

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 .pdf

		
				 IBM Research – Zurich
Process Management Technologies
Fortgeschrittene Programmierung in C++
Vorbesprechung & 1. Vorlesung
Thomas Gschwind <thg at zurich ibm com>
© 2013 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Overview
Administrative Issues
– Prerequisites & Goals
– Schedule
– Exams & Grading
C++
–
–
–
–
2
Introduction (“Hello World”)
Functions and Operators
Object-Based Programming (Classes and Structures)
Namespaces
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Prerequisites
Programming Languages
– Java, maybe better C
– Basic knowledge of object-oriented programming
For students in the third semester or later
3
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Goals
Learn to use different programming paradigms
– Procedural programming
– Object-based programming (templates, static polymorphism)
– Object-oriented programming (inheritance, dynamic polymorphism)
Hot Topics
– Typing
• Strong vs. weak typing
• Static vs. dynamic typing
– Templates
– Exception Handling
– Standard Library
Arduino UNO
SDK uses C++
Provides 32k Flash
4
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Grading
Exercises will be handed out after each lecture
–
–
–
–
Exercises SHOULD be solved in groups of two
Exercises will be evaluated during two oral evaluation sessions
Oral Lab Submission 1: Exercises from lectures 1 to 5
Oral Lab Submission 2: Exercises from lectures 6 to 10
Written exam at the end of the course
–
–
–
–
–
No material is allowed during the exam
Exam supervisor can be used as API reference during the exam
Yes, you will be asked to write code on paper
Approx. 50-70% theory, 30-50% practical questions
Exam MAY be oral if less than 10 students attending
Grading
– Exercises determine 1/3 of the final grade
– Exam determines 2/3 of the final grade
5
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Organization & Schedule
Announcements via the course web page
– http://researcher.watson.ibm.com/researcher/view_project.php?id=5013
– Urgent announcements by email (mailing list seal-cpp)
Approx. 12 lectures, 1.5 hours each
– Thu. 8:10-9:45 BIN 2.A.10.
– Tentatively, no lectures will be taught on Oct 23 and Dec 11
(however may change depending on my IBM activities)
– For a complete schedule, please check the web
Exercise submissions and Exam
– Exercises due:
• Thu. Oct 30, 8:00 BIN 2.A.10,
• TBD: Thu. Dec. 18, 8:00 BIN 2.A.10 OR Thu. Jan. 8, 10:00.
– Exam on:
• Thu. Jan. 8, 8:10 BIN 2.A.10.
6
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Q & A?
Course material?
– Slides
Books?
– Bjarne Stroustrup.
The C++ Programming Language (4th. ed.).
Addison-Wesley.
– Stanley B. Lippman, Josée Lajoie, Barbara E. Moo.
C++ Primer.
Addison-Wesley.
– Check out your local book store
Which operating system/C++ compiler?
– Unix/Windows/OSX
– GNU C++ (strongly recommended)
7
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
A Request from Your Lecturer
If anything is unclear
– Please ask questions
– This makes the lecture more lively and interesting
If you find mistakes in the slides
– Please point them out, if you are unsure, privately after the lecture
– Improves the quality of the lecture
When I compare C++ with other programming languages
–
–
–
–
8
Of course, I will stress the advantages of C++
Yes, C++ has its downsides, we will address them as well
After all, a programming languages are tools
You SHOULD be able to use any of them to develop readable programs
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Overview
Administration Issues
– Prerequisites & Goals
– Schedule
– Exams & Grading
C++
–
–
–
–
9
Introduction (“Hello World”)
Functions and Operators
Object-Based Programming (Classes and Structures)
Namespaces
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Introduction
Historically speaking,
– C++ is an Algol like programming language
(like Pascal, or Java without OO features)
– C++ builds on the C language of which it is a superset
(except for comments, struct, enum, …)
C++ adds several features to C such as
– Inheritance
– Templates
– Exceptions
C++ supports different programming paradigms
– Procedural programming
– Object-based programming
– Object-oriented programming
10
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
“Hello World”
This is the C++ way
of saying “import”.
hello.cc
#include <iostream>
using namespace std;
