Datasheet

AON6242
60V N-Channel MOSFET
General Description
Product Summary
VDS
The AON6242 uses trench MOSFET technology that is
uniquely optimized to provide the most efficient high
frequency switching performance.Power losses are
minimized due to an extremely low combination of
RDS(ON) and Crss.In addition,switching behavior is well
controlled with a soft recovery body diode.This device is
ideal for boost converters and synchronous rectifiers for
consumer, telecom, industrial power supplies and LED
backlighting.
60V
ID (at VGS=10V)
85A
RDS(ON) (at VGS=10V)
< 3.6mΩ
RDS(ON) (at VGS = 4.5V)
< 4.5mΩ
100% UIS Tested
100% Rg Tested
DFN5X6
Top View
D
Top View
Bottom View
1
8
2
7
3
6
4
5
G
PIN1
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
TC=25°C
Continuous Drain
Current G
Pulsed Drain Current C
V
A
240
18.5
IDSM
TA=70°C
±20
66
IDM
TA=25°C
Continuous Drain
Current
Units
V
85
ID
TC=100°C
Maximum
60
A
14.5
C
IAR
75
A
Repetitive avalanche energy L=0.1mH C
TC=25°C
EAR
281
mJ
Avalanche Current
Power Dissipation
B
Power Dissipation
A
TC=100°C
TA=25°C
Junction and Storage Temperature Range
Rev 0: July 2011
2.3
Steady-State
Steady-State
RθJA
RθJC
www.aosmd.com
W
1.4
TJ, TSTG
Symbol
t ≤ 10s
W
33
PDSM
TA=70°C
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A D
Maximum Junction-to-Case
83
PD
-55 to 150
Typ
14
40
1
°C
Max
17
55
1.5
Units
°C/W
°C/W
°C/W
Page 1 of 6
AON6242
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
Drain-Source Breakdown Voltage
BVDSS
IDSS
Zero Gate Voltage Drain Current
Conditions
Min
ID=250µA, VGS=0V
Max
60
1
TJ=55°C
µA
5
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
Gate Threshold Voltage
VDS=VGS, ID=250µA
1.5
ID(ON)
On state drain current
VGS=10V, VDS=5V
240
Units
V
VDS=60V, VGS=0V
VGS(th)
100
nA
2
2.5
V
3
3.6
4.8
5.8
VGS=4.5V, ID=16A
3.6
4.5
mΩ
1
V
85
A
VGS=10V, ID=20A
RDS(ON)
Typ
Static Drain-Source On-Resistance
TJ=125°C
A
gFS
Forward Transconductance
VDS=5V, ID=20A
140
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.7
IS
Maximum Body-Diode Continuous Current G
DYNAMIC PARAMETERS
Ciss
Input Capacitance
mΩ
S
4240
5305
6370
pF
VGS=0V, VDS=30V, f=1MHz
375
540
705
pF
6.5
22
38
pF
VGS=0V, VDS=0V, f=1MHz
0.45
0.9
1.35
Ω
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
48
60
72
nC
Qg(4.5V) Total Gate Charge
18
23
28
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
VGS=10V, VDS=30V, ID=20A
nC
3
nC
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
trr
Body Diode Reverse Recovery Time
IF=20A, dI/dt=500A/µs
17
24.5
32
Qrr
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
87
125
163
VGS=10V, VDS=30V, RL=1.5Ω,
RGEN=3Ω
nC
16
13
ns
4
ns
47
ns
6.5
ns
ns
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends
on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep
initial TJ =25°C.
