPARISON
Memory space
When testing with test product for evaluation, check the differences between the product and a product to be
used actually. Pay attention to the following points:
• The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations
as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
• On MB90V495G, an image from FF4000H to FFFFFFH is viewed on 00 bank and an image of FE0000H to
FF3FFFH is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
• On MB90F455 (S) /F456 (S) /F457 (S) , MB90455 (S) /456 (S) /457 (S) , an image from FF4000H to FFFFFFH
is viewed on 00 bank and an image of FE0000H to FF3FFFH is viewed only on FF bank.
6
MB90455 Series
■ PIN ASIGNMENT
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
P17/PPG3
P16/PPG2
P15/PPG1
P14/PPG0
P13/IN3
P12/IN2
P11/IN1
P10/IN0
X1
X0
C
VSS
P21/TOT0
P22/TIN1
P23/TOT1
P24/INT4
P25/INT5
P26/INT6
P27/INT7
MD2
MD1
MD0
RST
VCC
AVCC
AVR
P50/AN0
P51/AN1
P52/AN2
P53/AN3
P54/AN4
P55/AN5
P56/AN6
P57/AN7
P37/ADTG
P20/TIN0
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
AVSS
X1A/P36*
X0A/P35*
P33
P32
P31
P30
P44
P43
P42/SOT1
P41/SCK1
P40/SIN1
(TOP VIEW)
(FPT-48P-M26)
* : MB90F455/F456/F457, MB90455/456/457
: X1A, X0A
MB90F455S/F456S/F457S, MB90455S/456S/457S : P36, P35
7
MB90455 Series
■ PIN DESCRIPTION
Pin No.
Pin name
Circuit
format
1
AVcc

Vcc power input pin for A/D converter
2
AVR

Power (Vref+) input pin for A/D converter. Use as input for Vcc or lower.
P50 to P57
3 to 10
AN0 to AN7
General-purpose input/output ports.
E
P37
11
ADTG
TIN0
TOT0
D
TIN1
TOT1
D
INT4 to INT7
Function as an event input pin for reload timer 1. Use the pin by setting as
input port.
General-purpose input/output port.
D
P24 to P27
16 to 19
Function as an event output pin for reload timer 0. Valid only when output
setting is “enabled.”
General-purpose input/output port.
P23
15
Function as an event input pin for reload timer 0. Use the pin by setting as
input port.
General-purpose input/output port.
D
P22
14
Function as an external trigger input pin for A/D converter. Use the pin by
setting as input port.
General-purpose input/output port.
P21
13
Functions as an analog input pin for A/D converter. Valid when analog
input setting is “enabled.”
General-purpose input/output port.
D
P20
12
Description
Function as an event output pin for reload timer 1. Valid only when output
setting is “enabled.”
General-purpose input/output ports.
D
Functions as an external interrupt input pin. Use the pin by setting as input
port.
20
MD2
F
Input pin for specifying operation mode. Connect directly to Vss.
21
MD1
C
Input pin for specifying operation mode. Connect directly to Vcc.
22
MD0
C
Input pin for specifying operation mode. Connect directly to Vcc.
23
RST
B
External reset input pin.
24
Vcc

Power source (5 V) input pin.
25
Vss

Power source (0 V) input pin.
26
C

Capacitor pin for stabilizing power source. Connect a ceramic capacitor of
approximately 0.1 µF.
27
X0
A
Pin for high-rate oscillation.
28
X1
A
Pin for high-rate oscillation.
P10 to P13
29 to 32
IN0 to IN3
General-purpose input/output ports.
D
Functions as trigger input pins of input capture channels 0 to 3. Use the
pins by setting as input ports.
(Continued)
8
MB90455 Series
(Continued)
Pin No.
Pin name
Circuit
format
P14 to P17
33 to 36
37
PPG0 to PPG3
P40
SIN1
General-purpose input/output ports. High-current output ports.
G
D
P41
38
SCK1
SOT1
Functions as output pins of PPG timers 01 and 23. Valid when output
setting is “enabled.”
General-purpose input/output port.
Serial data input pin for UART. Use the pin by setting as input port.
General-purpose input/output port.
D
P42
39
Description
Serial clock input pin for UART. Valid only when serial clock input/output
setting on UART is “enabled.”
General-purpose input/output port.
D
Serial data input pin for UART. Valid only when serial data input/output
setting on UART is “enabled.”
40
P43
D
General-purpose input/output port.
41
P44
D
General-purpose input/output port.
42 to 45
P30 to P33
D
General-purpose input/output ports.
46
47
48
X0A*
P35*
X1A*
P36*
AVss
A
A

Pin for low-rate oscillation.
General-purpose input/output port.
Pin for low-rate oscillation.
General-purpose input/output port.
Vss power source input pin for A/D converter.
* : MB90F455/F456/F457, MB90455/456/457
: X1A, X0A
MB90F455S/F456S/F457S, MB90455S/456S/457S : P36, P35
9
MB90455 Series
■ I/O CIRCUIT TYPE
Type
Circuit
Remarks
X1
A
Clock input
X1A
X0
X0A
Standby control signal
• Hysteresis input with pull-up
resistor.
• Pull-up resistor, approx.50 kΩ
Vcc
B
• High-rate oscillation feedback
resistor, approx.1 MΩ
• Low-rate oscillation feedback
resistor, approx.10 MΩ
R
R
Hysteresis input
• Hysteresis input
C
R
Hysteresis input
• CMOS hysteresis input
• CMOS level output
• Standby control provided
Vcc
Pch
D
R
Nch
Vss
Digital output
Digital output
Hysteresis input
Standby control
Vcc
Pch
E
R
Nch
Vss
Digital output
•
•
•
•
CMOS hysteresis input
CMOS level output
Shared for analog input pin
Standby control provided
Digital output
Hysteresis input
Standby control
Analog input
(Continued)
10
MB90455 Series
(Continued)
Type
Circuit
Remarks
R
Hysteresis input
F
• Hysteresis input with pull-down
resistor
• Pull-down resistor, approx. 50 kΩ
• FLASH product is not provided with
pull-down resistor.
R
Vss
Vcc
Pch
High-current output
• CMOS hysteresis input
• CMOS level output (high-current
output)
• Standby control provided
High-current output
G
R
Nch
Vss
Hysteresis input
Standby control
11
MB90455 Series
■ HANDLING DEVICES
• Do not exceed maximum rating (preventing “latch up”)
• On a CMOS IC, latch-up may occur when applying a voltage higher than Vcc or a voltage lower than Vss to
input or output pin, which has no middle or high withstand voltage. Latch-up may also occur when a voltage
exceeding maximum rating is applied across Vcc and Vss.
• Latch-up causes drastic increase of power current, which may lead to destruction of elements by heat. Extreme
caution must be taken not to exceed maximum rating.
• When turning on and off analog power source, take extra care not to apply an analog power voltages (AVcc
and AVR) and analog input voltage that are higher than digital power voltage (Vcc).
• Handling unused pins
• Leaving unused input pins open may cause permanent destruction by malfunction or latch-up. Apply pull-up
or pull-down process to the unused pins using resistors of 2 kΩ or higher. Leave unused input pins open under
output status, or process as input pins if they are under input status.
• Using external clock
• When using an external clock, drive only X0 pin and leave X1 pin open. An example of using an external clock
is shown below.
Using external clock
X0
Open
X1
MB90455 series
• Notes when using no sub clock
• If an oscillator is not connected to X0A and X1A pin, apply pull-down resistor to X0A pin and leave X1A pin open.
• About power supply pins
• If two ore more Vcc and Vss exist, the pins that should be at the same potential are connected to each other
inside the device. For reducing unwanted emissions and preventing malfunction of strobe signals caused by
increase of ground level, however, be sure to connect the Vcc and Vss pins to the power source and the ground
externally.
• Pay attention to connect a power supply to Vcc and Vss of MB90455 series device in a lowest-possible
impedance.
• Near pins of MB90455 series device, connecting a bypass capacitor is recommended at 0.1 µF across Vcc
and Vss.
• Crystal oscillator circuit
• Noises around X0 and X1 pins cause malfunctions on a MB90455 series device. Design a print circuit so that
X0 and X1 pins, an crystal oscillator (or a ceramic oscillator), and bypass capacitor to the ground become as
close as possible to each other. Furthermore, avoid wires to X0 and X1 pins crossing each other as much as
possible.
• Print circuit designing that surrounds X0 and X1 pins with grounding wires, which ensures stable operation,
is strongly recommended.
12
MB90455 Series
• Caution on Operations during PLL Clock Mode
• If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even
when there is no external oscillator or external clock input is stopped. Performance of this operation, however,
cannot be guaranteed.
• Sequence of turning on power of A/D converter and applying analog input
• Be sure to turn on digital power (Vcc) before applying signals to the A/D converter and applying analog input
signals (AN0 to AN7 pins).
• Be sure to turn off the power of A/D converter and analog input before turning off the digital power source.
• Be sure not to apply AVR exceeding AVcc when turning on and off. (No problems occur if analog and digital
power is turned on and off simultaneously.)
• Handling pins when A/D converter is not used
• If the A/D converter is not used, connect the pins under the following conditions: “AVcc=AVR=Vcc,” and
“Avss=Vss”
• Note on turning on power
• For preventing malfunctions on built-in step-down circuit, maintain a minimum of 50 µs of voltage rising time
(between 0.2 V and 2.7 V) when turning on the power.
• Stabilization of supply voltage
• A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc
supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.
For reference, the supply voltage should be controlled so that Vcc ripple variations (peak-to-peak values) at
commercial frequencies (50 Hz to 60 Hz) fall below 10% of the standard VCC supply voltage and the coefficient
of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.
13
MB90455 Series
■ BLOCK DIAGRAM
X0,X1
RST
X0A,X1A
Clock
control circuit
CPU
F2MC-16LX core
Clock timer
Time-base timer
16-bit
free-run timer
RAM
Input
capture
(4ch)
Prescaler
SOT1
SCK1
SIN1
UART1
Internal data bus
ROM/FLASH
16-bit
PPG timer
(2ch)
DTP/External
interrupt
16-bit
reload timer
(2ch)
AVcc
AVss
AN0 ~ AN7
AVR
ADTG
14
8/10-bit A/D
converter (8ch)
IN0 ~ IN3
PPG0 ~ PPG3
INT4 ~ INT7
TIN0,TIN1
TOT0,TOT1
MB90455 Series
■ MEMORY MAP
MB90455 series allows specifying a memory access mode “single chip mode.”
1. Memory allocation of MB90455
MB90455 series model has 24-bit wide internal address bus and up to 24-bit bus of external address bus.
A maximum of 16 Mbyte memory space of external access memory is accessible.
2. Memory map
(with ROM mirroring
function available)
000000H
0000C0H
000100H
1
Address #1*
003800H
004000H
(with ROM mirroring
function not available)
Peripheral
Peripheral
RAM area
RAM area
Register
Register
Extension IO
area
Extension IO
area
ROM area
(FF bank image)
010000H
FE0000H
ROM area*2
ROM area*2
ROM area
ROM area
FF0000H
Address #2*1
FFFFFFH
Product
Address #1*1
Address #2*1
MB90F455 (S) /455 (S)
000900H
FFA000H
MB90F456 (S) /456 (S)
000900H
FF8000H
MB90F457 (S) /457 (S)
000900H
FF0000H
MB90V495G
001900H

