TLD5095EL DataSheet

Infineon® LITIX™ Power
Multitopology LITIXTM Power DC/DC Controller IC
TLD5095EL
Infineon® LITIX™ Power
Multitopology LITIXTM Power DC/DC Controller IC
Data Sheet
Revision 1.4
2015-03-11
Automotive Power
Infineon® LITIX™ Power
TLD5095EL
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5
5.1
5.2
Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
6.1
6.2
Oscillator and Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Electrical Characteristics Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Typical Performance Characteristics of Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7
7.1
Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8
8.1
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9
9.1
9.2
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10
10.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Data Sheet
2
Revision 1.4 2015-03-11
Not for Customers
TLD5095EL
1
Infineon® LITIX™ Power
Overview
•
Wide Input Voltage Range from 4.75 V to 45 V
•
Constant Current or Constant Voltage Regulation
•
Drives LEDs in Boost, Buck, Buck-Boost, SEPIC and Flyback
•
Topology
•
Very Low Shutdown Current: IQ< 10 µA
•
Flexible Switching Frequency Range, 100 kHz to 500 kHz
•
Synchronization with external clock source
•
Output Open Circuit Diagnostic Output
•
PWM Dimming
•
Internal Soft Start
•
300mV High Side Current Sense to ensure highest flexibility and LED current accuracy
•
Internal 5 V Low Drop Out Voltage Regulator
•
Wide LED current range via simple adaptation of external components
•
Available in a small thermally enhanced PG-SSOP-14 package
•
Output Overvoltage Protection
•
Over Temperature Shutdown
•
Automotive AEC Qualified
•
Green Product (RoHS) Compliant
PG-SSOP-14
Description
The TLD5095EL is a smart multitopology LED controller with built in protection and diagnostic features. The main
function of this device is to regulate a constant LED current. The constant current regulation is especially beneficial for
LED color accuracy and longer lifetime. The controller concept of the TLD5095EL allows a multi-purpose usage such as
Boost, Buck, Buck-Boost, SEPIC and Flyback configuration with various load current levels by simply adjusting the
external components. The TLD5095EL has a PWM output for dimming a LED load. The diagnostics are communicated
on a status output (pin ST) to indicate a fault condition such as an LED open circuit. The switching frequency is adjustable
in the range of 100 kHz to 500 kHz and can be synchronized to an external clock source. The TLD5095EL features an
enable function reducing the shut-down current consumption to <10 µA. The current mode regulation scheme of this
device provides a stable regulation loop maintained by small external compensation components. The integrated softstart feature limits the current peak as well as voltage overshoot at start-up. This IC is suited for use in the harsh
automotive environments and provides protection functions such as output overvoltage protection and
overtemperature shutdown.
Application
•
Automotive Exterior and Interior Lighting
Type
Package
Marking
TLD5095EL
PG-SSOP-14
TLD5095
Data Sheet
3
Revision 1.4, 2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Block Diagram
2
Block Diagram
IN
EN / PWMI
FREQ/
SYNC
14
LDO
13
EN_INT/
PWM_INT
On/Off
Logic
Oscillator
Power Switch
Gate Driver
Soft
Start
2
PWM
Generator
11
4
Switch Current
Error Amplifier
3
Diagnostics
Logic
Over Volage
Protection
9
Open Load
Detection
COMP
SWO
SWCS
SGND
Leading Edge
Blanking
Thermal
Protection
10
IVCC
Power On
Reset
Internal
Supply
Slope
Comp.
ST
1
OVFB
FBH
Feedback Voltage
Error Amplifier
8
EN_INT/
PWM_INT
Dimming Switch
Gate Driver
6
7
5
FBL
PWMO
12
BlockDiagram .vsd
GND
Figure 2-1
Data Sheet
Block Diagram TLD5095EL
4
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
IVCC
1
14
IN
SWO
2
13
EN/PWMI
SGND
3
12
GND
SWCS
4
11
FREQ/SYNC
PWMO
5
10
ST
FBH
FBL
Figure 3-1
3.2
Table 3-1
6 EP
9
OVFB
7
8
COMP
Pin Configuration TLD5095EL
Pin Definitions and Functions
Pin Definition and Function
#
Symbol
1
IVCC
Internal LDO Output;
Used for internal biasing and gate drive. Bypass with
external capacitor. Pin must not left open.
2
SWO
Switch Output;
Connect to gate of external switching MOSFET
3
SGND
Current Sense Ground;
Ground return for current sense switch
4
SWCS
Current Sense Input;
Detects the peak current through switch
5
PWMO
PWM Dimming Output;
Connect to gate of external MOSFET
6
FBH
Voltage Feedback Positive;
Non inverting Input (+)
7
FBL
Voltage Feedback Negative;
Inverting Input (-)
Data Sheet
Direction
Type
Function
5
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Pin Configuration
Table 3-1
Pin Definition and Function
#
Symbol
Direction
Type
Function
8
COMP
Compensation Input;
Connect R and C network to pin for stability
9
OVFB
Output Overvoltage Protection Feedback;
Connect to resistive voltage divider to set overvoltage
threshold.
10 ST
Status Output;
Open drain diagnostic output to indicate fault condition.
Connect pull up resistor to pin.
11 FREQ / SYNC
Frequency Select or Synchronization Input;
Connect external resistor to GND to set frequency.
Or apply external clock signal for synchronization within
frequency capture range.