No “class”
statement
necessary.
int main(int argc, char *argv[]) {
cout << "Hello World!" << endl;
return 0;
}
C++’s fancy way of
saying “System.out”.
11
This stands
for print.
Th. Gschwind. Fortgeschrittene Programmierung in C++.
Move to the
next line.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
“Hello World”: Compilation
C++ is typically compiled to native code
Every file is compiled to an object file
Finally, files are linked
This compiles our
source file and
generates an object
shell
tom@navelli:~/ak3-01$ g++ -c hello.cc file.
tom@navelli:~/ak3-01$ g++ -o hello hello.o
tom@navelli:~/ak3-01$./hello
Hello World!
tom@navelli:~/ak3-01$
This executes our program.
12
Th. Gschwind. Fortgeschrittene Programmierung in C++.
This links the object file.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Functions
May occur outside of classes
– This is useful for routines that do not naturally belong to a specific class
Support a variety of parameter passing options
Supports overloading
– Different functions may have the same name
– The argument types are used to resolve the function to be executed
– The return type is not considered for overloading resolution
(This would overly complicate the function resolution algorithm)
Functions can be used to define new operators
Functions may be inlined
– This may be requested using the inline keyword
– Instead of invoking the function, the functions code will be replicated whenever the
function should be invoked
13
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Functions: Parameter Passing
Call by Value
– Argument to be passed copied from the caller’s scope into the callee’s scope
– Callee operates on its own copy
Call by Reference/Pointer
– Callee receives a references to the argument passed by the caller
– Callee operates on caller’s copy
C++/C
– All parameters can be passed by value, by pointer, or in C++ also by reference
Java
– Primitive types are passed by value
– Class instances are passed by reference
C#
– Value types (primitives and structs) by value or reference
– Class instances by reference
14
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Functions: References
Point to the address of the argument in the caller’s scope
Argument in caller’s scope must be an lvalue
Similar to
– VAR parameter in Pascal
– ref parameter in C#
– Using pointers in C
c++-swap.cc
void swap(int &a, int &b) {
int c=a; a=b; b=c;
}
15
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Functions: Pointers
Pointer’s are similar to references
Caller has to pass a pointer to an object in his scope using the &
operator => more explicit
Pointers are traditionally used in C
c-swap.c
void c_swap(int *a, int *b) {
int c=*a;
*a=*b;
*b=c;
// printf("&a=%p, a=%p, *a=%d\n", &a, a, *a);
// printf("&b=%p, b=%p, *b=%d\n", &b, b, *b);
}
16
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Functions: inline
Replaces the function call with the function’s body
– Code needs to be known during compile time
When to use it?
– Useful for small functions
– Sometimes also for larger ones
Faster and more compact code
For C Developers
–
–
–
–
17
Combines advantages of macros and functions
Own area for parameters and variables
No side effects
As efficient as macros (if possible)
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Functions: A Comprehensive Example
#include <cstdlib>
#include <iostream>
using namespace std;
functions.cc
inline void swap(int &a, int &b) { int c=a; a=b; b=c; }
int gcf(int a, int b) {
if (a<b) swap(a, b);
while (b!=0) { a=a-b; if (a<b) swap(a, b); }
return a;
}
inline int lcm(int a, int b) { return (a/gcf(a,b))*b; }
void main(int argc, char *argv[]) {
cout << gcf(atoi(argv[1]), atoi(argv[2])) << endl;
cout << lcm(atoi(argv[1]), atoi(argv[2])) << endl;
}
18
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Operators
C++ supports user-defined operators
Operators are mapped onto a binary function with the name
operator prepended to the operator
struct fraction { // type def
int cntr; int denom;
};
fraction operator*(fraction a, fraction b) {
fraction c;
c.cntr=a.cntr*b.cntr;
c.denom=a.denom*b.denom;
return c;
}
fraction foo(fraction a, fraction b, fraction c) {
return a+b*c;
}
19
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Operators: Input & Output
Two operators are used for input and output
– Input
– Output
operator>>
operator<<
cout
cout <<
<< “Hello
“Hello World!”