: Internal access memory
: Access disallowed
*1 : Addresses #1 and #3 are product-specific.
*2 : On MB90F455 (S) /F456 (S) /F457 (S) , 455 (S) /456 (S) /457 (S) , to read “FE0000H” to
“FEFFFFH” is to read out “FF0000H” to “FFFFFFH”.
Note : When internal ROM is operating, F2MC-16LX allows viewing ROM data image on FF bank at upper-level of
00 bank. This function is called “mirroring ROM,” which allows effective use of C compiler small model.
F2MC-16LX assigns the same low order 16-bit address to FF bank and 00 bank, which allows referencing
table in ROM without specifying “far” using pointer.
For example, when accessing to “00C000H”, ROM data at “FFC000H” is accessed actually. However, because
ROM area of FF bank exceeds 48 Kbytes, viewing all areas is not possible on 00 bank image. Because ROM
data of “FF4000H” to “FFFFFFH” is viewed on “004000H” to “00FFFFH” image, store a ROM data table in area
“FF4000H” to “FFFFFFH.”
15
MB90455 Series
■ I/O MAP
Register
Address abbreviation
Register name
000000H
Reset value
Peripheral
function name
Read/
Write
(Reserved area) *
000001H
PDR1
Port 1 data register
XXXXXXXXB
Port 1
R/W
000002H
PDR2
Port 2 data register
XXXXXXXXB
Port 2
R/W
000003H
PDR3
Port 3 data register
XXXXXXXXB
Port 3
R/W
000004H
PDR4
Port 4 data register
XXXXXXXXB
Port 4
R/W
000005H
PDR5
Port 5 data register
XXXXXXXXB
Port 5
R/W
000006H
to
000010H
(Reserved area) *
000011H
DDR1
Port 1 direction data register
00000000B
Port 1
R/W
000012H
DDR2
Port 2 direction data register
00000000B
Port 2
R/W
000013H
DDR3
Port 3 direction data register
000X0000B
Port 3
R/W
000014H
DDR4
Port 4 direction data register
XXX00000B
Port 4
R/W
000015H
DDR5
Port 5 direction data register
00000000B
Port 5
R/W
8/10-bit
A/D converter
R/W
000016H
to
00001AH
00001BH
(Reserved area) *
ADER
Analog input permission register
00001CH
to
000025H
11111111B
(Reserved area) *
000026H
SMR1
Serial mode register 1
00000000B
000027H
SCR1
Serial control register 1
00000100B
000028H
SIDR1/
SODR1
000029H
SSR1
00002AH
00002BH
Serial input data register 1/ Serial
output data register 1
Serial status data register 1
XXXXXXXXB
R/W, W
UART1
00001000B
R, W
R, R/W
(Reserved area) *
CDCR1
00002CH
to
00002FH
Communication prescaler control
register 1
0XXX0000B
UART1
R/W
(Reserved area) *
000030H
ENIR
DTP/External interrupt permission
register
00000000B
000031H
EIRR
DTP/External interrupt permission
register
XXXXXXXXB
000032H
000033H
R/W
DTP/External
interrupt
R/W
R/W
(Reserved area) *
ELVR
Detection level setting register
00000000B
DTP/External
interrupt
R/W
(Continued)
16
MB90455 Series
Register
Address abbreviation
000034H
000035H
000036H
000037H
ADCS
ADCR
Register name
Reset value
00000000B
A/D control status register
00000000B
XXXXXXXXB
A/D data register
000038H
to
00003FH
PPG0 operation mode control
register
0X000XX1B
000041H
PPGC1
PPG1 operation mode control
register
0X000001B
000042H
PPG01
PPG0/1 count clock selection
register
000000XXB
000043H
PPGC2
PPG2 operation mode control
register
0X000XX1B
000045H
PPGC3
PPG3 operation mode control
register
0X000001B
000046H
PPG23
PPG2/3 count clock selection
register
000000XXB
000047H
to
00004FH
000053H
IPCP0
Input capture data register 0
IPCP1
Input capture data register 1
ICS01
000055H
ICS23
000057H
000058H
00005BH
00005CH
00005DH
Input capture control status register
R
R/W, W
8/16-bit
PPG timer 0/1
R/W, W
R/W
R/W, W
8/16-bit
PPG timer 2/3
R/W, W
R/W
XXXXXXXXB
R
XXXXXXXXB
XXXXXXXXB
R
XXXXXXXXB
00000000B
16-bit input/output
timer
00000000B
00000000B
TCDT
Timer counter data register
TCCS
Timer counter control status register
R/W
R/W
00000000B
00000000B
R/W
(Reserved area) *
000059H
00005AH
W, R
(Reserved area) *
000054H
000056H
R/W, W
(Reserved area) *
000044H
000052H
8/10-bit
A/D converter
(Reserved area) *
PPGC0
000051H
Read/
Write
R/W
00101XXXB
000040H
000050H
Peripheral
function name
IPCP2
IPCP3
Input capture data register 2
Input capture data register 3
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
R
16-bit input/output
timer
R
(Continued)
17
MB90455 Series
Register
Address abbreviation
Register name
00005EH
to
000065H
000066H
000067H
000068H
000069H
Peripheral
function name
Read/
Write
(Reserved area) *
00000000B
TMCSR0
XXXX0000B
Timer control status register
00000000B
TMCSR1
XXXX0000B
00006AH
to
00006EH
00006FH
Reset value
16-bit reload timer 0
16-bit reload timer 1
R/W
R/W
R/W
R/W
(Reserved area) *
ROMM
ROM mirroring function selection
register
XXXXXXX1B
000070H
to
00007FH
(Reserved area) *
000080H
to
00008FH
(Reserved area) *
000090H
to
00009DH
(Reserved area) *
ROM mirroring
function selection
module
W
00009EH
PACSR
Address detection control register
00000000B
Address matching
detection function
R/W
00009FH
DIRR
Delay interrupt request generation/
release register
XXXXXXX0B
Delay interrupt
generation module
R/W
0000A0H
LPMCR
Lowe power consumption mode
control register
00011000B
Lowe power
consumption mode
W,R/W
0000A1H
CKSCR
Clock selection register
11111100B
Clock
R,R/W
0000A2H
to
0000A7H
(Reserved area) *
0000A8H
WDTC
Watchdog timer control register
XXXXX111B
Watchdog timer
R,W
0000A9H
TBTC
Time-base timer control register
1XX00100B
Time-base timer
R/W,W
0000AAH
WTC
Clock timer control register
1X001000B
Clock timer
R,R/W
0000ABH
to
0000ADH
(Reserved area) *
(Continued)
18
MB90455 Series
Register
Address abbreviation
0000AEH
FMCS
Register name
Reset value
Flash memory control status
register
0000AFH
000X0000B
ICR00
Interrupt control register 00
00000111B
0000B1H
ICR01
Interrupt control register 01
00000111B
0000B2H
ICR02
Interrupt control register 02
00000111B
0000B3H
ICR03
Interrupt control register 03
00000111B
0000B4H
ICR04
Interrupt control register 04
00000111B
0000B5H
ICR05
Interrupt control register 05
00000111B
0000B6H
ICR06
Interrupt control register 06
00000111B
0000B7H
ICR07
Interrupt control register 07
00000111B
0000B8H
ICR08
Interrupt control register 08
00000111B
0000B9H
ICR09
Interrupt control register 09
00000111B
0000BAH
ICR10
Interrupt control register 10
00000111B
0000BBH
ICR11
Interrupt control register 11
00000111B
0000BCH
ICR12
Interrupt control register 12
00000111B
0000BDH
ICR13
Interrupt control register 13
00000111B
0000BEH
ICR14
Interrupt control register 14
00000111B
0000BFH
ICR15
Interrupt control register 15
00000111B
0000C0H
to
0000FFH
Detection address setting register 0
(low-order)
XXXXXXXXB
Detection address setting register 0
(middle-order)
XXXXXXXXB
001FF2H
Detection address setting register 0
(high-order)
XXXXXXXXB
001FF3H
Detection address setting register 1
(low-order)
XXXXXXXXB
Detection address setting register 1
(middle-order)
XXXXXXXXB
Detection address setting register 1
(high-order)
XXXXXXXXB
PADR0
PADR1
001FF5H
003900H
003901H
R,W,R/W
Interrupt controller
R/W
(Reserved area) *
001FF0H
001FF4H
512 k-bit flash
memory
Read/
Write
(Reserved area) *
0000B0H
001FF1H
Peripheral
function name
TMR0/
TMRLR0
16-bit timer register 0/16-bit reload
register
XXXXXXXXB
XXXXXXXXB
R/W
Address matching
detection function
R/W
16-bit reload
timer 0
R,W
(Continued)
19
MB90455 Series
(Continued)
Register
Address abbreviation
003902H
003903H
TMR1/
TMRLR1
Register name
Reset value
16-bit timer register 1/16-bit reload
register
003904H
to
00390FH
XXXXXXXXB
XXXXXXXXB
Peripheral
function name
Read/
Write
16-bit reload timer 1
R,W
(Reserved area) *
003910H
PRLL0
PPG0 reload register L
XXXXXXXXB
R/W
003911H
PRLH0
PPG0 reload register H
XXXXXXXXB
R/W
003912H
PRLL1
PPG1 reload register L
XXXXXXXXB
R/W
003913H
PRLH1
PPG1 reload register H
XXXXXXXXB
003914H
PRLL2
PPG2 reload register L
XXXXXXXXB
003915H
PRLH2
PPG2 reload register H
XXXXXXXXB
R/W
003916H
PRLL3
PPG3 reload register L
XXXXXXXXB
R/W
003917H
PRLH3
PPG3 reload register H
XXXXXXXXB
R/W
003918H
to
003BFFH
(Reserved area) *
003C00H
to
003C0FH
RAM (General purpose RAM)
003C10H
to
003FFFH
(Reserved area) *
8/16-bit PPG timer
R/W
R/W
Reset values :
0 : Reset value of this bit is “0.”
1 : Reset value of this bit is “1.”
X : Reset value of this bit is undefined.
* : “Reserved area” should not be written anything. Result of reading from “Reserved area” is undefined.
20
MB90455 Series
■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS
Interrupt source
EI2OS
readiness
Interrupt vector
Number
Interrupt control register
Address
ICR
Address
Priority*3
Reset
×
#08
08H
FFFFDCH