12 GND
Ground;
Connect to system ground.
13 EN / PWMI
Enable or PWM Input;
Apply logic high signal to enable device or PWM signal for
dimming LED.
14 IN
Supply Input;
Supply for internal biasing.
15 EP
Exposed Pad;
Connect to external heat spreading Cu area with
electrically GND (e.g. inner GND layer of multilayer PCB
with thermal vias)
Data Sheet
6
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Tj = -40°C to +150°C; all voltages with respect to ground (unless otherwise specified)
Table 4-1
Absolute Maximum Ratings1)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note or
Number
Test Condition
Voltages
IN
Supply Input
VIN
-0.3
45
V
P_4.1.1
EN / PWMI
Enable or PWM Input
VEN
-40
45
V
P_4.1.2
FBH-FBL;
Feedback Error Amplifier
Differential
VFBH-VFBL
-5.5
5.5
V
P_4.1.3
FBH;
Feedback Error Amplifier
Positive Input
VFBH
-0.3
45
V
P_4.1.4
FBL
Feedback Error Amplifier
Negative Input
VFBL
-0.3
45
V
P_4.1.5
OVFB
Over Voltage Feedback Input
VOVP
-0.3
5.5
V
P_4.1.6
OVFB
Over Voltage Feedback Input
VOVP
-0.3
45
V
SWCS
Switch Current Sense Input
VSWCS
-0.3
5.5
V
SWCS
Switch Current Sense Input
VSWCS
-0.3
6.2
V
SWO
Switch Gate Drive Output
VSWO
-0.3
5.5
V
SWO
Switch Gate Drive Output
VSWO
-0.3
6.2
V
SGND
Current Sense Switch GND
VSGND
-0.3
0.3
V
P_4.1.12
COMP
Compensation Input
VCOMP
-0.3
5.5
V
P_4.1.13
COMP
Compensation Input
VCOMP
-0.3
6.2
V
Data Sheet
7
t < 10s
P_4.1.7
P_4.1.8
t < 10s
P_4.1.9
P_4.1.10
t < 10s
t < 10s
P_4.1.11
P_4.1.14
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
General Product Characteristics
Table 4-1
Absolute Maximum Ratings1)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note or
Number
Test Condition
FREQ / SYNC; Frequency and
Synchronization Input
VFREQ / SYNC
-0.3
5.5
V
FREQ / SYNC; Frequency and
Synchronization Input
VFREQ / SYNC
-0.3
6.2
V
PWMO
PWM Dimming Output
VPWMO
-0.3
5.5
V
PWMO
PWM Dimming Output
VPWMO
-0.3
6.2
V
ST
VST
-0.3
45
V
P_4.1.19
Diagnostic Status Output
IST
-5
5
mA
P_4.1.20
IVCC
Internal Linear Voltage
Regulator Output
VIVCC
-0.3
5.5
V
P_4.1.21
IVCC
Internal Linear Voltage
Regulator Output
VIVCC
-0.3
6.2
V
Junction Temperature
Tj
-40
150
°C
P_4.1.23
Storage Temperature
Tstg
-55
150
°C
P_4.1.24
VESD,HBM
-2
2
kV
P_4.1.15
t < 10s
P_4.1.16
P_4.1.17
t < 10s
t < 10s
P_4.1.18
P_4.1.22
Temperatures
ESD Susceptibility
ESD Resistivity to GND
ESD Resistivity to GND
ESD Resistivity Pin 1,7,8,14
(corner pins) to GND
VESD,CDM
VESD,CDM,C
-500
500
-750
750
V
V
HBM2)
P_4.1.25
CDM
3)
P_4.1.26
CDM
3)
P_4.1.27
1) Not subject to production test, specified by design.
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001 (1.5kW, 100pF)
3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1
Note:
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
8
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
General Product Characteristics
4.2
Functional Range
Table 4-2
Functional Range
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or
Test Condition
Number
VIVCC > VIVCC,RTH,d
P_4.2.1
Max.
Supply Voltage
VIN
4.75
45
V
Feedback Voltage
Input
VFBH; VFBL
4.5
45
V
P_4.2.2
Junction
Temperature
Tj
-40
150
°C
P_4.2.3
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards.
For more information, go to www.jedec.org.
Table 4-3
Thermal Resistance
Parameter
Symbol
Values
Min.
1)2)
Junction to Case
3)
Junction to Ambient
Typ.
Unit
Max.
RthJC
10
K/W
RthJA
42
K/W
Note or
Test Condition
Number
P_4.3.1
2s2p
P_4.3.2
2
P_4.3.3
P_4.3.4
Junction to Ambient
RthJA
42
K/W
1s0p + 600mm
Junction to Ambient
RthJA
42
K/W
1s0p + 300mm2
1) Not subject to production test, specified by design.
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to
ambient temperature). Ta=25°C is dissipating 1W.
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink
area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5mm board. The 2s2p board
has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu), A thermal via (diameter = 0.3mm and
25µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and
second outer layer (bottom) of the JEDEC PCB. Ta=25°C, IC is dissipating 1W
Data Sheet
9
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Regulator
5
Regulator
5.1
Description
The TLD5095 regulator is suitable for Boost, Buck, Buck-Boost, SEPIC and Flyback configurations. The
constant output current is especially useful for light emitting diode (LED) applications. The regulator function
is implemented by a pulse width modulated (PWM) current mode controller.
