

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 XC166 DSP Lib UserManual Keil.pdf

		
				 User’s Manual for Keil Compiler, V 1.2, November 2003
XC166Lib
A DSP Library for XC16x Family
Microcontrollers
N e v e r
s t o p
t h i n k i n g .
Edition 2003-11
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2006.
All Rights Reserved.
LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
User’s Manual for Keil Compiler, V 1.2, November 2003
XC166Lib
A DSP Library for XC16x Family
G ua n gy u W a n g
AI MC MA TM (Munich, Germany)
Microcontrollers
N e v e r
s t o p
t h i n k i n g .
XC166Lib
Revision History:2003-11V 1.2
Previous Version: 2002-02 V 1.0, 2002-09 V1.1
Page
Subjects (major changes since last revision)
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

DSP Library for
XC16x Family
Page
Table of Contents
1
1.1
1.2
1.3
1.4
Introduction .
Introduction to XC166Lib, a DSP Library for XC16x
Features .
Future of the XC166Lib .
Support Information .
14
14
14
14
14
2
2.1
2.2
2.3
2.4
Installation and Build .
XC166Lib Content .
Installing XC166Lib .
Building XC166Lib .
Source Files List .
16
16
16
16
17
3
3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
DSP Library Notations .
XC166Lib Data Types .
Calling a DSP Library Function from C Code .
XC166Lib Example Implementation .
XC166Lib Implementation - A Technical Note for Keil Compiler
Memory Issues .
Memory Models for Keil C Compiler .
Optimization Techniques .
Cycle Count .
Testing Methodology .
19
19
19
19
19
19
20
21
24
24
4
4.1
4.1.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
Function Descriptions .
Conventions .
Argument Conventions .
Arithmetic Functions .
Complex Numbers .
Complex Number Representation .
Complex Plane .
Complex Arithmetic .
Complex Number Schematic .
Descriptions .
FIR Filters .
Transversal Form .
Lattice Form .
Multirate FIR Filters .
Descriptions .
IIR Filters .
Direct Form 1 .
Direct Form 2 .
Cascaded Biquad IIR Filter with Direct Form 2
Cascaded Biquad IIR Filter with Direct Form 1
Lattice IIR Filter .
25
25
25
27
27
27
27
28
29
29
40
40
41
42
44
73
73
73
75
75
76
User’s Manual for Keil Compiler
I-1
V 1.2, 2003-11
DSP Library for
XC16x Family
4.4.6
4.5
4.5.1
4.5.2
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.8
4.8.1
4.9
4.10
4.10.1
4.10.2
4.10.3
Descriptions . 77
Adaptive Digital Filters . 111
Delayed LMS algorithm for an adaptive filter 112
Descriptions . 113
Fast Fourier Transforms . 123
Radix-2 Decimation-In-Time FFT Algorithm . 126
Radix-2 Decimation-In-Frequency FFT Algorithm 128
Complex FFT Algorithm . 130
Calculation of Real Forward FFT from Complex FFT 133
Calculation of Real Inverse FFT from Complex FFT 134
C166S V2 Core Implementation Note . 136
Organization of FFT functions . 136
Implementation of Real Forward FFT . 136
Implementation of Real Inverse FFT . 138
Description . 138
Matrix Operations . 159
Descriptions . 159
Mathematical Operations . 168
Statistical Functions . 187
Correlation . 187
Implementation Description . 190
Convolution . 212
5
References . 216
User’s Manual for Keil Compiler
-2
V 1.2, 2003-11
DSP Library for
XC16x Family
Page
List of Figures
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-21
Figure 4-22
Figure 4-23
Figure 4-24
Figure 4-25
Figure 4-26
Figure 4-27
Figure 4-28
Figure 4-29
Figure 4-30
Figure 4-31
Figure 4-32
Figure 4-33
Figure 4-34
Figure 4-35
Figure 4-36
Figure 4-37
Figure 4-38
Figure 4-39
Figure 4-40
Figure 4-41
Figure 4-42
Figure 4-43
The Complex Plane . 28
16-bit Complex number representation . 29