High
INT 9 instruction
×
#09
09H
FFFFD8H


↑
Exceptional treatment
×
#10
0AH
FFFFD4H


Reserved
×
#11
0BH
FFFFD0H
Reserved
×
#12
0CH
FFFFCCH
ICR00
0000B0H
Reserved
×
#13
0DH
FFFFC8H
Reserved
×
#14
0EH
FFFFC4H
ICR01
0000B1H
Reserved
×
#15
0FH
FFFFC0H
Time-base timer
×
#16
10H
FFFFBCH
ICR02
0000B2H
16-bit reload timer 0
∆
#17
11H
FFFFB8H
8/10-bit A/D converter
∆
#18
12H
FFFFB4H
ICR03
0000B3H*1
16-bit free-run timer overflow
∆
#19
13H
FFFFB0H
Reserved
×
#20
14H
FFFFACH
ICR04
0000B4H
Reserved
×
#21
15H
FFFFA8H
PPG timer ch0, ch1 underflow
×
#22
16H
FFFFA4H
ICR05
0000B5H
Input capture 0-input
∆
#23
17H
FFFFA0H
External interrupt (INT4/INT5)
∆
#24
18H
FFFF9CH
ICR06
0000B6H*1
Input capture 1-input
∆
#25
19H
FFFF98H
PPG timer ch2, ch3 underflow
×
#26
1AH
FFFF94H
ICR07
0000B7H*2
External interrupt (INT6/INT7)
∆
#27
1BH
FFFF90H
Clock timer
∆
#28
1CH
FFFF8CH
ICR08
0000B8H*1
Reserved
×
#29
1DH
FFFF88H
Input capture 2-input
Input capture 3-input
×
#30
1EH
FFFF84H
ICR09
0000B9H
Reserved
×
#31
1FH
FFFF80H
Reserved
×
#32
20H
FFFF7CH
ICR10
0000BAH
Reserved
×
#33
21H
FFFF78H
Reserved
×
#34
22H
FFFF74H
ICR11
0000BBH
Reserved
×
#35
23H
FFFF70H
#36
24H
FFFF6CH
ICR12
0000BCH
16-bit reload timer 1
↓
Low
(Continued)
21
MB90455 Series
(Continued)
Cause of interrupt
EI2OS
readiness
UART1 reception completed
Interrupt vector
Number
Address
#37
25H
FFFF68H
UART1 transmission completed
∆
#38
26H
FFFF64H
Reserved
×
#39
27H
FFFF60H
Reserved
×
#40
28H
FFFF5CH
Flash memory
×
#41
29H
FFFF58H
Delay interrupt generation
module
×
#42
2AH
FFFF54H
Interrupt control register
ICR
Address
ICR13
0000BDH*1
ICR14
0000BEH
ICR15
0000BFH
Priority*3
High
↑
↓
Low
: Available
× : Unavailable
: Available El2OS function is provided.
∆ : Available when a cause of interrupt sharing a same ICR is not used.
*1: • Peripheral functions sharing an ICR register have the same interrupt level.
• If peripheral functions share an ICR register, only one function is available when using expanded intelligent
I/O service (EI2OS) .
• If peripheral functions share an ICR register, a function using expanded intelligent I/O service (EI2OS) does
not allow interrupt by another function.
*2: Input capture 1 is ready only for EI2OS, and PPG is not ready for EI2OS. Disable PPG interrupt when using
EI2OS with Input capture 1.
*3: Priority when two or more interrupts of a same level occur simultaneously.
22
MB90455 Series
■ PERIPHERAL RESOURCES
1. I/O Ports
The I/O ports are used as general-purpose input/output ports (parallel I/O ports). The MB90455 series model
is provided with 5 ports (34 inputs). The ports function as input/output pins for peripheral functions also.
• I/O port functions
An I/O port, using port data resister (PDR), outputs the output data to I/O pin and input a signal input to I/O port.
The port direction register (DDR) specifies direction of input/output of I/O pins on a bit-by-bit basis.
The following summarizes functions of the ports and sharing peripheral functions :
• Port 1 : General-purpose input/output port, used also for PPG timer output and input capture inputs.
• Port 2 : General-purpose input/output port, used also for reload timer input/output and external interrupt input.
• Port 3 : General-purpose input/output port, used also for A/D converter activation trigger pin.
• Port 4 : General-purpose input/output port, used also for UART input/output.
• Port 5 : General-purpose input/output port, used also analog input pin.
• Port 1 pins block diagram (single-chip mode)
Peripheral
function input
Peripheral
function output
Peripheral function
output permission
Port data register (PDR)
PDR read
Internal data bus
Pch
Output latch
PDR write
Pin
Port direction register (DDR)
Direction
latch
Nch
DDR write
Standby control (SPL=1)
DDR read
Standby control : Control among Stop mode (SPL=1), Time-base timer mode (SPL=1), and clock mode
(SPL=1).
• Port 1 registers (single-chip mode)
• Port 1 registers include port 1 data register (PDR1) and port 1 direction register (DDR1).
• The bits configuring the register correspond to port 1 pins on a one-to-one basis.
Relation between port 1 registers and pins
Port name
Bits of register and corresponding pins
Port 1
PDR1, DDR1
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
Corresponding pins
P17
P16
P15
P14
P13
P12
P11
P10
23
MB90455 Series
• Port 2 pins block diagram (general-purpose input/output port)
Peripheral
function input
Peripheral
function output
Peripheral function
output permission
Port data register (PDR)
PDR read
Internal data bus
Output latch
Pch
PDR write
Pin
Port direction register (DDR)
Direction
latch
Nch
DDR write
Standby control (SPL=1)
DDR read
Standby control : Control among Stop mode (SPL=1), Time-base timer mode (SPL=1), and clock mode
(SPL=1).
• Port 2 registers
• Port 2 registers include port 2 data register (PDR2) and port 2 direction register (DDR2).
• The bits configuring the register correspond to port 2 pins on a one-to-one basis.
Relation between port 2 registers and pins
Port name
Bits of register and corresponding pins
Port 2
24
PDR2,DDR2
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
Corresponding pins
P27
P26
P25
P24
P23
P22
P21
P20
MB90455 Series
• Port 3 pins block diagram (general-purpose input/output port)
Peripheral
function input
Peripheral
function output
Peripheral function
output permission
Port data register (PDR)
PDR read
Internal data bus
Pch
Output latch
PDR write
Pin
Port direction register (DDR)
Direction
latch
Nch
DDR write
Standby control (SPL=1)
DDR read
Standby control : Control among Stop mode (SPL=1), Time-base timer mode (SPL=1), and clock mode
(SPL=1).
• Port 3 registers
• Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
• The bits configuring the register correspond to port 3 pins on a one-to-one basis.
Relation between port 3 registers and pins
Port name
Bits of register and corresponding pins
Port 3
PDR3, DDR3
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
Corresponding pins
P37
P36*
P35*

P33
P32
P31
P30
* : P35 and P36 do not exist on MB90F455/F456/F457, and MB90455/456/457.
25
MB90455 Series
• Port 4 pins block diagram
Peripheral
function input
Peripheral
function output
Peripheral function
output permission
Port data register (PDR)
PDR read
Internal data bus
Pch
Output latch
PDR write
Pin
Port direction register (DDR)
Direction
latch
Nch
DDR write
Standby control (SPL=1)
DDR read
Standby control : Control among Stop mode (SPL=1), Time-base timer mode (SPL=1), and clock mode
(SPL=1).
• Port 4 registers
• Port 4 registers include port 4 data register (PDR4) and port 4 direction register (DDR4).
• The bits configuring the register correspond to port 4 pins on a one-to-one basis.
Relation between port 4 registers and pins
Port name
Bits of register and corresponding pins
Port 4
26
PDR4, DDR4