The PWM current mode controller uses the peak current through the external power switch and error in the
output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The
current mode controller it provides a PWM signal to an internal gate driver which then outputs the same PWM
signal to external n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch.
The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which
is a characteristic of current mode controllers operating at high duty cycles (>50% duty).
An additional built-in feature is an integrated soft start that limits the current through the inductor and
external power switch during initialization. The soft start function gradually increases the inductor and switch
current over 1 ms (typical) to minimize potential overvoltage at the output.
OV FB
TLD5095
H when
OVFB >1.25V
OVFB
VRef =
1.25V
High when
IVCC < 4.0V
UV IVCC
COMP
FBH
x1
EA
gmEA
High when
lEA - ISLOPE - I CS > 0
OFF
when H
0.3 V
Oscillator
Low when
Tj > 175 °C
Soft start
I
R
&
>
1
Output Stage
OFF when
Low
Slope Comp
R
S
Clock
&
Q
INV
1
Q
S
t
&
Gate Driver
Supply
&
Q
Error -FF
SWO
Current
Sense
PWM-FF
Q
IVCC
Gate
Driver
I SLOPE
VRef =
= VRef
4 .0V
NOR
IEA
FBL
FREQ/
SYNC
Current
Comp
NAND 2
&
SWCS
ICS
SGND
Figure 5-1
Data Sheet
Block Diagram Buck Regulator
10
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Regulator
5.2
Electrical Characteristics
VIN = 6 V to 40 V; 4.5V≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40°C to +150°C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Table 5-1
Electrical Characteristics: Buck Regulator
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
P_5.2.1
Min.
Typ.
Max.
0.28
0.30
0.32
V
VIN = 19 V;
VREF= VFBH -VFBL
VIN = 6 to 19 V;
P_5.2.2
VBO= 30 V;
IBO = 500 mA
Figure 10-11
VIN = 6 V;
P_5.2.3
VBO = 30V;
IBO = 100 to 500 mA
Figure 10-11
Regulator
Feedback Reference VREF
Voltage
Voltage Line
Regulation
ΔVREF
/ΔVIN
–
–
0.15
%/V
Voltage Load
Regulation
(ΔVREF /
VREF)
/ΔIBO
–
–
5
%/A
Switch Peak Over
Current Threshold
VSWCS
130
150
170
mV
VIN = 6 V
VFBH = VFBL = 5 V
VCOMP = 3.5V
P_5.2.4
Maximum Duty Cycle DMAX,fixed
90
93
95
%
Fixed frequency
mode
P_5.2.5
Maximum Duty Cycle DMAX,sync
88
–
–
%
Synchronization
mode
P_5.2.6
Soft Start Ramp
tSS
350
1000
1500
µs
VFB rising from 5%
to 95% of VFB, typ.
P_5.2.7
Feedback Input
Current
IFBx
-10
-50
-100
µA
VFBH - VFBL = 0.3 V
P_5.2.8
Switch Current
ISWCS
Sense Input Current
10
50
100
µA
VSWCS = 150 mV
P_5.2.9
Input Undervoltage
Shutdown
VIN,off
3.75
–
–
V
VIN decreasing
P_5.2.10
Input Voltage
Startup
VIN,on
–
–
4.75
V
VIN increasing
P_5.2.11
Gate Driver for External Switch
Gate Driver Peak
Sourcing Current1)
ISWO,SRC
–
380
–
mA
VSWO = 3.5V
P_5.2.12
Gate Driver Peak
Sinking Current
ISWO,SNK
–
550
–
mA
VSWO = 1.5V
P_5.2.13
tR,SWO
–
30
60
ns
CL,SWO = 3.3nF;
VSWO = 1V to 4V
P_5.2.14
Gate Driver Output
Rise Time
Data Sheet
11
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Regulator
Table 5-1
Electrical Characteristics: Buck Regulator
Parameter
Gate Driver Output
Fall Time
Symbol
tF,SWO
Values
Note or
Test Condition
Number
Min.
Typ.
Max.
–
20
40
ns
CL,SWO = 3.3nF;
VSWO = 1V to 4V
P_5.2.15
5.5
V
CL,SWO = 3.3nF
P_5.2.16
Gate Driver Output
VSWO
4.5
–
Voltage
1) Not subject to production test, specified by design
Data Sheet
Unit
12
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Oscillator and Synchronisation
6
Oscillator and Synchronisation
Description
R_OSC vs. switching frequency
The internal oscillator is used to determine the switching frequency of the multitopology regulator. The
switching frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the
switching frequency with an external resistor the following formula can be applied.
(6.1)
(
R FREQ =
(141 ⋅ 10
− 12
1
− 3 . 5 ⋅ 10
⎡ s ⎤ ⎛
⎡1 ⎤ ⎞
⋅
)
f
⎜
⎟
FREQ
⎢⎣ Ω ⎥⎦
⎢⎣ s ⎥⎦
⎝
⎠
3
[Ω ])[Ω ]
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized
frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the
internal oscillator synchronizes to this external clock frequency and the multitopology regulator switches at the
synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.