Complex Number addition for 16 bits. 31
Complex number subtraction for 16 bits . 34
Complex number multiplication for 16 bits . 36
32 bit real number multiplication . 39
Block Diagram of the FIR Filter . 41
Lattice FIR Filter. 42
Block Diagram of FIR Decimation Filter . 43
Equivelent Implementation of FIR Decimation Filter 43
Block Diagram of FIR Interpolation Filter . 44
Equivelent Implementation of FIR Interpolation Filter 44
Fir_16 . 47
Fir_32 . 51
Fir_cplx . 55
Fir_sym . 59
Fir_lat . 63
Fir_dec . 67
Fir_inter . 71
Canonical Form (Direct Form 2) . 74
Cascaded Biquad IIR Filter with Direct Form 2 Implementation 75
Cascaded Biquad IIR Filter with Direct Form 1 Implementation 76
Lattice IIR Filter Structure . 77
IIR_1 . 81
IIR_2 . 85
IIR_bi_1 . 90
IIR_bi_2 . 95
IIR_bi2_32 . 100
IIR_bi_24 . 105
IIR_lat. 109
Adaptive filter with LMS algorithm . 111
Adap_filter_16 . 116
Adap_filter_32 . 120
Complexity Graph . 124
8-point DIT FFT . 126
Alternate Form of 8-point DIT FFT . 127
8-point DIF FFT . 128
Alternate Form of 8-point DIF FFT . 129
8-point DIT complex FFT . 130
Butterfly of Radix-2 DIT complex FFT . 130
8-point DIF complex FFT . 131
Butterfly of Radix-2 DIF complex FFT . 132
Bit_reverse . 139
User’s Manual for Keil Compiler
II-1
V 1.2, 2003-11
DSP Library for
XC16x Family
Figure 4-44
Figure 4-45
Figure 4-46
Figure 4-47
Figure 4-48
Figure 4-49
Figure 4-50
Figure 4-51
Figure 4-52
Figure 4-53
Figure 4-54
Figure 4-55
Figure 4-56
Figure 4-57
Figure 4-58
Figure 4-59
Figure 4-60
Figure 4-61
FloatTo1Q15 .
Real_DIT_FFT .
Real_DIF_IFFT .
Q15toFloat .
Matrix_mul .
Matrix_trans .
Sine .
P_series .
Windowing .
Division of two 1Q15 fractional inputs .
Division of 1Q31 fractional by 1Q15 fractional
Raw autocorrelation .
Biased autocorrelation .
Unbiased autocorrelation .
Raw cross-correlation .
Biased cross-correlation .
Unbiased cross-correlation .
Convolution .
User’s Manual for Keil Compiler
-2
142
146
152
155
160
164
169
172
175
178
180
190
193
196
200
204
208
212
V 1.2, 2003-11
DSP Library for
XC16x Family
Page
List of Tables
Table 2-1
Table 2-2
Table 3-1
Table 4-1
Directory Structure .
Source files .
XC166Lib Data Types .
Argument Conventions .
User’s Manual for Keil Compiler
III-1
16
17
19
25
V 1.2, 2003-11
DSP Library for
XC16x Family
Preface
This is the User Manual of version 1.2 for XC166Lib - a DSP library for Infineon XC16x
microcontroller family. To make the user easy by using the XC166Lib we provide a
separate User Manual for each compiler to describe the implementations. This User
Manual describes the implementations for Keil compiler.
XC16x microcontroller family is the most recent generation of the popular C166
microcontroller families. The core of XC16x family is C166S V2 Core that combines high
performance with enhanced modular architecture. Impressive DSP performance and
advanced interrupt handling with fast context switching make XC16x the instrument of
choice for powerful applications.
This manual describes the implementation of essential algorithms for general digital
signal processing applications on the XC16x using Keil compiler.
For Keil compiler the DSP library is developed mainly in inline assembly and most of the
source code files is stored in c files. The DSP library can be used as a library of basic
functions for developing bigger DSP applications on XC16x microcontroller. The library
serves as a user guide and a reference for XC16x microcontroller DSP programmers. It
demonstrates how the processor’s architecture can be exploited for achieving high
performance.