bit4
bit3
bit2
bit1
bit0
Corresponding pins



P44
P43
P42
P41
P40
MB90455 Series
• Port 5 pins block diagram
Analog input
ADER
Port data register (PDR)
PDR read
Internal data bus
Output latch
Pch
PDR write
Pin
Port direction register (DDR)
Direction
latch
Nch
DDR write
Standby control (SPL=1)
DDR read
Standby control: Control among Stop mode (SPL=1), Time-base timer mode (SPL=1), and clock mode
(SPL=1).
• Port 5 registers
• Port 5 registers include port 5 data register (PDR5), port 5 direction register (DDR5), and analog input
permission register (ADER).
• Analog input permission register (ADER) allows or disallows input of analog signal to the analog input pin.
• The bits configuring the register correspond to port 5 pins on a one-to-one basis.
Relation between port 5 registers and pins
Port name
Bits of register and corresponding pins
PDR5, DDR5
Port 5
ADER
Corresponding pins
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
ADE7
ADE6
ADE5
ADE4
ADE3
ADE2
ADE1
ADE0
P57
P56
P55
P54
P53
P52
P51
P50
27
MB90455 Series
2. Time-Base Timer
The time-base time is a 18-bit free-run counter (time-base timer counter) that counts up in synchronization with
the main clock (dividing main oscillation clock by 2).
• Four choices of interval time are selectable, and generation of interrupt request is allowed for each interval time.
• Provides operation clock signal to oscillation stabilizing wait timer and peripheral functions.
• Interval timer function
• When the counter of time-base timer reaches an interval time specified by interval time selection bit
(TBTC:TBC1, TBC0), an overflow (carrying-over) occurs (TBTC: TBOF=1) and interrupt request is generated.
• If an interrupt by overflow is permitted (TBTC: TBIE=1), an interrupt is generated when overflow occurs (TBTC:
TBOF=1).
• The following four interval time settings are selectable :
Interval time of time-base timer
Count clock
Interval time
12
2 /HCLK (Approx. 1.0 ms)
2/HCLK (0.5 µs)
214/HCLK (Approx. 4.1 ms)
216/HCLK (Approx. 16.4 ms)
219/HCLK (Approx. 131.1 ms)
HCLK: Oscillation clock
Values in parentheses “( )” are those under operation of 4-MHz oscillation clock.
28
MB90455 Series
• Time-base timer block diagram
To watchdog
timer
To PPG timer
Time-base timer counter
21/HCLK
21
22
23 · · ·
···
28
29
210
211
212
213
OF
OF
214
215
216
217
218
OF
OF
Power-on reset
Stop mode
CKSCR : MCS = 1
CKSCR : SCS = 0
0
1
1
To clock controller
oscillation stabilizing
wait time selector
Counterclear circuit
Interval timer
selector
2
TBOF clear TBOF set
Time-base timer control register
(TBTC)
Reserved
TBIE TBOF TBR TBC1 TBC0
Time-base timer interrupt signal
OF : Overflow
HCLK : Oscillation clock
*1 : Switch machine clock from main clock to PLL clock.
*2 : Switch machine clock from sub clock to main clock.
Actual interrupt request number of time-base timer is as follows:
Interrupt request number: #16 (10H)
29
MB90455 Series
3. Watchdog Timer
The watchdog timer is a 2-bit counter that uses time-base timer or clock timer as count clock. If the counter is
not cleared within an interval time, CPU is reset.
• Watchdog timer functions
• The watchdog timer is a timer counter that prevents runaway of a program. Once a watchdog timer is activated,
the counter of watchdog timer must always be cleared within a specified time of interval. If specified interval
time elapses without clearing the counter of a watchdog timer, CPU resetting occurs. This is the function of a
watchdog timer.
• The interval time of a watchdog timer is determined by a clock cycle, which is input as a count clock. Watchdog
resetting occurs between a minimum time and a maximum time specified.
• The output target of a clock source is specified by the watchdog clock selection bit (WTC: WDCS) in the clock
timer control register.
• Interval time of a watchdog timer is specified by the time-base timer output selection bit/clock timer output
selection bit (WDTC: WT1, WT0) in the watchdog timer control register.
Interval timer of watchdog timer
Min
Max
Clock cycle
Approx. 3.58 ms
Approx. 4.61 ms
214 ± 211
/HCLK
Approx. 0.457 s Approx. 0.576 s
212 ± 29
/SCLK
Approx. 14.33 ms Approx. 18.3 ms
216 ± 213
/HCLK
Approx. 3.584 s Approx. 4.608 s
215 ± 212
/SCLK
Approx. 57.23 ms Approx. 73.73 ms
218 ± 215
/HCLK
Approx. 7.168 s Approx. 9.216 s
216 ± 213
/SCLK
Approx.
458.75 ms
Approx.
589.82 ms
221 ± 218
/HCLK
Min
Approx.
14.336 s
Max
Approx.
18.432 s
Clock cycle
217 ± 214
/SCLK
HCLK: Oscillation clock ( 4 MHz) , CSCLK: Sub clock (8.192 kHz)
Notes: • If the time-base timer is cleared when watchdog timer count clock is used as time base timer output
(carry-over signal), watchdog reset time may become longer.
• When using the sub clock as machine clock, be sure to specify watchdog timer clock source selection bit
(WDCS) in clock timer control register (WTC) at “0,” selecting output of clock timer.
30
MB90455 Series
• Watchdog timer block diagram
Clock timer control register (WTC)
Watchdog timer control register(WDTC)
WRST ERST SRST WTE WT1 WT0
PONR
Watchdog timer
WDCS
2
Activate
Reset occurs
Shift to sleep mode
Shift to time-base
timer mode
Shift to clock mode
Shift to stop mode
Counter
clear control
circuit
Watchdog
reset
generation
circuit
2-bit
counter
Count clock
selector
Internal reset
generation
circuit
Clear
4
4
Time-base timer counter
Main clock
(dividing HCLK by 2)
21
22
28
29
210
25
26
27
211 212
213
214
215
216
217
218
28
210
211
212 213
214
215
Clock counter
Sub clock
SCLK
21
22
29
HCLK: Oscillation clock
SCLK: Sub clock
31
MB90455 Series
4. 16-bit Input/Output Timer
The 16-bit input/output timer is a compound module composed of 16-bit free-run timer, (1 unit) and input capture
(2 units, 4 input pins). The timer, using the 16-bit free-run timer as a basis, enables measurement of clock cycle
of an input signal and its pulse width.
• Configuration of 16-bit input/output timer
The 16-bit input/output timer is composed of the following modules:
• 16-bit free-run timer (1 unit)
• Input capture (2 units, 2 input pins per unit)
• Functions of 16-bit input/output timer
(1) Functions of 16-bit free-run timer
The 16-bit free-run timer is composed of 16-bit up counter, timer counter control status register, and prescaler.
The 16-bit up counter increments in synchronization with dividing ratio of machine clock.
• Count clock is set among four types of machine clock dividing rates.
• Generation of interrupt is allowed by counter value overflow.
• Activation of expanded intelligent I/O service (EI2OS) is allowed by interrupt generation.
• Counter value of 16-bit free-run timer is cleared to “0000H” by either resetting or software-clearing with timer
count clear bit (TCCS: CLR).
• Counter value of 16-bit free-run timer is output to input capture, which is available as base time for capture
operation.
(2) Functions of input capture
The input capture, upon detecting an edge of a signal input to the input pin from external device, stores a counter
value of 16-bit free-run timer at the time of detection into the input capture data register. The function includes
the input capture data registers corresponding to four input pins, input capture control status register, and edge
detection circuit.
• Rising edge, falling edge, and both edge are selectable for detection.
• Generating interrupt on CPU is allowed by detecting an edge of input signal.
• Expanded intelligent I/O service (EI2OS) is activated by interrupt generation.
• The four input capture input pins and input capture data registers allows monitoring of a maximum of four events.
32
MB90455 Series
• 16-bit input/output timer block diagram
Internal data bus
Input capture
Specialpurpose bus
16-bit free-run
timer
• 16-bit free-run timer
Counter value of 16-bit free-run timer is used as reference time (base time) of input capture.
• Input capture
Input capture detects rising edge, falling edge or both edges and retains a counter value of 16-bit free-run timer.
Detection of edge on input signal is allowed to generate interrupt.
• 16-bit free-run timer block diagram
Timer counter data register
(TCDT)
Output counter value
to input capture
16-bit free-run timer
OF
CLK
STOP
CLR
Internal data bus
Prescaler
2
Timer counter
control status register
(TCCS)
IVF
IVFE STOP
φ : Machine clock
OF : Overflow
Reserved
CLR CLK2 CLK1 CLK0
Free-run timer
interrupt request
33
MB90455 Series
• Detailed pin assignment on block diagram
The 16-bit input/output timer includes a 16-bit free-run timer. Interrupt request number of the 16-bit free-run
timer is as follows:
Interrupt request number: 19 (13H)
• Prescaler
The prescaler divides a machine clock and provides a counter clock to the 16-bit up counter. Dividing ratio of
the machine clock is specified by timer counter control status register (TCCS) among four values.
• Timer counter data register (TCDT)
The timer counter data register is a 16-bit up counter. A current counter value of the 16-bit free-run timer is read.
Writing a value during halt of the counter allows setting an arbitrary counter value.
34
MB90455 Series
•Input capture block diagram
16-bit free-run timer
Edge detection
circuit
IN3
Input capture data register 3 (IPCP3)
Pin
IN2
Input capture data register 2 (IPCP2)
Pin
2
2
Input capture control
status register
(ICS23)
ICP1 ICP0 ICE1 ICE0 EG11 EG10 EG01 EG00
Internal data bus
Input capture
interrupt request
Input capture control
ICP1 ICP0 ICE1 ICE0 EG11 EG10 EG01 EG00
status register
(ICS01)
2
2
IN1
Pin
Input capture data register 1 (IPCP1)
IN0
Input capture data register 0 (IPCP0)
Pin
Edge detection
circuit
35
MB90455 Series
5. 16-bit Reload Timer
The 16-bit reload timer has the following functions:
• Count clock is selectable among 3 internal clocks and external event clock.
• Activation trigger is selectable between software trigger and external trigger.
• Generation of CPU interrupt is allowed upon occurrence of underflow on 16-bit timer register. Available as an
interval timer using the interrupt function.
• When underflow of 16-bit timer register (TMR) occurs, one of two reload modes is selectable between oneshot mode that halts counting operation of TMR, and reload mode that reloads 16-bit reload register value to
TMR, continuing TMR counting operation.
• The 16-bit reload timer is ready for expanded intelligent I/O service (EI2OS).
• MB90455 series device has 2 channels of built-in 16-bit reload timer.
• Operation mode of 16-bit reload timer
Count clock
Activation trigger
Operation upon underflow
Internal clock mode
Software trigger, external trigger
One-shot mode, reload mode
Event count mode
Software trigger
One-shot mode, reload mode
• Internal clock mode
• The 16-bit reload timer is set to internal clock mode, by setting count clock selection bit (TMCSR: CSL1, CSL0)
to “00B”, “01B”, “10B”.
• In the internal clock mode, the counter decrements in synchronization with the internal clock.
• Three types of count clock cycles are selectable by count clock selection bit (TMCSR: CSL1, CSL0) in timer
control status register.
• Edge detection of software trigger or external trigger is specified as an activation trigger.
36
MB90455 Series
• 16-bit reload timer block diagram
Internal data bus
TMRLR
16-bit reload register
Reload signal
TMR
Reload
control
circuit
16-bit timer register UF
Count clock generation
circuit
Machine
clock
φ
Prescaler 3
CLK
Gate
input
Valid
clock
decision
circuit
Clear
Pin
TIN
Internal
clock
Input
control
circuit
CLK
Clock
selector
External clock
3
2
Select
signal
Select function
Wait signal
Output to internal
peripheral
functions
Output control
circuit
Output signal
generation
circuit
Pin
TOT
EN
Operation control
circuit generation
circuit
CSL1 CSL0 MOD2 MOD1 MOD0 OUTE OUTL RELD INTE UF CNTE TRG
Timer control status register (TMCSR)
Interrupt request
output
37
MB90455 Series
6. Clock Timer Outline
The clock timer is a 15-bit free-run counter that increments in synchronization with sub clock.
• Interval time is selectable among 7 choices, and generation of interrupt request is allowed for each interval.
• Provides operation clock to the subclock oscillation stabilizing wait timer and watchdog timer.
• Always uses subclock as a count clock regardless of settings of clock selection register (CKSCR).
• Interval timer function
• In the clock timer, a bit corresponding to the interval time overflows (carry-over) when an interval time, which
is specified by interval time selection bit, is reached. Then overflow flag bit is set (WTC: WTOF=1).