TLD5095
FREQ
/ SYN C
Oscillator
C lock Frequency
D etector
VCLK
Multiplexer
PWM
Logic
Gate
Driver
SW O
R FREQ
Oscillator_ BlkDiag_ SyncFixedM ode .vsd
Figure 6-1
Oscillator and Synchronization Block Diagram and Simplified Application Circuit
TSYNC = 1 / fSYNC
VSYNC
tSYNC,PWH
VSYNC,H
VSYNC,L
t
Figure 6-2
Data Sheet
Synchronization Timing Diagram
13
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Oscillator and Synchronisation
6.1
Electrical Characteristics Oscillator
VIN = 6 V to 40 V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40°C to +150°C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Table 6-1
Electrical Characteristics
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
P_6.1.1
Min.
Typ.
Max.
Oscillator Frequency fFREQ
250
300
350
kHz
RFREQ = 20kΩ
Oscillator Frequency fFREQ
Adjustment Range
100
–
500
kHz
17% internal
P_6.1.2
tolerance + external
resistor tolerance
FREQ / SYNC Supply IFREQ
Current
–
–
-700
µA
VFREQ = 0 V
P_6.1.3
Frequency Voltage
VFREQ
1.16
1.24
1.32
V
fFREQ = 100 kHz
P_6.1.4
Synchronization
Frequency Capture
Range
fSYNC
250
–
500
kHz
Synchronization
Signal
High Logic Level
Valid
VSYNC,H
3.0
–
–
V
1)
P_6.1.6
Synchronization
VSYNC,L
Signal
Low Logic Level Valid
–
–
0.8
V
1)
P_6.1.7
Synchronization
Signal
Logic High Pulse
Width
200
–
–
ns
1)
P_6.1.8
Oscillator
Synchronisation
tSYNC,PWH
P_6.1.5
1) Synchronization of external PWM ON signal to falling edge
Data Sheet
14
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Oscillator and Synchronisation
6.2
Typical Performance Characteristics of Oscillator
600
500
fFREQ [kHz]
400
T j = 25 °C
300
200
100
0
0
10 20
30
40 50
60 70
80
RFREQ/SYNC [kohm]
Oscillator _fFreq_vs_Rfreq.vsd
Figure 6-3
Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ/SYNC
Data Sheet
15
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Enable and Dimming Function
7
Enable and Dimming Function
Description
The enable function powers on or off the device. A valid logic low signal on enable pin EN/PWMI powers off the
device and current consumption is less than 10 µA. A valid logic high enable signal on enable pin EN/PWMI
powers on the device. The enable function features an integrated pull down resistor which ensures that the IC
is shut down and the power switch is off in case the enable pin EN is left open.
In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM)
input signal that is fed through to an internal gate driver. The internal gate driver outputs the same PWM signal
on the PWMO pin to an external n-channel enhancement mode MOSFET for PWM dimming an LED load. PWM
dimming an LED is a commonly practiced dimming method to prevent color shift in an LED light source.
Moreover the PWM output function may also be used for to drive other types of loads besides LED.
The enable and PWM input function share the same pin. Therefore a valid logic low signal at the EN/PWMI pin
needs to differentiate between an enable power off signal or an PWM low signal. The device differentiates
between an enable off command and PWM dimming signal by requiring the signal at the EN/PWMI pin to stay
low for a minimum of 8 ms.
IN
14
Enable
Microcontroller
EN / PWMI
13
Enable / PWMI
Logic
LDO
Enable
1
Gate
Driver
PWMI
2
Gate
Driver
5
IVCC
SWO
PWMO
EN_PWMI_BlockDiagram.svg
Figure 7-1
Data Sheet
Block Diagram and Simplified Application Circuit Enable and LED Dimming
16
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Enable and Dimming Function
tEN,START
TPWMI
tPWMI,H
tEN,OFF,DEL
VEN/PWMI
VEN/PWMI,ON
VEN/PWMI,OFF
t
VIVCC
VIVCC,ON
VIVCC,RTH
t
VPWMO
t
1
fFREQ
TFREQ =
VSWO
t
Power On
Normal
Dim
Normal
Dim
Normal
SWO On
PWMO Off
SWO On
PWMO Off
SWO On
PWMO On
SWO Off
PWMO On
SWO Off
PWMO On
Power Off Delay Time
Power Off
Iq < 10 μA
EN_PWMI_Timing.svg
Figure 7-2
7.1
Timing Diagram Enable and LED Dimming
Electrical Characteristics
VIN = 6 V to 40 V, Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified)
Table 7-1
Electrical Characteristics
Parameter
Symbol
Values
Min.
Typ.
3.0
–
Unit
Max.