D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 0: July 2011
www.aosmd.com
Page 2 of 6
AON6242
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
100
3.5V
90
80
4.5V
70
80
10V
70
ID(A)
ID (A)
60
50
40
60
50
40
30
125°C
30
VGS=3V
20
20
10
10
0
25°C
0
0
1
2
3
4
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
5
1.5
2.5
3
3.5
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
4.5
Normalized On-Resistance
VGS=4.5V
3.5
3.0
VGS=10V
2.5
4
1.8
VGS=10V
ID=20A
1.6
1.4
VGS=4.5V
ID=16A
1.2
17
5
2
10
1
2.0
0.8
0
5
10
15
20
25
30
0
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
7
25
50
75
100
125
150
0
Temperature (°C)
Figure 4: On-Resistance vs. Junction
18
Temperature (Note E)
175
1.0E+02
ID=20A
1.0E+01
6
40
1.0E+00
IS (A)
125°C
RDS(ON) (mΩ
Ω)
2
2
4.0
RDS(ON) (mΩ
Ω)
VDS=5V
90
5
1.0E-01
125°C
1.0E-02
4
25°C
1.0E-03
3
1.0E-04
25°C
2
1.0E-05
2
4
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
Rev 0: July 2011
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics
(Note E)
Page 3 of 6
AON6242
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
6000
10
VDS=30V
ID=20A
Capacitance (pF)
VGS (Volts)
Ciss
5000
8
6
4
2
4000
3000
2000
Coss
1000
Crss
0
0
0
10
20
30
40
Qg (nC)
Figure 7: Gate-Charge Characteristics
50
0
60
1000.0
10
20
30
40
50
VDS (Volts)
Figure 8: Capacitance Characteristics
400
TJ(Max)=150°C
TC=25°C
350
100.0
10µs
10us
RDS(ON)
300
100us
10.0
Power (W)
ID (Amps)
60
1ms
DC
1.0
TJ(Max)=150°C
TC=25°C
0.1
250
17
5
2
10
200
150
100
50
0.0
0
0.01
0.1
1
10
VDS (Volts)
100
1000
0.0001
0.001
0.01
0.1
1
10
0
Pulse Width (s)
18
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
RθJC=1.5°C/W
40
1
PD
0.1
Ton
Single Pulse
T
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev 0: July 2011
www.aosmd.com
Page 4 of 6
AON6242
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
160
IAR (A) Peak Avalanche Current
100
Power Dissipation (W)
TA=25°C
120
TA=100°C
80
TA=150°C
40
60
40
20
TA=125°C
0
0
1
0
10
100
1000
Time in avalanche, tA (us)
Figure 12: Single Pulse Avalanche capability (Note
C)
25
50
75
100
125
TCASE (°
°C)
Figure 13: Power De-rating (Note F)
150
10000
100
TA=25°C
80
1000
Power (W)
Current rating ID(A)
80
60
40
100
10
20
0
1
0
25
50
75
100
125
TCASE (°
°C)
Figure 14: Current De-rating (Note F)
150
0.0001
0.01
1
100
10000
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note G)
Zθ JA Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
RθJA=55°C/W
0.1
PD
0.01
Ton
Single Pulse
T
0.001
0.0001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note G)
Rev 0: July 2011
www.aosmd.com
Page 5 of 6
AON6242
G ate C harge Test C ircuit & W aveform
V gs
Qg
1 0V
+
+ V ds
VDC
-
Q gs
Q gd
V DC
-
DUT
V gs
Ig
C ha rg e
R esistive S w itching Test C ircuit & W aveform s
RL
V ds
Vds
V gs
90%
+ Vd d
DUT
VDC
-
Rg
1 0%
V gs
V gs
t d(on)
tr
t d(off)
t on
tf
t off
U nclam ped Inductive S w itching (U IS ) Test C ircuit & W aveform s
L
2
E A R = 1/2 L IA R
Vds
B VD SS
V ds
Id
+ Vdd
Vg s
V gs
I AR
V DC
-
Rg
Id
DUT
Vg s
V gs
D iode R ecovery T est C ircuit & W aveform s
Q rr = -
V ds +
Id t
DUT
V gs
V ds Isd
V gs
Ig
Rev 0: July 2011
L
Isd
+ Vdd
t rr
d I/dt
I RM
V dd
V DC
-
IF
Vd s
www.aosmd.com
Page 6 of 6