• If an interrupt by overflow is permitted (WTC: WTIE=1), an interrupt request is generated upon setting an
overflow flag bit.
• Interval time of clock timer is selectable among the following seven choices :
• Interval time of clock timer
Sub clock cycle
Interval time
8
2 /SCLK (31.25 ms)
29/SCLK (62.5 ms)
210/SCLK (125 ms)
SCLK (122 µs)
211/SCLK (250 ms)
212/SCLK (500 ms)
213/SCLK (1.0 s)
214/SCLK (2.0 s)
SCLK: Sub clock frequency
Values in parentheses “( )” are calculation when operating with 8.192 kHz clock.
38
MB90455 Series
• Clock timer block diagram
To watchdog
timer
Clock timer counter
21
SCLK
22
23
24
25
26
27
28
29
210
211
212
213
214
215
OF OF OF
OF
Power-on reset
Shift to hardware standby
Shift to stop mode
OF
Counter
clear
circuit
Interval timer
selector
OF
OF
OF
To sub clock oscillation
stabilizing wait time
Clock time interrupt
OF
SCLK
: Overflow
: Sub clock
WDCS SCE WTIE WTOF WTR WTC2 WTC1 WTC0
Clock timer control register (WTC)
Actual interrupt request number of clock timer is as follows :
Interrupt request number : #28 (1CH)
• Clock timer counter
A 15-bit up counter that uses sub clock (SCLK) as a count clock.
• Counter clear circuit
A circuit that clears the clock timer counter.
39
MB90455 Series
7. 8/16-bit PPG Timer Outline
The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of
arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:
• 8-bit PPG output 2-channel independent operation mode
• 16-bit PPG output operation mode
• 8-bit and 8-bit PPG output operation mode
MB90455 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1.
PPG2/3 have the same functions as those of PPG0/1.
• Functions of 8/-16-bit PPG timer
The 8/-16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG
down counters (PCNT0, PCNT1).
• Widths of “H” and “L” in output pulse are specifiable independently. Cycle and duty factor of output pulse is
specifiable arbitrarily.
• Count clock is selectable among 6 internal clocks.
• The timer is usable as an interval timer, by generating interrupt requests for each interval.
• The time is usable as a D/A converter, with an external circuit.
40
MB90455 Series
• 8/16-bit PPG timer0 block diagram
“H” level side data bus
“L” level side data bus
PPG0 reload
register
PPLH0
(“H” level side)
PPG0 operation mode control
register (PPGC0)
PPLL0
(“L” level side)
PEN0
Reserved
PE0 PIE0 PUF0
PPG0 temporary
buffer 0(PRLBH0)
Interrupt
request output*
R
S
Count start
value
Reload
PPG0 down counter
(PCNT0)
2
Select
signal
Reload register
L/H selector
Q
Clear
Pulse selector
Operation mode
control signal
PPG1 underflow
PPG0 underflow
(To PPG1)
Underflow
CLK
Reversed
PPG0
output latch
Pin
PPG0
PPG output control circuit
Time-base timer output
(512/HCLK)
Peripheral clock (1/φ)
Peripheral clock (2/φ)
Peripheral clock (4/φ)
Peripheral clock (8/φ)
Peripheral clock (16/φ)
Count clock
selector
3
Select signal
PCS2 PCS1 PCS0 PCM2 PCM1 PCM0
PPG0/1 count clock selection register (PPG01)
−
: Undefined
Reserved : Reserved bit
HCLK
: Oscillation clock frequency
φ
: Machine clock frequency
*
: Interrupt output of 8/16-bit PPG timer 0 is incorporated into one by the OR circuit against
interrupt output of 8/16-bit PPG timer 1.
41
MB90455 Series
• 8/16-bit PPG timer 1 block diagram
“H” level side data bus
“L” level side data bus
PPG1 reload
register
PPG1 operation mode control
register (PPGC1)
PRLL1
PRLH1
Operation (“H” level side) (“L” level side)
mode
control
signal
RePE1 PIE1 PUF1 MD1 MD0 served
PEN1
2
PPG1 temporary
buffer 0(PRLBH1)
R
S
Reload selector
L/H selector
Count start
value
Q
Select signal
Reload
PPG1 down
counter (PCNT1)
PPG1 underflow
(To PPG0)
Interrupt
request output*
Clear
Underflow
PPG1
Re- output latch
versed
CLK
PPG output control circuit
Pin
PPG1
MD0
PPG0 underflow
(from PPG0)
Time-base timer output
(512/HCLK)
Peripheral clock (1/φ)
Peripheral clock (2/φ)
Peripheral clock (4/φ)
Peripheral clock (8/φ)
Peripheral clock (16/φ)
Count clock
selector
3
Select signal
PCS2 PCS1 PCS0 PCM2 PCM1 PCM0
PPG0/1 count clock selection register (PPG01)
−
: Undefined
Reserved : Reserved bit
HCLK
: Oscillation clock frequency
φ
: Machine clock frequency
*
: Interrupt output of 8/16-bit PPG timer 1 is incorporated into one by the OR circuit against
interrupt output of 8/16-bit PPG timer 0.
42
MB90455 Series
8. Delay Interrupt Generation Module Outline
The delay interrupt generation module is a module that generates interrupts for switching tasks. Generation of
a hardware interrupt request is performed by software.
• Delay interrupt generation module outline
Using the delay interrupt generation module, hardware interrupt request is generated and released by software.
Delay interrupt generation module outline
Function and control
Cause of interrupt
Set “1” in R0 bit of delay interrupt request generation/release register (DIRR: R0=1),
generating an interrupt request.
Set “0” in R0 bit of delay interrupt request generation/release register (DIRR: R0=0),
releasing an interrupt request.
Interrupt number
#42 (2AH)
Interrupt control
No setting of permission register is provided.
Interrupt flag
Retained in DIRR: R0 bit
2
EI OS
Not ready for expanded intelligent I/O service.
• Delay interrupt generation module block diagram
Internal data bus
R0
Delay interrupt request generation/release
register (DIRR)
S Interrupt request
R Latch
Interrupt
request signal
− : Not defined
• Interrupt request latch
A latch that retains settings on delay interrupt request generation/release register (generation or release of delay
interrupt request).
• Delay interrupt request generation/release register (DIRR)
Generates or releases delay interrupt request.
• Interrupt number.
An interrupt number used in delay interrupt generation module is as follows:
Interrupt number: #42 (2AH)
43
MB90455 Series
9. DTP/External Interrupt Outline
DTP/external interrupt transfers an interrupt request generated by an external peripheral device or a data transmission request to CPU, generating external interrupt request and activating expanded intelligent I/O service.
• DTP/external interrupt function
An interrupt request input from external peripheral device to external input pins (INT7 to INT4), just as interrupt
request of peripheral device, generates an interrupt request. The interrupt request generates an external interrupt
and activates expanded intelligent I/O service (EI2OS).
If the expanded intelligent I/O service (EI2OS) has been disabled by interrupt control register (ICR: ISE=0),
external interrupt function is enabled and branches to interrupt processing.
If the EI2OS has been enabled, (ICR: ISE=1), DTP function is enabled and automatic data transmission is
performed by EI2OS. After performing specified number of data transmission processes, the process branches
to interrupt processing.
DTP/external interrupt
External interrupt
Input pin
DTP function
4 pins (INT4 to INT7)
Specify for each pin with detection level setting register (ELVR).
Interrupt cause
Input of “H” level/“L” level/rising edge/falling
Input of “H” level/ “L” level
edge.
Interrupt number
#24 (18H) , #27 (1BH)
Interrupt control
Enabling or disabling output of interrupt request, using DTP/external interrupt permission
register (ENIR).
Interrupt flag
Retaining interrupt cause with DTP/external interrupt cause register (EIRR).
Process selection
Disable EI2OS (ICR: ISE=0)
Enable EI2OS (ICR: ISE=1)
Branch to external interrupt process
After automatic data transmission by EI2OS for
specified number of times, branch to interrupt
process.
Process
44
MB90455 Series
• DTP/External interrupt block diagram
Detection level setting register (ELVR)
LB7 LA7 LB6 LA6 LB5 LA5 LB4 LA4
Pin
Level/edge
selector
INT7
Pin
Level/edge
selector
INT6
Internal data bus
Pin
Level/edge
selector
INT5
Pin
Level/edge
selector
INT4
DTP/external interrupt input
detection circuit
ER7 ER6 ER5 ER4
DTP/external interrupt
cause register (EIRR)
Re- Re- Re- ReEN7 EN6 EN5 EN4 served
served served served
DTP/external interrupt
permission register (ENIR)
Interrupt
request signal
45
MB90455 Series
10. 8/10-bit A/D Converter
The 8/10-bit A/D converter converts an analog input voltage into 8-bit or 10/bit digital value, using the RC-type
successive approximation conversion method.
• Input signal is selected among 8 channels of analog input pins.
• Activation trigger is selected among software trigger, internal timer output, and external trigger.
• Functions of 8/10-bit A/D converter
The 8/10-bit A/D converter converts an analog voltage (input voltage) input to analog input pin into an 8-bit or
10-bit digital value (A/D conversion).
The 8/10-bit A/D converter has the following functions:
• A/D conversion takes a minimum of 6.12 µs*1 for one channel, including sampling time. (A/D conversion)
• Sampling of one channel takes a minimum of 2.0 µs*.
• RC-type successive approximation conversion method, with sample & hold circuit is used for conversion.
• Resolution of either 8 bits or 10 bits is specifiable.
• A maximum of 8 channels of analog input pins are allowed for use.
• Generation of interrupt request is allowed, by storing A/D conversion result in A/D data register.
• Activation of EI2OS is allowed upon occurrence of an interrupt request. With use of EI2OS, data loss is avoided
even if A/D conversion is performed successively.
• An activation trigger is selectable among software trigger, internal timer output, and external trigger (fall edge).
*: When operating with 16-MHz machine clock
• 8/10-bit A/D converter conversion mode
Conversion mode
46
Description
Singular conversion
mode
The A/D conversion is performed form a start channel to an end channel sequentially.
Upon completion of A/D conversion on an end channel, A/D conversion function stops.
Sequential conversion
mode
The A/D conversion is performed form a start channel to an end channel sequentially.
Upon completion of A/D conversion on an end channel, A/D conversion function
resumes from the start channel.
Pausing conversion
mode
The A/D conversion is performed by pausing at each channel. Upon completion of A/D
conversion on an end channel, A/D conversion and pause functions resume from the
start channel.
MB90455 Series
• 8/10-bit A/D converter block diagram
A/D control
status register
(ADCS)
Interrupt request output
BUSY INT INTE PAUS STS1 STS0 STRT
Reserved
MD1 MD0 ANS2 ANS1 ANS0 ANE2 ANE1 ANE0
2
ADTG
TO
2
Activation
selector
Decoder
Sample&
hold circuit
Internal data bus
AN7
AN6
AN5
AN4
AN3
AN2
AN1
AN0
6
Comparator
Control circuit
Analog
channel
selector
AVR
AVcc
AVss
D/A converter
2
2
A/D data
register
(ADCR)
S10 ST1 ST0 CT1 CT0
TO
:
−
:
Reserved :
φ
:
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Internal timer output
Not defined
Be sure to set to “0”
Machine clock
47
MB90455 Series
11. UART Outline
UART is a general-purpose serial data communication interface for synchronous and asynchronous communication using external devices.
• Provided with bi-directional communication function for both clock-synchronous and clock-asynchronous
modes.
• Provided with master/slave communication function (multi-processor mode). (Only master side is available.)
• Interrupt request is generated upon completion of reception, completion of transmission and detection of
reception error.
• Ready for expanded intelligent service, EI2OS.
UART functions
Description
Data buffer
Full-duplex double buffer
Clock synchronous (No start/stop bit, no parity bit)
Clock asynchronous (start-stop synchronous)
Transmission mode
Built-in special-purpose baud-rate generator. Setting is selectable
among 8 values.
Input of external values is allowed.
Use of clock from external timer (16-bit reload timer 0) is allowed.
Baud rate
7 bits (only asynchronous normal mode)
8 bits
Data length
Signaling system
Non Return to Zero (NRZ) system
Framing error
Overrun error
Parity error (not detectable in operation mode 1 (multi-processor
mode))
Reception error detection
Receive interrupt (reception completed, reception error detected)
Transmission interrupt (transmission completed)
Ready for expanded intelligent I/O service (EI2OS) in both transmission and reception
Interrupt request
Master/slave communication function
(asynchronous, multi-processor mode)
Communication between 1 (master) and n (slaves) are available
(usable as master only).
Note : Start/stop bit is not added upon clock-synchronous transmission. Data only is transmitted.
UART operation modes
Operation mode
Data length
With parity
Without parity
Synchronization
0
Asynchronous mode
(normal mode)
1
Multi processor mode
8+1*1