Note or
Test Condition
Number
Enable / PWM Input
Enable/PWMI
Turn On Threshold
VEN/PWMI,ON
Enable/PWMI
Turn Off Threshold
VEN/PWMI,OFF –
–
Enable/PWMI
Hysteresis
VEN/PWMI,HYS 50
Enable/PWMI
High Input Current
IEN/PWMI,H
Data Sheet
–
V
P_7.1.1
0.8
V
P_7.1.2
200
400
mV
P_7.1.3
–
30
µA
17
VEN/PWMI = 16.0 V
P_7.1.4
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Enable and Dimming Function
Table 7-1
Electrical Characteristics
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
VEN/PWMI = 0.5 V
P_7.1.5
Enable/PWMI
Low Input Current
IEN/PWMI,L
–
0.1
1
µA
Enable Turn Off
Delay Time
tEN,OFF,DEL
8
10
12
ms
P_7.1.6
PWMI Min Duty Time
tPWMI,H
4
–
–
µs
P_7.1.7
100
–
–
µs
P_7.1.8
IPWMO,SR –
C
230
–
mA
VPWMO = 3.5V
P_7.1.9
PWMO Gate Driver
IPWMO,SN –
Peak Sinking Current K
370
–
mA
VPWMO = 1.5V
P_7.1.10
Enable Startup Time tEN,START
Gate Driver for Dimming Switch
PWMO Gate Driver
Peak Sourcing
Current1)
PWMO Gate Driver
Output Rise Time
tR,PWMO
–
50
100
ns
CL,PWMO = 3.3nF;
VPWMO = 1V to 4V
P_7.1.11
PWMO Gate Driver
Output Fall Time
tF,PWMO
–
30
60
ns
CL,PWMO = 3.3nF;
VPWMO = 1V to 4V
P_7.1.12
PWMO Gate Driver
Output Voltage
VPWMO
4.5
–
5.5
V
CL,PWMO = 3.3nF
P_7.1.13
Iq_off
–
–
10
µA
VEN/PWMI = 0.8 V;
P_7.1.14
Tj ≤ 105C; VIN = 16V
Iq_on
–
–
7
mA
VEN/PWMI ≥ 4.75 V;
IBO = 0 mA;
VIN = 16V
VSWO = 0% Duty
Current Consumption
Current
Consumption,
Shutdown Mode
Current
Consumption,
Active Mode2)
P_7.1.15
1) Not subject to production test, specified by design
2) Dependency on switching frequency and gate charge of external switches.
Data Sheet
18
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Linear Regulator
8
Linear Regulator
Description
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current
up to ILIM,min (parameter 8.2.2). An external output capacitor with ESR lower than RIVCC,ESR (parameter
8.2.5) is required on pin IVCC for stability and buffering transient load currents. During normal operation the
external MOSFET switches will draw transient currents from the linear regulator and its output capacitor.
Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the
external MOSFET switches.
Integrated Undervoltage Protection for the External Switching MOSFET
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and resets
the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold (VIVCC,RTH,d).
The undervoltage reset threshold for the IVCC pin helps to protect the external switches from excessive power
dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level n-channel
MOSFET.
IN
14
1
IVCC
Linear Regulator
EN / PWMI
13
Gate
Drivers
LinReg_BlckDiag.vsd
Figure 8-1
Data Sheet
Voltage Regulator Block Diagram and Simplified Application Circuit
19
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Linear Regulator
8.1
Electrical Characteristics
VIN = 6 V to 40 V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40°C to +150°C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Table 8-1
Electrical Characteristics
Parameter
Output Voltage
Symbol
VIVCC
Values
Min.
Typ.
Max.
4.6
5
5.4
Unit
Note or
Test Condition
Number
V
6 V ≤ VIN ≤ 45 V
P_8.1.1
0.1 mA ≤ IIVCC ≤ 35
mA
Output Current
Limitation
ILIM
Drop out Voltage
VDR
51
0.47
90
mA
VIN = 13.5 V
VIVCC = 4.5V
P_8.1.2
1.4
V
IIVCC = 50mA 1)
P_8.1.3
–
µF
2)
P_8.1.4
0.5
W
f = 10kHz
P_8.1.5
Output Capacitor
CIVCC
Output Capacitor
ESR
RIVCC,ESR
Undervoltage Reset
Headroom
VIVCC,HDRM
100
–
–
mV
VIVCC decreasing
VIVCC - VIVCC,RTH,d
P_8.1.6
Undervoltage Reset
Threshold
VIVCC,RTH,d
4.0
–
–
V
VIVCC decreasing
P_8.1.7
Undervoltage Reset
Threshold
VIVCC,RTH,i
–
–
4.5
V
VIVCC increasing
P_8.1.8
1) Measured when the output voltage VCC has dropped 100 mV from its nominal value.
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
Data Sheet
20
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Protection and Diagnostic Functions
9
Protection and Diagnostic Functions
9.1
Description
The TLD5095EL has integrated circuits to diagnose and protect against output overvoltage, open load, open
feedback and overtemperature faults. In case any of the four fault conditions occur the Status output ST will output
an active logic low signal to communicate that a fault has occurred. During an overvoltage or open load condition
the gate driver outputs SWO and PWMO will turn off. Figure 9-3 illustrates the various open load and open
feedback conditions. In the event of an overtemperature condition (Figure 9-6) the integrated thermal shutdown
function turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature
is 175°C. After cooling down the IC will automatically restart operation. Thermal shutdown is an integrated
protection function designed to prevent immediate IC destruction and is not intended for continuous use in normal
operation.
