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Analysis of social networks
Social network derived
from mobile phone call
records [Onnela, PNAS 07]
4.6M nodes
7.0M edges
Can we enable analysts to study networks in a way
edge if reciprocal phone calls
that protects sensitive information about
participants?
during 18 week interval
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How to achieve both privacy and utility?
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ANALYST
A
B
C
W
D
V
X
K
J
E
O
M
Q
I
R
S
G
N
P
H
Z
U
Aa
Bb
Ee
Hh
Ff
Cc
what is diameter?
Q
what is maximum degree?
Q
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Q
is Alice connected to Bob?
L
F
Y
Q
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Private network
T
X
Allow aggregate statistics
provided facts about individuals are not disclosed
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• Dwork, McSherry, Nissim, Smith [Dwork, TCC 06] have described an
answer perturbation mechanism satisfying differential privacy.
• Comparatively few results for these techniques applied to graphs.
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Calibrating noise
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Q(G) + Noise(ΔQ / ε)
ΔQ: Max change in Q, over any two graphs differing by single edge
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Calibrating noise
• The following algorithm for answering Q is ε-differentially private:
sensitivity of Q
A
privacy
parameter
Q
Q(G) + Noise(ΔQ / ε)
true
answer
sample from
Laplace distribution
ΔQ: Max change in Q, over any two graphs differing by single edge
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Positive results in differential privacy
• Some common analyses have low sensitivity: contingency tables,
histograms [Dwork, TCC 06]
• Data mining algorithms implemented using only low sensitivity queries:
PCA, k-Means, Decision Trees [Blum, PODS 05]
• Learning theory: possible to learn any concept class with polynomial VC
dimension; half-space queries can be learned efficiently [Blum, STOC 08]
• Many challenges remain...
• Beyond tabular data
• Optimal query strategies?
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• We derive a new sequence by computing the closest nondecreasing sequence: i.e. minimizing L2 distance.
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where it is needed, less otherwise.
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Conclusion
• Possible to accurately estimate degree distributions while providing
strong guarantees of privacy
• Other findings
• Some network analyses cannot be accurately answered under
differential privacy (clustering coefficient, motif analysis [Nissim,
STOC 07] [PODS 09] )
• Apply inference to other queries (e.g. histograms [CoRR 09])
• Future work: generate accurate synthetic networks under differential
privacy?
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Questions?
Additional details on our work may be found here:
• [ICDM 09] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation of the degree
distribution of private networks. In International Conference on Data Mining (ICDM), To
appear, 2009.
• [CoRR 09] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of
differentially-private queries through consistency. CoRR, abs/0904.0942, 2009. (under
review)
• [PODS 09] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship privacy: Output
perturbation for queries with joins. In Principles of Database Systems (PODS), 2009.
• [VLDB 08] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting structural
identification in anonymized social networks. In VLDB Conference, 2008.
http://www.cs.umass.edu/~mhay/
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