Asynchronous
2
Synchronous mode
8

Synchronous
7-bit or 8-bit
Asynchronous
Stop bit length
1- bit or 2-bit *2
No
 : Disallowed
*1 : “+1” is an address/data selection bit used for communication control (bit 11 of SCR1 register: A/D)
*2 : Only 1 bit is detected as a stop bit on data reception.
48
MB90455 Series
• UART block diagram
Control bus
Special-purpose
baud-rate
generator
16-bit reload
timer
Pin
Reception interrupt
request output
Transmission
clock
Clock Reception
Reception
selector
clock
control
circuit
Transmission
control
circuit
Start bit
detection circuit
SCK1
Transmission interrupt
request output
Transmission
start circuit
Reception bit
counter
Transmission
bit counter
Reception
parity counter
Transmission
parity counter
Pin
SOT1
Shift register for
transmission
Shift register for
reception
Pin
SIN1
Reception status
decision circuit
Reception
Serial input data comregister 1
pleted
Serial output data
register 1
Start
transmission
Reception error
occurrence
signal for EI2OS
(to CPU)
Internal data bus
Communication
prescaler
control
register
MD
DIV2
DIV1
DIV0
Serial
mode
register
1
MD1
MD0
CS2
CS1
CS0
RST
SCKE
SOE
Serial
control
register
1
PEN
P
SBL
CL
A/D
REC
RXE
TXE
Serial
status
register
1
PE
ORE
FRE
RDRF
TDRE
BDS
RIE
TIE
49
MB90455 Series
12. Address Matching Detection Function Outline
The address matching detection function checks if an address of an instruction to be processed next to a currentlyprocessed instruction is identical with an address specified in the detection address register. If the addresses
match with each other, an instruction to be processed next in program is forcibly replaced with INT9 instruction,
and process branches to the interrupt process program. Using INT9 interrupt, this function is available for
correcting program by batch processing.
• Address matching detection function outline
• An address of an instruction to be processed next to a currently-processed instruction of the program is always
retained in an address latch via internal data bus. By the address matching detection function, the address
value retained in the address latch is always compared with an address specified in detection address setting
register. If the compared address values match with each other, an instruction to be processed next by CPU
is forcibly replaced with INT9 instruction, and an interrupt process program is executed.
• Two detection address setting registers are provided (PADR0 and PADR1), and each register is provided with
interrupt permission bit. Generation of interrupt, which is caused by address matching between the address
retained in address latch and the address specified in address setting register, is permitted and prohibited on
a register-by-register basis.
• Address matching detection function block diagram
Address latch
24bit
Detection address setting register 0
PADR1
24bit
Comparator
Internal data bus
PADR0
INT9 instruction
(generate INT9 interrupt)
Detection address setting register 1
PACSR
Reserved Reserved Reserved Reserved
AD1E Reserved AD0E Reserved
Address detection control register (PACSR)
Reserved: Be sure to set to “0.”
• Address latch
Retains address value output to internal data bus.
• Address detection control register (PACSR)
Specifies if interrupt is permitted or prohibited when addresses match with each other.
• Detection address setting (PADR0, PADR1)
Specifies addresses to be compared with values in address latch.
50
MB90455 Series
13. ROM Mirror Function Selection Module Outline
The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read
by access to 00 bank.
• ROM mirror function selection module block diagram
ROM mirror function selection register
(ROMM)
Reserved Reserved Reserved Reserved Reserved Reserved Reserved
MI
Address
Internal data bus
Address area
FF bank
00 bank
Data
ROM
• FF bank access by ROM mirror function
004000 H
00 bank
ROM mirror area
00FFFFH
FBFFFF
FC0000H
FEFFFF H
FF0000 H
FF4000 H
FFFFFFH
FF bank (ROM
mirror applicable
area)
51
MB90455 Series
14. 192 K/256 K/512 Kbit Flash Memory Outline
The following three methods are provided for data writing and deleting on flash memory:
1. Parallel writer
2. Serial special-purpose writer
3. Writing/deleting by program execution
• 192 K/256 K/512 Kbit flash memory outline
The 192 K/256 K/512K-bit flash memory is allocated on FFH bank of CPU memory map. Using the function of
flash memory interface circuit, the memory allows read access and program access from CPU.
Writing/deleting on flash memory is performed by instruction from CPU via flash memory interface. Because
rewriting is allowed on mounted memory, modifying program and data is performed efficiently.
• Features of 192 K/256 K/512 Kbit flash memory
• Dividing into many sectors
• Automatic program algorithm (Embedded AlgorithmTM: Similar to MBM29LV200.)
• Built-in deletion pause/deletion resume function
• Detection of completed writing/deleting by data polling and toggle bits.
• Detection of completed writing/deleting by CPU interrupt.
• Deletion is allowed on a sector-by-sector basis (sectors are combined freely).
• Number of writing/deleting operations (minimum): 10,000 times
• Sector protection
• Extended sector protection
• Temporary sector unprotection
Embedded AlgorithmTM is a registered trademark of Advanced Micro Device.
Note : A function of reading manufacture code and device code is not provided. These codes are not accessible
by command either.
• Flash memory writing/deleting
• Writing and reading data is not allowed simultaneously on the flash memory.
• Data writing and deleting on the flash memory is performed by the processes as follows: Make a copy of
program on flash memory onto RAM. Then, execute the program copied on the RAM.
• List of registers and reset values in flash memory
Flash memory control status register (FMCS)
× : Undefined
52
bit
7
6
5
4
3
2
1
0
0
0
0
X
0
0
0
0
MB90455 Series
• Sector configuration of 192 K/256 K/512 Kbit flash memory
• Sector configuration of 192 Kbit to flash memory (MB90F455 (S) )
Flash memory
CPU address
Writer address*
FFA000H
7A000H
FFBFFF H
7BFFF H
FFC000 H
7C000H
FFFFFF H
7FFFFH
SA0 (8 Kbytes)
SA1 (16 Kbytes)
• Sector configuration of 256 Kbit to flash memory (MB90F456 (S) )
Flash memory
CPU address
Writer address*
FF8000H
78000H
FF9FFF H
79FFFH
FFA000H
7A000H
FFBFFF H
7BFFF H
FFC000 H
7C000H
FFFFFF H
7FFFFH
SA0 (8 Kbytes)
SA1 (8 Kbytes)
SA2 (16 Kbytes)
• Sector configuration of 512 Kbit to flash memory (MB90F457 (S) )
Flash memory
CPU address
Writer address*
FF0000H
70000H
FF7FFF H
77FFFH
FF8000H
78000H
FF9FFF H
79FFFH
FFA000H
7A000H
FFBFFF H
7BFFF H
FFC000 H
7C000H
FFFFFF H
7FFFFH
SA0 (32 Kbytes)
SA1 (8 Kbytes)
SA2 (8 Kbytes)
SA3 (16 Kbytes)
* : “Writer address” is an address equivalent to CPU address, which is used
when data is written on flash memory, using parallel writer. When writing/
deleting data with general-purpose writer, the writer address is used for
writing and deleting.
53
MB90455 Series
■ ELECTRIC CHARACTERISTICS
1. Absolute Maximum Rating
Parameter
(VSS = AVSS = 0.0 V)
Symbol
Rating
Unit
Remarks
Min
Max
VCC
VSS − 0.3
VSS + 6.0
V
AVCC
VSS − 0.3
VSS + 6.0
V
VCC = AVCC*1
AVR
VSS − 0.3
VSS + 6.0
V
AVCC ≥ AVR*1
Input voltage
VI
VSS − 0.3
VSS + 6.0
V
*2
Output voltage
VO
VSS − 0.3
VSS + 6.0
V
*2
ICLAMP
− 2.0
+ 2.0
mA
*6
∑ | ICLAMP |

20
mA
*6
IOL1

15
mA
Normal output*3
IOL2

40
mA
High-current output*3
IOLAV1

4
mA
Normal output*4
IOLAV2

30
mA
High-current output*4
∑IOL1

125
mA
Normal output
∑IOL2

160
mA
High-current output
∑IOLAV1

40
mA
Normal output*5
∑IOLAV2

40
mA
High-current output*5
IOH1

−15
mA
Normal output*3
IOH2

−40
mA
High-current output*3
IOHAV1

−4
mA
Normal output*4
IOHAV2

−30
mA
High-current output*4
∑IOH1

−125
mA
Normal output
∑IOH2

−160
mA
High-current output
∑IOHAV1

−40
mA
Normal output*5
∑IOHAV2

−40
mA
High-current output*5
Power consumption
PD

245
mW
Operating temperature
TA
−40
+105
°C
Tstg
−55
+150
°C
Power supply voltage
Maximum clamp current
Total maximum clamp current
“L” level maximum output current
“L” level average output current
“L” level maximum total output current
“L” level average total output current
“H” level maximum output current
“H” level average output current
“H” level maximum total output current
“H” level average total output current
Storage temperature
*1 : AVcc and AVR should not exceed Vcc. Also AVR should not exceed AVcc.
*2 : VI, VO, should not exceed Vcc + 0.3V.
*3 : A peak value of an applicable one pin is specified as a maximum output current.
*4 : An average current value of an applicable one pin within 100 ms is specified as an average output current.
(Average value is found by multiplying operating current by operating rate.)
*5 : An average current value of all pins within 100 ms is specified as an average total output current. (Average
value is found by multiplying operating current by operating rate.)
(Continued)
54
MB90455 Series
(Continued)
*6 : • Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35*, P36*, P37, P40 to P44, P50 to P57
Note : P35 and P36 are applicable only for products of MB90F455S/F456S/F457S, MB90455S/456S/457S.
• Use within recommended operating conditions.
• Use at DC voltage (current) .
• The +B signal should always be applied a limiting resistance placed between the +B signal and the
microcontroller.
• The value of the limiting resistance should be set so that when the +B signal is applied the input current to the
microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
• Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input
potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect
other devices.
• Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V) , the power supply is
provided from the pins, so that incomplete operation may result.
• Note that if the +B input is applied during power-on, the power supply is provided from the pins and the
resulting supply voltage may not be sufficient to operate the power-on reset.
• Care must be taken not to leave the +B input pin open.
• Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input
pins, etc.) cannot accept +B signal input.
• Sample recommended circuits:
• Input/Output Equivalent circuits
Protective diode
VCC
P-ch
Limiting
resistance
+B input (0 V to 16 V)
N-ch
R
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
55
MB90455 Series
2. Recommended Operating Conditions
Parameter
(VSS = AVSS = 0.0V)
Value
Symbol
Unit
Remarks
Min
Typ
Max
3.5
5.0
5.5
V
Under normal operation
3.0

5.5
V
Retain status of stop
operation
AVCC
4.0

5.5
V
*2
Smoothing capacitor
CS
0.1

1.0
µF
*1
Operating temperature
TA
−40

+105
°C
Power supply voltage
VCC
*1 : Use a ceramic capacitor, or a capacitor of similar frequency characteristics. On the Vcc pin, use a bypass
capacitor that has a larger capacity than that of Cs.
Refer to the following figure for connection of smoothing capacitor Cs.
*2 : AVcc is a voltage at which accuracy is guaranteed. AVcc should not exceed Vcc.
• C pin connection diagram
C
CS
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
56
MB90455 Series
3. DC Characteristics
Parame- Symter
bol
“H” level
input
voltage
“L” level
input
voltage
“H” level
output
voltage
“L” level
output
voltage
Input
leak
current
Pin name
(VCC = 5.0 V±10%, VSS = AVSS = 0.0 V, TA = −40 °C to +105 °C)
Value
Conditions
Unit Remarks
Min
Typ
Max
VIHS
CMOS
hysteresis input
pin
—
0.8 VCC
—
VCC + 0.3
V
VIHM
MD input pin
—
VCC − 0.3
—
VCC + 0.3
V
VILS
CMOS
hysteresis input
pin
—
VSS − 0.3
—
0.2 VCC
V
VILM
MD input pin
—
VSS − 0.3
—
VSS + 0.3
V
VOH1
Pins other than
P14 to P17
VCC = 4.5 V,
IOH = −4.0 mA
VCC – 0.5
—
—
V
VOH2
P14 to P17
VCC = 4.5 V,
IOH = −14.0 mA
VCC – 0.5
—
—
V
VOL1
Pins other than
P14 to P17
VCC = 4.5 V,
IOL = 4.0 mA
—
—
0.4
V
VOL2
P14 to P17
VCC = 4.5 V,
IOL = 20.0 mA
—
—
0.4
V
All input pins
VCC = 5.5 V,
VSS < VI < VCC
–5
—
+5
µA
VCC = 5.0 V,
Internally operating at
16 MHz, normal operation.
—
25
30
mA
VCC = 5.0 V,
Internally operating at
16 MHz, writing on flash
memory.
—
45
50
mA
Flash ROM
product
VCC = 5.0 V,
Internally operating at
16 MHz, deleting on flash
memory.
—
45
50
mA
Flash ROM
product
ICCS
VCC = 5.0 V,
Internally operating at
16 MHz, sleeping.
—
8
12
mA
0.75
1.0
mA
Flash ROM
product
ICTS
VCC = 5.0 V,
Internally operating at
2 MHz, transition from
main clock mode,
in time-base timer mode.
0.2
0.35
mA
Mask ROM
product
IIL
ICC
Power
supply
current*
VCC
—
(Continued)
57
MB90455 Series
(Continued)
Parameter
Symbol
Pin name
VCC = 5.0 V,
Internally operating at
8 kHz, subclock
operation,
TA = + 25°C
—
0.3
1.2
mA
Flash ROM
product
—
40
100
µA
Mask ROM
product
VCC = 5.0 V,
Internally operating at
8 kHz, subclock,
sleep mode,
TA = + 25°C
—
10
30
µA
ICCT
VCC = 5.0 V,
Internally operating at
8 kHz, clock mode,
TA = + 25°C
—
8
25
µA
ICCH
Stopping,
TA = + 25°C
—
5
20
µA
ICCL
Power
supply
current*
Input
capacity
Pull-up
resistor
Pull-down
resistor
(VCC = 5.0 V±10%, VSS = AVSS = 0.0 V, TA = −40 °C to +105 °C)
Rating
Conditions
Unit
Remarks
Min
Typ
Max
ICCLS
VCC
CIN
Other than
AVCC, AVSS,
AVR, C, VCC,
VSS