The various functions and algorithms implemented and described are:
•
•
–
–
–
•
–
–
•
•
•
–
–
–
Arithmetic Functions
Filters
FIR
IIR
Adaptive filters
Transforms
FFT
IFFT
Matrix Operations
Mathematical Operations
Statistical Functions
Auto-correlation
Cross-correlation
Convolution
Each function is described in detail under the following headings:
Signature:
This gives the function interface.
Inputs:
Lists the inputs to the function.
User’s Manual for Keil Compiler
-10
V 1.2, 2003-11
DSP Library for
XC16x Family
Outputs:
Lists the output of the function if any.
Return:
Gives the return value of the function if any.
Implementation Description:
Gives a brief note on the implementation, the size of the inputs and the outputs,
alignment requirements etc.
Pseudocode:
The implementation is expressed as a pseudocode using C conventions.
Techniques:
The techniques employed for optimization are listed here.
Register Usage:
Lists the registers that are used for parameter transfer from C to Assembly or inverse.
Assumptions:
Lists the assumptions made for an optimal implementation such as constraint on
DPRAM. The input output formats are also given here.
Memory Note:
A detailed sketch showing how the arrays are stored in memory, the alignment
requirements of the different memories, the nature of the arithmetic performed on them.
The diagrams give a great insight into the actual implementation.
Further, the path of an Example calling program, the Cycle Count and Code Size are
given for each function.
User’s Manual for Keil Compiler
-11
V 1.2, 2003-11
DSP Library for
XC16x Family
Organization
Chapter 1, Introduction, gives a brief introduction of the XC166Lib and its features.
Chapter 2, Installation and Build, describes the XC166Lib content, how to install and
build the XC166Lib.
Chapter 3, DSP Library Notations, describes the DSP Library data types, arguments,
calling a function from the C code and the assembly code, and the implementation notes.
Chapter 4, Function Descriptions, describes the arithmetic functions, FIR filters, IIR
filters, Adaptive filters, Fast Fourier Transforms, Matrix operations and Mathematical
operations. Each function is described with its signature, inputs, outputs, return,
implementation description, pseudocode, techniques used, registers used for parameter
transfer, assumptions made, memory note, example, cycle count and code size.
Chapter 5, gives the list of related references.
Acknowledgements
All source codes in XC166Lib have been designed, developed and tested using Tasking
and Keil Tool chains. We in advance would like to acknowledge users for their feedback
and suggestions to improve this product.
Guangyu Wang
XC166Lib Developer - Infineon
User’s Manual for Keil Compiler
-12
V 1.2, 2003-11
DSP Library for
XC16x Family
Acronyms and Definitions
Acronyms
Definitions
DIT
Decimation-In-Time
DIF
Decimation-In-Frequency
LMS
Least Mean Square
DSP
Digital Signal Processing
XC166Lib
DSP Library functions for XC16x
FFT
Fast Fourier Transform
FIR
Finite Impulse Response
IIR
Infinite Impulse Response
Documentation/Symbol Conventions
The following is the list of documentation/symbol conventions used in this manual.
Documentation/Symbol Conventions
Documentation/Sym- Description
bol convention
Courier
Pseudocode
Times-italic
File name
User’s Manual for Keil Compiler
-13
V 1.2, 2003-11
DSP Library for
XC16x Family
Introduction
1
Introduction
1.1
Introduction to XC166Lib, a DSP Library for XC16x
The XC166Lib, a DSP Library for XC16x microcontroller is C-callable, hand-coded
assembly, general purpose signal processing routines. The XC166Lib includes
commonly used DSP routines. The throughput of the system using the XC166Lib
routines is considerably better than those achieved using the equivalent code written in
ANSI C language. The XC166Lib significantly helps in understanding the general
purpose signal processing routines, its implementation on XC16x microcontroller family.
It also reduces the DSP application development time. Furthermore, The XC166Lib is
also a good reference for XC16x microcontroller DSP programmer.