World!” <<
<< endl;
endl;
(cout << “Hello World!”) << endl;
operator<<(cout, “Hello World!”);
operator<<(cout, endl);
operator<<(
operator<<(cout, “Hello World!”),
endl);
20
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Operators: Guidelines
Some people consider operator overloading
– Because one could overload them in meaningless ways
In this respect adhere to their established mathematical
properties
–
–
–
–
foo==foo
foo==bar ⇔ bar==foo
foo==bar ∧ bar==foobar ⇒ foo==foobar
foo!=bar ⇔ !(foo==bar)
Reflexivity
Symetry
Transitivity
Consider mathematical laws
– foo+=bar ⇔ foo=foo+bar
– Associativity, Commutivity, …
21
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Operators
User-definable operators
– +, -, *, /, %, ^, &, |, ~, !, =, <, >, +=, -=, *=, /=, %=, ^=, &=, |=, <<, >>, >>=,
<<=, ==, !=, <=, >=, &&, ||, ++, --, ->*, ,, ->, [], (), new, new[], delete,
delete[]
Not user-definable
– ::, ., .*
22
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Object-Based Programming (Classes and Structures)
Encapsulation
– Add structure to the program
– Explicit interface
(Access to class checked by compiler)
– User only needs to know this interface
– Hide implementation details
Useful for abstract data types such as stack, vector, map, …
User-defined types
– Allows developers to develop types that behave like primitive types
– One of the key differences between C++ and C (or Java)
23
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: Declaration and Definition (C++ and Java)
// “same” as
class fraction { // type def
{ cntr=c; denom=d; }
private:
int cntr; int denom;
class Fraction { // type def
private int cntr;
private int denom;
public:
fraction(int c=0, int d=1)
: cntr(c), denom(d) {}
};
24
public Fraction(int c, int d) {
cntr=c; denom=d; }
int get_counter() {
return cntr; }
public int getCounter() {
return cntr; }
void set_counter(int cntr) {
this->cntr=cntr; }
public void setCounter(int cntr) {
this.cntr=cntr; }
fraction operator*(fraction b) {
…
return result; }
public Fraction mul(Fraction b) {
…
return denom; }
…
…
};
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: Using them
In Java
void main(String[] args) {
Fraction f=new Fraction(Integer.parseInt(args[1]),
Integer.parseInt(args[2]));
System.out.println(f.getCounter()+":"+
f.getDenominator());
}
In C++
void main(int argc, char *argv[]) {
fraction f(atoi(argv[1]), atoi(argv[2]));
cout << f.get_counter() << ":" << f.get_denominator()
<< endl;
}
25
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: Access Control (Encapsulation)
public:
– Members declared in this section maybe used everywhere (default for
structures)
private:
– Things declared here may only be used by this class
– Useful for helper methods and attributes (default for classes)
protected:
– Things declared here may only be used by this class and its subclasses
friend
– Something different but somewhat similar to package in Java
26
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: Construction & Destruction
Constructor (T)
– Executed after memory allocated for an object
Destructor (~T)
– Executed before memory will be deallocated for an object
– Similar but better than Java‘s finalize() method
(well defined when it will be executed)
– Allows you to free additional resources
class Fraction {
public:
Fraction(...) { // … }
~Fraction() { // … }
};
27
// Constructor
// Destructor
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: Constructors
Default Constructor (T())
– Created by the compiler, if not defined by yourself
– Initializes attributes with default constructor
Copy Constructor (T(const T&))
– Created by the compiler, if not defined by yourself
– Copies each attribute from the source to the target object („shallow copy“)
– This constructor is executed frequently
• Whenever a parameter is passed by value
• Whenever an value is returned from a function
(not if a pointer or reference to the value is returned)
28
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: Default Artifacts
Each class gets the following artifacts for “free”
(that is, if they are not declared, C++ will provide them)
–
–
–
–
29
Default constructor
Copy constructor
Destructor
Assignment operator
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: Constructors
class fraction {
// type declaration+definition
int c; int d;
public:
fraction(int cntr=0, int denom=1) : c(cntr), d(denom) {}