—
5
15
pF
RUP
RST

25
50
100
kΩ
RDOWN MD2

25
50
100
* : Test conditions of power supply current are based on a device using external clock.
58
kΩ
Flash ROM
product is not
provided with
pull-down resistor.
MB90455 Series
4. AC Characteristics
(1) Clock timing
Parameter
Symbol
(VCC = 5.0 V±10%, VSS = AVSS = 0.0 V, TA = −40 °C to +105 °C)
Value
Pin name
Unit
Remarks
Min
Typ
Max
fC
Clock frequency
Clock cycle time
Input clock pulse width
Input clock rise time and fall
time
Internal operation clock
frequency
Internal operation clock cycle
time
X0, X1
When crystal or ceramic
resonator is used*2
3
—
8
MHz
3
—
16
MHz External clock *1, *2
fCL
X0A, X1A
—
32.768
—
kHz
tHCYL
X0, X1
125
—
333
ns
tLCYL
X0A, X1A
—
30.5
—
µs
PWH, PWL
X0
10
—
—
ns
PWLH,PWLL
X0A
—
15.2
—
µs
tCR, tCF
X0
—
—
5
ns
fCP
—
1.5
—
16
MHz When main clock is used
fLCP
—
—
8.192
—
kHz
When sub clock is used
tCP
—
62.5
—
666
ns
When main clock is used
tLCP
—
—
122.1
—
µs
When sub clock is used
Set duty factor at 30% to
70% as a guideline.
When external clock is
used
*1 : Internal operation clock frequency should not exceed 16 MHz.
*2 : When selecting the PLL clock, the range of clock frequency is limitted. Use this product within range as mentioned
in “Relation among external clock frequency and internal clock frequency”.
• Clock timing
tHCYL
0.8 VCC
X0
0.2 VCC
PWH
PWL
tCF
tCR
tLCYL
0.8 VCC
X0A
0.2 VCC
PWLH
PWLL
tCF
tCR
59
MB90455 Series
• PLL operation guarantee range
Relation between internal operation clock
frequency and power supply voltage
Operation guarantee range of MB90F455 (S) /F456 (S) /F457 (S)
and MB90455 (S) /456 (S) /457 (S)
Power voltage VCC (V)
5.5
A/D converter
accuracy
guarantee range
4.0
3.5
3.0
PLL operation guarantee range
1.5
3 4
8
12
16
Internal clock fCP (MHz)
Relation among external clock frequency and internal clock frequency
Multiply
by 4
Multiply Multiply
by 3
by 2
Multiply by 1
Internal clock fCP (MHz)
16
12
x1/2
(no multiplication)
9
8
4
3
4
8
16
External clock fC (MHz)*
* : fc is 8 MHz at maximum when crystal or ceramic resonator is used.
Rating values of alternating current is defined by the measurement reference voltage values shown below:
• Input signal waveform
• Output signal waveform
Hysteresis input pin
60
Output pin
0.8 VCC
2.4 V
0.2 VCC
0.8 V
MB90455 Series
(2) Reset input timing
Symbol
Parameter
Reset input time
tRSTL
Pin
name
RST
Value
Conditions

Min
Max
16 tCP*3

Unit
Remarks
ns
Normal operation
Oscillation time of oscillator*1
+ 100 µs + 16 tCP*3


In sub clock*2, sub
sleep*2, watch*2
and stop mode
100

µs
In time base timer
mode
*1 : Oscillation time of oscillator is time until oscillation reaches 90% of amplitude. It takes several milliseconds to
several dozens of milliseconds on a crystal oscillator, several hundreds of microseconds to several milliseconds
on a FAR/ceramic oscillator, and 0 milliseconds on an external clock.
*2 : Except for MB90F455S/F456S/F457S, MB90455S/456S/457S.
*3 : Refer to "(1) Clock timing" ratings for tCP (internal operation clock cycle time).
• In sub clock, sub sleep, watch and stop mode
tRSTL
RST
0.2 VCC
0.2 VCC
90% of
amplitude
X0
Internal operation
clock
100 s
+ 16 tCP
Oscillation
time of
oscillator
Wait time for stabilizing
oscillation
Execute instruction
Internal reset
61
MB90455 Series
(3) Power-on reset
Parameter
(VCC = 5.0 V ± 10%, VSS = AVSS = 0.0 V, TA = −40 °C to +105 °C)
Value
Symbol Pin name Conditions
Unit
Remarks
Min
Max
Power supply rise time
tR
VCC
Power supply shutdown
time
tOFF
VCC

0.05
30
ms
1

ms
Repeated operation
tR
VCC
2.7 V
0.2 V
0.2 V
0.2 V
tOFF
Sudden change of power supply voltage may activate the power-on reset function. When
changing power supply voltages during operation, raise the power smoothly by suppressing
variation of voltages as shown below. When raising the power, do not use PLL clock. However, if voltage drop is 1V/s or less, use of PLL clock is allowed during operation.
VCC
3.0 V
VSS
62
Limiting the slope of rising within
50 mV/ms is recommended.
RAM data hold period
MB90455 Series
(4) UART timing
Parameter
(VCC = 4.5 V to 5.5 V, VSS = 0.0 V, TA = −40 °C to +105 °C)
Value
Symbol Pin name
Conditions
Unit Remarks
Min
Max
8 tCP *

ns
−80
+80
ns
100

ns
SCK1,
SIN1
60

ns
tSHSL
SCK1
4 tCP *

ns
Serial clock “L” pulse width
tSLSH
SCK1
4 tCP *

ns
SCK ↓ → SOT delay time
tSLOV
SCK1,
SOT1

150
ns
Valid SIN → SCK ↑
tIVSH
SCK1,
SIN1
60

ns
SCK ↑ →valid SIN hold time
tSHIX
SCK1,
SIN1
60

ns
Serial clock cycle time
tSCYC
SCK1
SCK ↓ → SOT delay time
tSLOV
SCK1,
SOT1
Valid SIN → SCK ↑
tIVSH
SCK1,
SIN1
SCK ↑ → valid SIN hold time
tSHIX
Serial clock “H” pulse width
Internal shift clock
mode output pin is :
CL = 80 pF+1TTL.
External shift clock
mode output pin is :
CL = 80 pF+1TTL.
* : Refer to "(1) Clock timing" ratings for tCP (internal operation clock cycle time).
Notes: • AC rating in CLK synchronous mode.
• CL is a load capacitance value on pins for testing.
63
MB90455 Series
• Internal shift clock mode
tSCYC
2.4 V
SCK
0.8 V
0.8 V
tSLOV
2.4 V
SOT
0.8 V
tIVSH
SIN
tSHIX
0.8 VCC
0.8 VCC
0.2 VCC
0.2 VCC
• External shift clock mode
tSLSH
SCK
0.2 VCC
tSHSL
0.8 VCC
0.8 VCC
0.2 VCC
tSLOV
2.4 V
SOT
0.8 V
tIVSH
SIN
64
tSHIX
0.8 VCC
0.8 VCC
0.2 VCC
0.2 VCC
MB90455 Series
(5) Timer input timing
Parameter
(VCC = 4.5 V to 5.5 V, VSS = 0.0 V, TA = −40 °C to +105 °C)
Value
Conditions
Unit Remarks
Min
Max
Symbol
Pin name
tTIWH
TIN0, TIN1
tTIWL
IN0 to IN3
Input pulse width

4 tCP *

ns
* : Refer to "(1) Clock timing" ratings for tCP (internal operation clock cycle time).
• Timer input timing
0.8 VCC
0.8 VCC
TIN0, TIN1,
IN0 ~ IN3
0.2 VCC
tTIWH
(6) Trigger input timing
Parameter
(VCC = 4.5 V to 5.5 V, VSS = 0.0 V, TA = −40 °C to +105 °C)
Value
Conditions
Unit Remarks
Min
Max
Symbol
Pin name
tTRGH
tTRGL
INT4 to INT7,
ADTG
Input pulse width
0.2 VCC
tTIWL

5 tCP *

ns
* : Refer to "(1) Clock timing" ratings for tCP (internal operation clock cycle time).
• Trigger input timing
INT4 ~ INT7,
ADTG
0.8 VCC
0.8 VCC
0.2 VCC
tTRGH
0.2 VCC
tTRGL
65
MB90455 Series
5. A/D converter
Parameter
(VCC = AVCC = 5.0 V ± 10%, VSS = AVSS = 0.0 V, 3.0 V ≤ AVR − AVSS, TA = −40 °C to +105 °C)
Value
Pin
Symbol
Conditions
Unit
Remarks
name
Min
Max
Resolution




10
bit
Total error




± 3.0
LSB
Nonlinear error




± 2.5
LSB
Differential linear error




± 1.9
LSB
Zero transition voltage
VOT
AN0 to
AN7
AVSS − 1.5
LSB
AVSS + 0.5 AVSS + 2.5
LSB
LSB
V
VFST
AN0 to
AN7
AVR − 3.5
LSB
AVR − 1.5
LSB
AVR + 0.5
LSB
V
66 tCP *1


ns
With 16 MHz
machine clock
5.5 V ≥ AVCC ≥ 4.5 V
88 tCP *1


ns
With 16 MHz
machine clock
4.5 V > AVCC ≥ 4.0 V
32 tCP *1


ns
With 16 MHz
machine clock
5.5 V ≥ AVCC ≥ 4.5 V
128 tCP *1


ns
With 16 MHz
machine clock
4.5 V > AVCC ≥ 4.0 V
Full-scale transition
voltage
Compare time
Sampling time