The routines are broadly classified into the following functional categories:
•
•
•
•
•
•
•
•
Arithmetic functions
FIR filters
IIR filters
Adaptive filters
Fast Fourier Transforms
Matrix operations
Mathematical operations
Statistical functions
1.2
•
•
•
•
•
•
•
Features
Common DSP algorithms with source codes
Hand-coded and optimized assembly modules with CoMAC instructions
C-callable functions on Keil compiler
Multi platform support - Win 95, Win 98, Win NT
Examples to demonstrate the usage of functions
Example input test vectors and the output test data for verification
Complete User’s manual covering many aspects of implementation
1.3
Future of the XC166Lib
The planned future releases will have the following improvements.
• Expansion of the library by adding more functions in the domain of generic core
routines of DSP.
• Upgrading the existing 16 bit functions to 32 bit
1.4
Support Information
Any suggestions for improvement, bug report if any, can be sent via e-mail to
User’s Manual for Keil Compiler
1-14
V 1.2, 2003-11
DSP Library for
XC16x Family
Introduction
.
Visit www.infineon.com /C166DSPLIB for update on XC166Lib releases.
User’s Manual for Keil Compiler
1-15
V 1.2, 2003-11
DSP Library for
XC16x Family
Installation and Build
2
Installation and Build
2.1
XC166Lib Content
The following table depicts the XC166Lib content with its directory structure.
Table 2-1
Directory Structure
Directory
name
Contents
XC166Lib
Directories which has all the files related None
to the XC166Lib
Tasking
Directories which has all the files related None
to the XC166Lib for Tasking compiler
Keil
Directories which has all the files related None
to the XC166Lib for Keil compiler
Source
Directories of source files. Each directory *.c
has respective assembly language
*.asm
*.a66
implementation files of the library
functions
Include
Directory and common include files for
’C’ of the Keil compiler
DspLib_Keil.h
Docs
User’s Manual for Keil compiler
*.pdf
Examples
Example directories . Each directory
*.c
contains example "c" functions to depict
the usage of XC166Lib.
2.2
Files
Installing XC166Lib
XC166Lib is distributed as a ZIP file. To install the XC166Lib on the system, unzip the
ZIP file and extract them to the defined directory.
The directory structure is as given in “XC166Lib Content” on Page 2-16
2.3
Building XC166Lib
Include the DspLib_Keil.h into your project and also include the same into the files that
need to call the library function like:
#include “DspLib_Keil.h”
Now include the respective source files for the required functionality into your project.
Refer the functionality table, Table 2-2.
User’s Manual for Keil Compiler
2-16
V 1.2, 2003-11
DSP Library for
XC16x Family
Installation and Build
Build the system and start using the library.
2.4
Source Files List
Table 2-2
Source files
Complier:
Keil
Arithmetic Functions
CplxAdd_16.c
CplxSub_16.c
CplxMul_16.c
Mul_32.c
FIR Filters
Fir_16.c
Fir_32.c
Fir_cplx.c
Fir_dec.c
Fir_inter.c
Fir_lat.c
Fir_sym.c
IIR Filters
IIR_1.c
IIR_2.c
IIR_bi_1.c
IIR_bi_2.c
IIR_bi_24.c
IIR_bi2_32.c
IIR_lat.c
Adaptive Filters
Adap_filter_16.c
Adap_filter_32.c
FFT
Bit_reverse.c
real_DIT_FFT.a66
real_DIF_IFFT.a66
Matrix Operations
User’s Manual for Keil Compiler
2-17
V 1.2, 2003-11
DSP Library for
XC16x Family
Installation and Build
Table 2-2
Source files
Matrix_mul.c
Matrix_trans.c
Mathematical Operations
Power_series.c
Windowing.c
Sine.c
div_q15.c
div_q31.c
Sqrt.c
Statistical Functions
Auto_raw.c
Auto_bias.c
Auto_unbias.c
Cross_raw.c
Cross_bias.c
Cross_unbias.c
Convol.c
Miscellaneous
FloatTo1Q15.c
Q15toFloat.c
User’s Manual for Keil Compiler
2-18
V 1.2, 2003-11
DSP Library for
XC16x Family
DSP Library Notations
3
DSP Library Notations
3.1
XC166Lib Data Types
The XC166Lib handles the following fractional data types.
Table 3-1
XC166Lib Data Types
1Q15 (DataS) 1Q15 operand is represented by a short data type that is predefined as
DataS in header files DspLib_Keil.h.