Input
Protection and
Diagnostic Circuit
Output
Output
Overvoltage
Open Load
SWO and PWMO
Gate Driver Off
OR
Open Feedback
Overtemperature
Linear Regualtor
Off
OR
Input
Undervoltage
Pro_Diag_BlckDiag.vsd
Figure 9-1
Protection and Diagnostic Function Block Diagram
Input
Condition
Overvoltage
Open Load
Open Feedback
Overtemperature
Level*
False
True
False
True
False
True
False
True
ST
H
L
H
L
H
L
H
L
Pro_Diag_TT.vsd
*Note:
Sw = Switching
False = Condition does not exist
True = Condition does exist
Figure 9-2
Data Sheet
Output
SWO
PWMO
IVCC
Sw*
H or Sw *
Active
L
L
Active
Sw*
H or Sw *
Active
L
L
Active
Sw*
H or Sw *
Active
L
L
Active
Sw*
H or Sw *
Active
L
L
Shutdown
Status Output Truth Table
21
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Protection and Diagnostic Functions
VBO
Output Open Circuit Conditions
Open Circuit 3
TLD5095
Open Circuit 1
ROVH
Open Circuit 2
9
VOVFB,TH
D1
ROVL
D2
Fault Threshold Voltage
VREF
1
Open FBH
-20 to -100 mV
2
Open FBL
0.5 to 1.0 V
3
Open VBO
VFBx < VFBx,min = 4.5V
4
Open PWMO
Detected by overvoltage
D3
Feedback Voltage
Error Amplifier
FBH
FBL
VREF
D4
6
7
D5
+
VREF
-
D6
Max Threshold = 1.0 V
D7
D8
Min Threshold = 0.5 V
D9
D10
Typical V REF = 0.3 V
Open Circuit 4
Max Threshold = -20 mV
TDIM
PWMO
Figure 9-3
Open FBL
OVFB
Fault Condition
Min Threshold = -100 mV
5
Open FBH
Open VBO
Overvoltage
Compartor
RFB
Open Circuit
Condition
Open Load and Open Feedback Conditions
VOVFB
example: VOUT,max=40V
VOVP,max
1.25mA
ROVH
TLD5095
OVFB
VOVFB,TH
9
ROVL
GND
Overvoltage Protection
ACTIVE
40V
≅ 33.2kΩ
1.25mA
1kΩ 1.25V
1.25V
Overvoltage Protection is
disabled
12
t
Figure 9-4
Data Sheet
Overvoltage Protection Description
22
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Protection and Diagnostic Functions
Status Output Timing Diagram
Startup
Normal
Thermal
Shutdown
1
VIVCC
Overvoltage
Open Load /
Feedback
2
3
Shutdown
VIVCC,RTH,i
VIVCC,RTH ,d
TJ
T J,SD,HYST
t
1
TJ,SD
VBO
t
2
VOVFB ≥ VOVFB,TH
VOVFB < V OVFB,T L
VFBH -VFBL
VREF,2
t
3
tSS
tSS
0.3 V Typ
t
VREF,1
VST
tSD
tSD
tSD
t
Figure 9-5
Data Sheet
Status Output Timing Diagram
23
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Protection and Diagnostic Functions
VEN/PWMI
H
L
t
Tj
TjSD
ΔΤ
TjSO
t
Ta
VSWO
t
ILED
Ipeak
t
VPWMO
t
VST and
VIVCC
5V
t
Device
OFF
Figure 9-6
Data Sheet
Normal Operation
Overtemp
Fault
ON
Overtemp
ON
Fault
Overtemp
ON
Fault
Overtemp
Fault
Device Overtemperature Protection Behavior
24
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Protection and Diagnostic Functions
9.2
Electrical Characteristics
VIN = 6 V to 40 V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40°C to +150°C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Table 9-1
Electrical Characteristics
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Status Output
Status Output
Voltage Low
VST,LOW
–
–
0.4
V
IST = 1mA
P_9.2.1
Status Sink Current
Limit
IST,MAX
2
–
–
mA
VST = 1V
P_9.2.2
Status Output
Current
IST,HIGH
–
–
1
µA
VST = 5V
P_9.2.3
Status Delay Time
tSD
8
10
12
ms
P_9.2.4
Temperature Protection
Overtemperature
Shutdown
Tj,SD
160
175
190
°C
P_9.2.5
Overtemperature
Shutdown
Hystereses
Tj,SD,HYST
–
15
–
°C
P_9.2.6
Output Over Voltage VOVFB,TH
Feedback Threshold
Increasing
1.21
1.25
1.29
V
P_9.2.7
Output Over Voltage VOVFB,HYS
Feedback Hysteresis
50
–
150
mV
Output Voltage
decreasing
P_9.2.8
Over Voltage
Reaction Time
tOVPRR
2
–
10
µs
Output Voltage
decreasing
P_9.2.9
Over Voltage
Feedback Input
Current
IOVFB
-1
0.1
1
µA
VOVFB = 1.25 V
P_9.2.10
–
-20
mV
VREF = VFBH - VFBL
P_9.2.11
Overvoltage Protection
Open Load and Open Feedback Diagnostics
Open Load/Feedback VREF,1,3
Threshold
-100
Open Feedback
Threshold
0.5
VREF,2
Open Circuit 1 or 3
–
1
V
VREF = VFBH - VFBL
P_9.2.12
Open Circuit 2
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in
the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions
are not designed for continuous repetitive operation.