1 LSB = AVR/1024


Analog port input
current
IAIN
AN0 to
AN7


10
µA
Analog input voltage
VAIN
AN0 to
AN7
AVSS

AVR
V

AVR
AVSS + 2.7

AVCC
V
IA
AVCC

3.5
7.5
mA
IAH
AVCC


5
µA
IR
AVR

165
250
µA
IRH
AVR


5
µA

AN0 to
AN7


4
LSB
Reference voltage
Power supply current
Reference voltage
supplying current
Variation among
channels
*2
*2
*1 : Refer to "(1) Clock timing" ratings for tCP (internal operation clock cycle time).
*2 : If A/D converter is not operating, a current when CPU is stopped is applicable (Vcc=AVcc=AVR=5.0 V).
66
MB90455 Series
6. Definition of A/D Converter Terms
Resolution
Linear error
Differential linear
error
Total error
: Analog variation that is recognized by an A/D converter.
: Deviation between a line across zero-transition line (“00 0000 00 0 0” ←→“00 0000 0001”)
and full-scale transition line (“11 1111 11 1 0” ←→ “11 1111 1111”) and actual conversion
characteristics.
: Deviation of input voltage, that is required for changing output code by 1 LSB, from an ideal
value.
: Difference between an actual value and an ideal value. A total error includes zero transition
error, full-scale transition error, and linear error.
Total error
3FF
3FE
Actual conversion
characteristics
1.5 LSB
Digital output
3FD
{1 LSB × (N − 1) + 0.5 LSB}
004
VNT
(Actually-measured value)
003
Actual conversion
characteristics
Ideal characteristics
002
001
0.5 LSB
AVss
Total error of digital output “N” =
1 LSB = (Ideal value)
Analog input
AVR
VNT − {1 LSB × (N − 1) + 0.5 LSB}
1 LSB
AVR − AVSS
1024
[LSB]
[V]
VOT (Ideal value) = AVSS + 0.5 LSB [V]
VFST (Ideal value) = AVR − 1.5 LSB [V]
VNT : A voltage at which digital output transits from (N-1) to N.
(Continued)
67
MB90455 Series
(Continued)
Differential linear error
Linear error
3FF
Digital output
3FD
004
003
N+1
VFST (actual
measurement
value)
Digital output
3FE
Ideal characteristics
Actual conversion
characteristics
{1 LSB × (N − 1)
+ VOT }
VNT (actual
measurement value)
Actual conversion
characteristics
Actual conversion
characteristics
N
002
Ideal characteristics
N−2
001
V (N + 1) T
(actual measurement
value)
N−1
VNT
(actual measurement value)
Actual conversion
characteristics
VOT (actual measurement value)
AVss
AVR
Analog input
Linear error of digital output N =
Differential linear error of digital output N =
1 LSB =
AVss
VNT − {1 LSB × (N − 1) + VOT}
1 LSB
V (N + 1) T − VNT
1 LSB
VFST − VOT
1022
−1LSB [LSB]
[V]
VOT : Voltage at which digital output transits from “000H” to “001H.”
VFST : Voltage at which digital output transits from “3FEH” to “3FFH.”
68
Analog input
[LSB]
AVR
MB90455 Series
7. Notes on A/D Converter Section
Use the device with external circuits of the following output impedance for analog inputs:
Recommended output impedance of external circuits are: Approx. 3.9 kΩ or lower (4.5 V ≤ AVcc ≤ 5.5 V)
(sampling period=2.00 µs at 16-MHz machine clock), Approx. 11 kΩ or lower (4.0 V ≤ AVcc < 4.5 V) (sampling
period=8.0 µs at 16-MHz machine clock).
If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors
and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high
as internal capacitor.
If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.
• Analog input circuit model
R
Analog input
Comparator
C
MB90F455 (S) /F456 (S) /F457 (S) and MB90455 (S) /456 (S) /457 (S)
4.5 V ≤ AVCC ≤ 5.5 V
R =: 2.35 kΩ, C =: 36.4 pF
4.0 V ≤ AVCC < 4.5 V
R =: 16.4 kΩ, C =: 36.4 pF
Note : Use the values in the figure only as a guideline.
• About errors
As [AVR-AVss] become smaller, values of relative errors grow larger.
8. Flash Memory Program/Erase Characteristics
Parameter
Conditions
Sector eraset time
Chip erase time
TA = + 25 °C
VCC = 5.0 V
Word (16 bit width)
programming time
Program/Erase cycle

Value
Unit
Remarks
15
s
Excludes 00H programming
prior to erasure
4

s
Excludes 00H programming
prior to erasure

16
3,600
µs
Except for the over head
time of the system
10,000


cycle
Min
Typ
Max

1

69
MB90455 Series
■ EXAMPLE CHARACTERISTICS
• MB90F457
ICC − VCC
TA = +25 °C, external clock operation
f = Internal operation frequency
30
25
f = 16 MHz
ICC (mA)
20
f = 10 MHz
15
f = 8 MHz
10
f = 4 MHz
5
f = 2 MHz
0
2.5
3.5
4.5
VCC (V)
5.5
6.5
ICCS − VCC
TA = +25 °C, external clock operation
f = Internal operation frequency
10
ICCS (mA)
8
f = 16 MHz
6
f = 10 MHz
4
f = 8 MHz
2
f = 4 MHz
f = 2 MHz
0
2.5
3.5
4.5
VCC (V)
5.5
6.5
ICCL − VCC
TA = +25 °C, external clock operation
f = Internal operation frequency
350
300
f = 8 kHz
ICCL (mA)
250
200
150
100
50
0
3
4
5
VCC (V)
6
7
(Continued)
70
MB90455 Series
ICCLS − VCC
TA = +25 °C, external clock operation
ICCLS (mA)
f = Internal operation frequency
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
f = 8 kHz
3
4
5
VCC (V)
6
7
ICCT − VCC
TA = +25 °C, external clock operation
f = Internal operation frequency
10
9
8
f = 8 kHz
ICCT (mA)
7
6
5
4
3
2
1
0
4
3
5
6
7
VCC (V)
ICCH − VCC
Stopping, TA = +25 °C
30
ICCH ( A)
25
20
15
10
5
0
2
3
4
5
6
7
VCC (V)
(Continued)
71
MB90455 Series
(Continued)
(VCC − VOH) − IOH
TA = +25 °C, VCC = 4.5 V
1000
900
LCC-VOH (mV)
800
700
600
500
400
300
200
100
0
2
0
4
6
8
10
IOH (mA)
VOL − IOL
TA = +25 °C, VCC = 4.5 V
1000
900
800
VOL (mV)
700
600
500
400
300
200
100
0
0
2
4
6
8
10
IOL (mA)
“H” level input voltage/ “L” level input voltage
VIN − VCC
TA = +25 °C
5
VIN (V)
4
VIH
3
VIL
2
1
0
2.5
3
3.5
4
4.5
VCC (V)
72
5
5.5
6
MB90455 Series
• MB90457
ICC − VCC
TA = +25 °C, external clock operation
f = Internal operation frequency
25
ICC (mA)
20
f = 16 MHz
15
f = 10 MHz
10
f = 8 MHz
5
f = 4 MHz
f = 2 MHz
0
2.5
3
3.5
4
4.5
5
5.5
6
6.5
7
VCC (V)
ICCS − VCC
TA = +25 °C, external clock operation
f = Internal operation frequency
9
8
f = 16 MHz
ICCS (mA)
7
6
f = 10 MHz
5
f = 8 MHz
4
3
f = 4 MHz
2
f = 2 MHz
1
0
2.5
3.5
4.5
VCC (V)
5.5
6.5
ICCL − VCC
TA = +25 °C, external clock operation
ICCL (mA)
f = Internal operation frequency
100
90
80
70
60
50
40
30
20
10
0
f = 8 kHz
3
4
5
VCC (V)
6
7
(Continued)
73
MB90455 Series
ICCLS − VCC
TA = +25 °C, external clock operation
f = Internal operation frequency
ICCLS ( A)
10
9
8
7
6
5
4
3
2
1
0
f = 8 kHz
4
3
5
VCC (V)
6
7
ICCT − VCC
TA = +25 °C, external clock operation
f = Internal operation frequency
10
9
8
ICCT ( A)
7
6
5
f = 8 kHz
4
3
2
1
0
4
3
5
VCC (V)
6
ICCH − VCC
7
Stopping, TA = +25 °C
30
25
ICCH ( A)
20
15
10
5
0
2
3
4
5
6
7
VCC (V)
(Continued)
74
MB90455 Series
(Continued)
(VCC − VOH) − IOH
TA = +25 °C, VCC = 4.5 V
1000
900
VCC - VOH (mV)
800
700
600
500
400
300
200
100
0
0
2
1
3
4
5
6
IOH (mA)
VOL − IOL
7
8
9
10
TA = +25 °C, VCC = 4.5 V
1000
900
800
VOL (mV)
700
600
500
400
300
200
100
0
0
2
1
3
4
5
6
IOL (mA)
7
8
9
10
“H” level input voltage/ “L” level input voltage
VIN − VCC
TA = +25 °C
5
4
VIN (V)
VIH
3
VIL
2
1
0
2.5
3
3.5
4
4.5
VCC (V)
5
5.5
6
75
MB90455 Series
■ ORDERING INFORMATION
Part number
MB90F455PMT
MB90F456PMT
MB90F457PMT
MB90455PMT
MB90456PMT
MB90457PMT
MB90F455SPMT
MB90F456SPMT
MB90F457SPMT
MB90455SPMT
MB90456SPMT
MB90457SPMT
76
Package
48-pin plastic LQFP
(FPT-48P-M26)
Remarks
MB90455 Series
■ PACKAGE DIMENTION
48-pin plastic LQFP
(FPT-48P-M26)
Note : Pins width and pins thickness include plating tackiness.
9.00±0.20(.354±.008)SQ
7.00±0.10(.276±.004)SQ
36
0.145±0.055
(.006±.002)
25
37
24
0.08(.003)
Details of "A" part
+0.20
1.50 –0.10
+.008
48
13
"A"
0˚~8˚
LEAD No.
1
0.50(.020)
C
(Mounting height)
.059 –.004
INDEX
0.10±0.10
(.004±.004)
(Stand off)
12
0.20±0.05
(.008±.002)
0.08(.003)
M
0.50±0.20
(.020±.008)
0.60±0.15
(.024±.006)
0.25(.010)
2001 FUJITSU LIMITED F48040S-c-1-1
Dimensions in mm (inches)
77
MB90455 Series
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Marketing Division
Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1,
Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0721, Japan
Tel: +81-3-5322-3353
Fax: +81-3-5322-3386
http://edevice.fujitsu.com/
North and South America
FUJITSU MICROELECTRONICS AMERICA, INC.
3545 North First Street,
San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fma.fujitsu.com/
Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag,
Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fme.fujitsu.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD.
#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-6281-0770
Fax: +65-6281-0220
http://www.fmal.fujitsu.com/
Korea
FUJITSU MICROELECTRONICS KOREA LTD.
1702 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
http://www.fmk.fujitsu.com/
F0208
 FUJITSU LIMITED Printed in Japan
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The products described in this document are designed, developed
and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use,
personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could
have a serious effect to the public, and could lead directly to death,
personal injury, severe physical damage or other loss (i.e., nuclear
reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile
launch control in weapon system), or (2) for use requiring
extremely high reliability (i.e., submersible repeater and artificial
satellite).
Please note that Fujitsu will not be liable against you and/or any
third party for any claims or damages arising in connection with
above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You
must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export
of those products from Japan.
Similar pages