1Q31 (DataL) 1Q31 operand is represented by a long data type that is predefined as
DataL in header files DspLib_Keil.h.
CplxS
Complex data type that contains the two 1Q15 data arranged in Re-Im
format.
CplxL
Complex data type that contains the two 1Q31 data arranged in Re-Im
format.
3.2
Calling a DSP Library Function from C Code
After installing the XC166Lib, include a XC166Lib function in the source code as follows:
1. Choose the memory model for C compiler
2. Include the header file DspLib_Keil.h
3. Include the source file that contains required DSP functions into the project along with
the other source files
4. Include the Keil compiler system files TRAPS.C and START_V2.A66
5. Set the Options for Target - Device to select an MCU with XC16x
6. Build the system
3.3
XC166Lib Example Implementation
The examples of how to use the XC166Lib functions are implemented and are placed in
examples subdirectory. This subdirectory contains a subdirectory for set of functions.
3.4
XC166Lib Implementation - A Technical Note for Keil Compiler
3.4.1
Memory Issues
The XC16x microcontroller family uses the C166S V2 Core that is a 16 bit microcontroller
core, with impressive DSP performance. There are two sets of instructions for C166S
V2 Core, namely Normal Instruction Set and DSP Instruction Set (MAC-instructions).
Normal instruction set is compatible with the microcontroller family C166, while the DSP
instruction set is especially designed for implementing DSP algorithms. XC166Lib was
User’s Manual for Keil Compiler
3-19
V 1.2, 2003-11
DSP Library for
XC16x Family
DSP Library Notations
developed mainly using DSP instruction set. But the normal instruction set has been also
often used in the routines, in particular, for initializing memories and registers.
For each instruction set there is a different addressing mode. DSP instructions use some
standard C166 addressing modes such as GPR direct and #data5 for immediate shift
value. To supply the MAC instructions with up to 2 new operands in one CPU cycle, new
MAC instruction addressing models have been added in C166S V2 Core. These allow
indirect addressing with address pointer post-modification. Double indirect addressing
requires 2 pointers, one of which can be supplied by any GPR, the other is provided by
one of two Specific Function Registers (SFRs) IDX0 and IDX1. Two pairs of offset
registers QR0/QR1 and QX0/QX1 are associated with each pointer (GPR or IDXi). The
GPR pointer gives access to the entire memory space, whereas IDXi are limited to the
internal Dual-Port RAM (DPRAM), except for the CoMOV instruction.
The XC166Lib is implemented with the C166S V2 Core memory addressing architecture.
The following information gives memory conditions in order to work properly.
Because the specific function register IDXi is limited to the internal DPRAM, in order to
use MAC instructions properly we must first initialize IDXi with the address pointed to
DPRAM space from 00’F200H to 00’FE00H (3KBytes) before using MAC instructions.
This means that we must locate one of operands in MAC-instructions with double indirect
addressing modes in range from 00’F200H to 00’FE00H. Using Keil complier we can
easily realize it through defining the variables which should be located in the DPRAM
area as on-chip memory type idata, e.g.
short idata x[n] ;
After compiling the vector x will be automatically located in the DPRAM area because
Keil compiler locates all variables with the memory type idata in the DPRAM area.
Note that C166S V2 Core has defined 3 KBytes of DPRAM. However, the XC16x
microcontroller family is equipped with only 2 KBytes of DPRAM in the range from
00’F600H to 00’FE00H. The limited DPRAM area can make difficulty by executing DSP
algorithms on XC16x, if the size of the vector is larger than 2 KBytes, e.g. a 1024-point
Fir filter.
When using pointer post-modification addressing models, the address pointed to must
be a legal address, even if its content is not modified. An odd value will trigger the classB hardware Trap (Illegal Word Operand Access Trap (ILLOPA)).
3.4.2
Memory Models for Keil C Compiler
Just as we said, the DSP library is developed mainly for calling from a C program.