// possibly redundant
fraction(const fraction &f) : c(f.c), d(f.d) {}
~fraction() {}
fraction &operator=(fraction b) { c=b.c; d=b.d; }
fraction operator+(fraction b);
fraction operator-(fraction b);
};
Yes, that’s the same as the
compiler-generated one, but many
people consider it as good practice
to define it yourself anyways
30
Th. Gschwind. Fortgeschrittene Programmierung in C++.
What’s this?
This initializes the members of
this class in a more efficient
way (for built-in types it’s
actually the same)
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: Disable Default Artifacts
If we do not want the default artifacts, we can block their
creation
– Why would I not want it?
– E.g., an object should not ever be duplicated by „accident“
Hide the default constructor
– Declare in the private part of the class
What if not even the class itself may use it?
– Declare it in the class
=> Compiler won‘t create one for you
– But never implement it
=> Linker will complain if you ever use it
31
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: Rule of Three
The “Rule of Three” states that if you define either of them, you
most likely need to define all three of them
– Copy Constructor
– Assignment Operator
– Destructor
In any case, follow this rule and even if you do not need the
others, just provide the same as the compiler-generated code to
show that you did not forget about the others
32
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: Friends
Allow other functions and classes access to protected and
private members
Useful for
– Functions, operators, etc. that logically belong to a class but cannot be
defined as member thereof
– Classes having a close relationship to each other
33
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
fraction.h
Classes: Friend Example
class fraction {
friend ostream &operator<<(ostream &os, fraction f);
friend istream &operator>>(istream &is, fraction &f);
};
fraction.cc
ostream &operator<<(ostream &os, fraction f) {
os << '(' << f.c << ‘/' << f.d << ')';
return os;
}
inline void check_char(istream &is, char ch) {
char c; is >> c; if(c!=ch) { is.putback(c); is.setstate(ios::badbit); }
}
istream &operator>>(istream &is, fraction &f) {
fraction g;
check_char('(');
check_char('/');
check_char(')');
return is;
is >> g.c;
is >> g.d;
if(is) f=g;
}
34
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: User-Defined Conversions
class fraction {
public:
User-defined conversion
// conversion fraction to double
operator double() { return (double)c/d; }
fraction operator+(fraction b);
fraction operator-(fraction b);
};
double solve(double p, double q) {
return ...
}
Will invoke our userdefined conversion
void foo(fraction &a, fraction &b) {
cout << "The result is " << solve(a,b) << endl; // implicit
cout << "a+b=" << (double)(a+b) << endl; // explicit
}
Style-wise, in C++, one should use
static_cast<double>(a+b)
35
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Classes: Change Through References
class fraction {
References as return
public:
type, BUT be careful
// conversion fraction to double
operator double() { return (double)c/d; }
// references as return value
int &counter() { return c; }
int &denominator() { return d; }
fraction operator+(fraction b);
fraction operator-(fraction b);
};
That’s how they are
used
void foo(fraction &a, fraction &b) {
cout << "a+b=" << (a+b) << "=" << (double)(a+b) << endl;
a.counter()=b.denominator();
Style-wise, in this example,
}
a.set_counter(b.denominator())
would have been more beautiful.
36
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Namespaces
Modular programming
Avoid name collisions
fraction.h
User defined data-types
namespace fractions {
// …
int gcf(int a, int b);
int lcm(int a, int b);
int swap(int &a, int &b);
Namespace
declarations need to
be repeated again in
the corresponding .cc
file
// …
}
37
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Namespaces (cont’d)
fraction.h
Multiple namespace statements are allowed within a single source file
Namespaces may be nested
Namespaces may anonymous
38
namespace util {
int gcf(int a, int b);
int lcm(int a, int b);
int swap(int &a, int &b); }
namespace fraction {
class fraction {
…
}; }
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Using Namespaces
Scoping
– :: Operator
– Example: util::gcf(foo,bar);
Import a single name of a given namespace
– using declaration