Data Sheet
25
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
10
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
LBO
DBO
VIN = 4.75V to 45V
CIN
CBO
RFB
1
IN
IVCC
SWO
2
SWCS
4
D1
CIVCC
VCC or VIVCC
RCS
RST
STATUS
10
IC2
Microcontroller
(e.g. XC866)
ST
13
Spread
Spectrum
3
OVFB
9
D2
D3
ROVH
D4
D5
IC1
TLD5095
PWMI
Digital Dimming
SGND
ROVL
D6
D7
Classic Boost Setup:
VOUT > VIN
14
VREF
TSW
D8
EN / PWMI
11
FREQ / SYNC
8
COMP
FBH
6
FBL
7
PWMO
5
D9
ILED
D10
CCOMP
PWMO
RFREQ
TDIM
GND
RCOMP
12
Figure 10-1 Boost to Ground Application Circuit - B2G (Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - 10
White
Osram
LUW H9GP
LED
10
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CIN , CBO
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
2
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5095
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML
Inductor
1
RCOMP
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM,TSW
Dual N-ch enh. (60V, 20A)
Infineon
IPG20N06S4L-26
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
2
Figure 10-2 Bill of Materials for B2G Application Circuit
Data Sheet
27
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
L1
DBO
CSEPIC
VIN
CIN
ISW
RFB
L2
14
TSW
SWO
2
SWCS
4
IN
ILED
VCC or VIVCC
RCS
SGND
3
OVFB
9
RST
STATUS
IC2
Microcontroller
(e.g. XC866)
VREF
CBO
10
ST
PWMI
Digital Dimming
13
Spread Spectrum
D1
R OVH
D2
D3
IC1
TLD5095
D4
R OVL
D5
D6
D7
EN / PWMI
11
FREQ / SYNC
8
COMP
FBH
6
FBL
7
IVCC
1
CCOMP
DPOL
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
VIN = 4.75V to 45V
Dn
RPOL
CIVCC
RFREQ
RCOMP
PWMO
PWMO
TDIM
5
GND
12
Figure 10-3 SEPIC Application Circuit (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
D1 - n
White
Osram
DBO
Schottky, 3 A, 100 VR
Vishay
DPOL
80V Diode
CSEPIC
Type
Quantity
LUW H9GP
LED
variable
SS3H10
Diode
1
Infineon
BAS1603W
Diode
1
3.3 uF, 20V
EPCOS
X7R, Low ESR
Capacitor
1
CIN , CBO
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
2
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
TLD5095
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
47 uH
Coilcraft
MSS1278T-473ML
Inductor
2
alternativ: 22uH coupled
inductor
Coilcraft
MSD1278-223MLD
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM,TSW
Dual N-ch enh. (60V, 20A)
Infineon
IPG20N06S4L-26
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPD35N10S3L-26
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
2
Figure 10-4 Bill of Materials for SEPIC Application Circuit
Data Sheet
28
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
DBO
VIN
VIN = 4.75V to 45V
L1
CIN
ISW
RFB
L2
14
TSW
SWO
2
SWCS
4
IN
ILED
VCC or V IVCC
RCS
3
10
ST
OVFB
9
PWMI
Digital Dimming
13
Output
ROVH
D1
D2
IC1
TLD5095
D3
ROVL
D4
D5
D6
EN / PWMI
11
FREQ / SYNC
8
COMP
FBH
6
FBL
7
IVCC
1
D7
CCOMP
DPOL
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
SGND
RST
STATUS
IC2
Microcontroller
(e.g. XC866)
VREF
CBO
RPOL
Dn
CIVCC
RFREQ
RCOMP
PWMO
GND
TDIM
5
PWMO
12
Figure 10-5 Flyback Application Circuit (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
LED
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
3.3 uF, 50V (100V)
EPCOS
X7R, Low ESR
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
TLD5095
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
1 µH / 9 uH
EPCOS
Transformer EHP 16
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
DPOL
80 V Diode
Infineon
BAS1603W
Diode
1
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ, RST
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
ROVH
56.2 kΩ, 1%
Panasonic
ERJ3EKF5622V
Resistor
1
ROVL
1.24 kΩ, 1%
Panasonic
ERJ3EKF1241V
Resistor
1
RCS
5 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TDIM,TSW
Dual N-ch enh. (60V, 20A)
Infineon
IPG20N06S4L-26
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
2
Figure 10-6 Bill of Materials for Flyback Application Circuit
Data Sheet
29
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
CBO
RFB
TDIM2
VIN = 4.75V to 45V
CIN
DZ
Dn
RDIM2
D1
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
RDIM1
LBO
DBO
TDIM1
ILED
ISW
PWMO
VOUT
5
PWMO
VCC or V IVCC
RST
STATUS
6
FBH
7
FBL
14
IN
10
ST
SWO
2
SWCS
4
SGND
3
OVFB
9
TSW
RCS
ROVH
IC1
TLD5095
IC2
Microcontroller
(e.g. XC866)
PWMI
Digital Dimming
13
EN / PWMI
Spread Spectrum
11
FREQ / SYNC
ROVL
COMP
8
IVCC
1
CCOMP
CIVCC
GND
RFREQ
RCOMP
12
Figure 10-7 Boost to Battery Application Circuit - B2B (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
Diode
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DZ
5V
Vishay
Zener
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5095
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP, RDIM1, RDIM2
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
3
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kΩ, 1%
Panasonic
ERJP06F5102V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM1,TDIM2
60V Dual N-ch (3.1A) and P-ch. enh. (2A)
Infineon
BSO615CG
Transistor
1
alternativ: 100V N-ch (0.37A),
Infineon
BSP123
Transistor
1
alternativ: 60V P-ch (1.9A)
Infineon
BSP171P
Transistor
1
N-ch, OptiMOS-T2 100V, 35A
Infineon
IPD35N10S3L-26
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
1
TSW
Applicationdrawing _plus _BOM_B2B_T
LD5095 _April2012 .vsd
Figure 10-8 Bill of Materials for B2B Application Circuit
Data Sheet
30
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
D BO
CBO
VREF
D1
D2
LBO
VIN = 4.75V to 45V
CIN
RFB
14
CIVCC
1
IVCC
I LED
TSW
SWO
2
SWCS
4
IN
BUCK Setup:
VIN > VOUT
VCC or VIVCC
RCS
RST
STATUS
10
ST
13
EN / PWMI
11
Spread Spectrum
FREQ / SYNC
8
COMP
3
OVFB
9
FBH
6
FBL
7
PWMO
5
IC1
TLD5095
IC2
Microcontroller
(e.g. XC866)
Enable
SGND