Therefore, the memory modes selected by C and assembly modules must be same in
order to avoid memory model conflicts. Keil tool chain supports seven memory models:
tiny, small, compact, hcompact, medium, large and hlarge. The basic differences
between them are:
User’s Manual for Keil Compiler
3-20
V 1.2, 2003-11
DSP Library for
XC16x Family
DSP Library Notations
Beside the tiny model operating in the non-segmented CPU mode the other six memory
models operate in the segmented CPU mode. The variables by the tiny and small
memory models are located in the near area and the functions calls generate near calls
(up to 64Kb code size). The both memory modes provide the same efficient code. The
difference of tiny and small memory models is that the code and data in the tiny model
are limited to the first segment of 64K, while the small model allows code and data to
locate anywhere in the space.
The compact, hcompact and medium models operate as small model does, except that
the compact model uses the memory type far for variables, the hcompact model uses
the memory type huge for variables and the medium model generates function calls as
far call.
For both large and hlarge models the function calls are generated as far calls by default.
The difference between them is that the large memory locates the variables in the far
memory, while the hlarge locates the variables in the huge memory.
Because the most functions in the library are written in the inline assembly, for those
library functions the parameter passing will be done by the compiler automatically. So
the library functions written in the inline assembly can be used in all memory models
without regarding the memory types of pointers passed from C to assembly code. But for
the library functions which are pure assembly module and stored in assembly file *.a66,
if we want to use them in the memory models with far or huge variable memory types,
we need to redefine the pointers in the function arguments as near pointers, because the
library functions use only 16 bit pointers by parameter passing from C to assembly
routine.
There are only 16 registers R0-R15 on XC16x that can be used for programming. By
calling the XC166Lib routines from C, according to Keil Compiler conventions the
registers from R8 to R12 will be used to translate parameters from C to the assembly
code, and the rest parameters will be translated through using stack. R4 and R5 are
used to store the output values after executing the XC166Lib routines. R1-R7 can be
used in the assembly routine without regard for preserving their contents.
3.4.3
Optimization Techniques
DSP optimization techniques depend strongly on the core architecture. So, different
cores have different optimization techniques. Furthermore, the number of tricks that can
be played by a DSP programmer are endless. In the development of XC166Lib the
following optimization techniques have been used.
• data dependencies removing
Due to the pipeline requirement of the C166S V2 CPU there are a lot of possible
data dependencies between instructions using GPRs. In the C166S V2 Core the
dedicated hardware is added to detect and resolve the data dependencies. However, in
the C166S V2 Core none of the instructions using indirect addessing modes are capable
User’s Manual for Keil Compiler
3-21
V 1.2, 2003-11
DSP Library for
XC16x Family
DSP Library Notations
of using a GPR, which is to be updated by one of the two immediately preceding
instructions. This means that the instruction using indirect addressing modes will lead
two cycles stall. To use these two cycles for the optimization we can insert before this
instruction a multicycle or two single cycle instructions that must not update the GPR
used for indirect addressing.
Example:
Assembly without optimization (6 cycles)
.............
ADD
R1, R2
MOV
R8, [R1]
ADD
R5, R1
ADD
R6, R1
; instruction using indirect addressing mode
.............
Assembly with optimization (4 cycles)
.............
ADD
R1, R2
ADD
R5, R1
; inserted one cycle instruction
ADD
R6, R1
; inserted one cycle instruction
MOV
R8, [R1]
; instruction using indirect addressing mode
.............
• memory bandwidth conflicts removing
Memory bandwidth conflicts can occur if instructions in the pipeline access the same
memory ares at the same time. The CoXXX instructions are specially designed for DSP
implementation. To avoid the memory bandwidth conflicts in the DPRAM ares, one of the
operands should be located in the internal SRAM to guarantee a single cycle execution
time of the CoXXX instructions.
• instruction re-ordering
By writing DSP routines with CoXXX instructions it is often needed to change and update
the Special Function Registers (SFRs), such as IDX0, IDX1, QX0, QX1, QR0, QR1, and
so on. CPU-SFRs control the CPU functionality and behavior. Therefore, special care is
required to ensure that instructions in the pipeline always work with the correct SFRs
values. With instruction re-ordering the flow of instructions through the pipeline can be
improved to optimize the routines.
Example:
Assembly code without optimization (7 cycles)
.............