– Example: using NAMESPACE::VAR;
Import all names defined in a given namespace
– using directive
– Example: using namespace NAMESPACE;
39
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Namespaces: Operators
Operators can be defined in multiple ways and scopes
– As member function:
fraction fraction::operator+(complex b);
– Stand-alone:
fraction operator+(fraction a, complex b);
– As stand-alone operator, in the current namespace, or that of fraction, or
that of complex
Wow! So which one will be used?
40
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Namespaces: Operators
Example:
fraction a;
complex b;
cout << a+b << endl;
A a;
B b;
cout << a+b << endl;
1. Does A have a member operator+(b)
=> yes => use it, if it has multiple,
use standard overloading rules
2. Is there an operator+(a,b) defined in the namespace where A or
B is defined in?
=> yes => use it, if it has multiple,
use standard overloading rules
41
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Summary
Administrative Issues
– Prerequisites & Goals
– Schedule
– Exams & Grading
C++
–
–
–
–
42
Introduction (“Hello World”)
Functions and Operators
Object-Based Programming (Classes and Structures)
Namespaces
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Exercise 0
Visit your local book store
– Check out the books recommended in this lecture and some others
– Optional, if you really like one, go for it
Install a C++ Compiler
– Unix: apt-get/yum … g++ make
(if not, check with your distribution)
– Windows: install the cygwin tools
at least base/bash, devel/gcc-c++ and devel/make (dependencies will be
selected automatically)
– Apple Users: use Xcode, may be downloaded from Apple Developer Web
Site or App Store
– Possibly in combination with Eclipse (may simplify debugging)
43
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Exercise 0 – Some Pointers
First install the C++ Compiler
– Install the following packages from www.cygwin.com:
shells/bash, devel/gcc-g++, devel/make
Eclipse Users
– Go to www.eclipse.org and download
Eclipse IDE for C/C++ Developers
– In the past, eclipse/eclipsec should have been run from your cygwin shell
(to ensure that paths are set up correctly)
44
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Exercise 1
Implement and run the “Hello World” program from this lecture
45
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Exercise 2
Have a look at the two swap routines swap(int&,int&) and
c_swap(int*,int*)
Let the compiler compile the code but ask the compiler to stop at
the assembly stage
$ gcc –S –o source.s source.cc
Compare the assembly code, what do you observe?
How do you interpret the difference?
46
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Exercise 3
Implement the comprehensive function example twice
– Once with the swap and lcm functions declared inline
– Once with those functions declared as normal functions
Compile the two programs and generate assembly code
How many instructions do the different functions have for the
two different versions of the example?
How do you interpret the differences?
47
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Exercise 4
Implement a data type for complex numbers
– Implement the +, -, *, / operators
– Implement the << and >> operators
– Provide two test drivers
• One that checks based on a few samples that your code is correct
• One that interactively lets a user invoke some operations with complex
numbers
48
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Next Lecture
Separate Compilation in C++
Introduction to C++’s Standard Library
49
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation
IBM Research – Zurich
Process Management Technologies
Questions?
Happy Coding…
… and see you next Thursday
50
Th. Gschwind. Fortgeschrittene Programmierung in C++.
© 2014 IBM Corporation

				

 Open as PDF

 	Similar pages
	

										Quadrature Decoder (QuadDec) - Component - QuadDec V2.10 Datasheet.pdf

	

										Quadrature Decoder (QuadDec) - Component - QuadDec V3.0 Datasheet.pdf

	

										.pdf

	

										Quadrature Decoder (QuadDec) - Component - QuadDec V1.50 Datasheet.pdf

	

										.pdf

	

										German User's Manual

	

										STMICROELECTRONICS ST75C520

	

										.pdf

	

										STMICROELECTRONICS ST75C540

	

										.pdf

	

										ALLEGRO A1395

	

										PDF

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