CCOMP
RFREQ
GND
RCOMP
12
Figure 10-9 Buck Application Circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 -2
White
Osram
LE UW Q9WP
LED
2
DBO
Schottky , 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
4.7 uF, 50V
EPCOS
X7R
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5095
IC
1
IC2
--
Infineon
XC866
IC
1
L1
22 µH
Coilcraft
MSS1278T
Inductor
1
RCOMP
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
RCS
50 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TSW
100V, N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
alternativ : 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
Figure 10-10 Bill of Materials for Buck Application Circuit
Data Sheet
31
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
LBO
D BO
ILoad
VIN = 4.75V to 45V
CBO
C IN
constant
VOUT
RL
CIVCC
VCC or VIVCC
SWO
2
SWCS
4
IVCC
1
R CS
SGND
3
OVFB
9
RST
STATUS
10
IC2
Microcontroller
(e.g. XC866)
5
ST
PWMO
Enable
13
EN / PWMI
11
FREQ / SYNC
8
COMP
ROVL
RFB1
FBH
6
R FB2
CCOMP
RCOMP
ROVH
IC1
TLD5095
Spread Spectrum
RFREQ
TSW
IN
14
FBL
VREF
7
RFB3
GND
12
Figure 10-11 Boost Voltage Application Circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
DBO
Schottky , 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK 1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF, 16V
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
Panasonic
X7R
Capacitor
1
IC1
--
Infineon
TLD5095
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP
10 kohms, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB1,RFB3
51 kohms, 1%
Panasonic
ERJ3EKF5102V
Resistor
1
RFB2
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RFREQ, RST
20 kohms, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kohms, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mohms, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
N-ch, OptiMOS-T2 100V
Infineon
IPD35N10S3L-26
Transistor
1
Figure 10-12 Bill of Materials for Boost Voltage Application Circuit
Note: The application drawings and corresponding bill of materials are simplified examples. Optimization of the
external components must be done accordingly to specific application requirements.
Data Sheet
32
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
10.1
Further Application Information
•
For further information you may contact http://www.infineon.com/
•
Application Note: TLD509x DC-DC Multitopology Controller IC “Dimensioning and Stability Guideline Theory and Practice”
Data Sheet
33
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Package Outlines
11
Package Outlines
0.19 +0.06
0.08 C
0.15 M C A-B D 14x
0.64 ±0.25
1
8
1
7
0.2
M
D 8x
Bottom View
3 ±0.2
A
14
6 ±0.2
D
Exposed
Diepad
B
0.1 C A-B 2x
14
7
8
2.65 ±0.2
0.25 ±0.05 2)
0.1 C D
8˚ MAX.
C
0.65
3.9 ±0.11)
1.7 MAX.
Stand Off
(1.45)
0 ... 0.1
0.35 x 45˚
4.9 ±0.11)
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion
PG-SSOP-14-1,-2,-3-PO V02
Figure 11-1 Outline PG-SSOP-14 Dimensions in mm
Green Product (RoHS Compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Note: For further package information, please visit our website: http://www.infineon.com/packages.
Data Sheet
34
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Revision History
Revision 1.4, 2015-03-11
Page or Item
Subjects (major changes since previous revision)
Rev1.0 to Rev
1.4
Initial Data Sheet for TLD5095EL
Data Sheet
Responsible Date
2009-11-30 to
2014-03-10
35
Revision 1.4 2015-03-11
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™, EasyPIM™,
EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, iWafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,
UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT
Forum. CIPURSE™ of OSPT Alliance. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale.
IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of
Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc.,
USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies,
Inc. Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of
Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA,
Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Trademarks Update 2014-11-12
www.infineon.com
Edition 2015-03-11
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
Document reference
Doc_Number
Legal Disclaimer
The information given in this document shall in
no event be regarded as a guarantee of
conditions or characteristics. With respect to any
examples or hints given herein, any typical
values stated herein and/or any information
regarding the application of the device, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation, warranties of noninfringement of intellectual property rights of
any third party.
Information
For further information on technology, delivery
terms and conditions and prices, please contact
the nearest Infineon Technologies Office
(www.infineon.com).
Warnings
Due to technical requirements, components
may contain dangerous substances. For
information on the types in question, please
contact the nearest Infineon Technologies
Office. Infineon Technologies components may
be used in life-support devices or systems only
with the express written approval of Infineon
Technologies, if a failure of such components
can reasonably be expected to cause the failure
of that life-support device or system or to affect
the safety or effectiveness of that device or
system. Life support devices or systems are
intended to be implanted in the human body or
to support and/or maintain and sustain and/or
protect human life. If they fail, it is reasonable to
assume that the health of the user or other
persons may be endangered.