User’s Manual for Keil Compiler
3-22
V 1.2, 2003-11
DSP Library for
XC16x Family
DSP Library Notations
EXTR
#1
MOV
IDX1, #12
CoMUL
[IDX1], [R1]
MOV
R6, R1
ADD
R2, R1
; initialize IDX1 with 12
.............
Assembly code with optimization (5 cycles)
.............
EXTR
#1
MOV
IDX1, #12
; initialize IDX1 with 12
MOV
R6, R1
; instruction re-ordering
ADD
R2, R1
; instruction re-ordering
CoMUL
[IDX1], [R1]
.............
•
loop unrolling
The equation is written twice or more inside a loop.
Example (unrolling factor 2):
Assembly code without loop unrolling (17 cycles)
............
MOV
R3, #3
CoMAC
[IDX0+], [R1+]
CoMAC
[IDX0+], [R1+]
CMPD1
R3,#0h
JMPR
cc_NZ,loop
loop:
............
Assembly code with loop unrolling (13 cycles)
............
MOV
R3, #1
CoMAC
[IDX0+], [R1+]
loop:
CoMAC
[IDX0+], [R1+]
CoMAC
[IDX0+], [R1+]
User’s Manual for Keil Compiler
3-23
V 1.2, 2003-11
DSP Library for
XC16x Family
DSP Library Notations
CoMAC
[IDX0+], [R1+]
CMPD1
R3,#0h
JMPR
cc_NZ,loop
............
3.4.4
Cycle Count
The cycle count given for each function in this User’s Manual represents the cycles to be
needed for executing the assembly instructions in the function. They have been verified
on XC16x boards. To some degree one can understand as the theoretical cycle count.
The given values of cycle count can only be achieved only on conditions that all data and
assembly codes are located in the internal memory area and no pipeline conflicts occur
in the program. Note that the real cycle count may be much larger than the given values,
if the data or source code are located in the external memory.
3.4.5
Testing Methodology
The XC166Lib is tested on XC16x board. The test is believed to be accurate and reliable.
However, the developer assumes no responsibility for the consequences of use of the
XC166Lib.
User’s Manual for Keil Compiler
3-24
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
4
Function Descriptions
Each function is described with its signature, inputs, outputs, return, implementation
description, pseudocode, techniques used, assumptions made, register usage, memory
note, example, cycle count and code size.
Functions are classified into the following categories.
•
•
•
•
•
•
•
•
Arithmetic functions
FIR filters
IIR filters
Adaptive filters
Fast Fourier Transforms
Matrix operations
Mathematical operations
Statistical functions
4.1
Conventions
4.1.1
Argument Conventions
The following conventions have been followed while describing the arguments for each
individual function.
Table 4-1
Argument Conventions
Argument
Convention
X, x
Input data or input data vector beside in FFT functions, where X representing the FFT spectra of the input vector x
Y, y
Output data or output data vector
D_buffer,
d_buffer
Delay buffer
N_x
The size of input vectors
H, h
Filter coefficient vector
N_h
The size of coefficient vector H
DataS
Data type definition equating a short, a 16-bit value representing a
1Q15 number
DataL
Data type definition equating a long, a 32-bit value representing a 1Q31
number
User’s Manual for Keil Compiler
4-25
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
Table 4-1
Argument Conventions
Argument
Convention
CplxS
Data type definition equating a short, a 16-bit value representing a
1Q15 complex number
CplxL
Data type definition equating a long, a 32-bit value representing a 1Q31
complex number
User’s Manual for Keil Compiler
4-26
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
4.2
Arithmetic Functions
4.2.1
Complex Numbers
A complex number z is an ordered pair (x,y) of real numbers x and y, written as
z= (x,y)
where x is called the real part and y the imaginary part of z.
4.2.2
Complex Number Representation
A complex number can be represented in different ways, such as
Rectangular form
: C = R + iI
[4.1]
Trigonometric form
: C = M [cos (φ) + j sin (φ)]
[4.2]
Exponential form
: C = Me
Magnitude and angle form
: C = M ∠φ
iφ
[4.3]
[4.4]
In the complex functions implementation, the rectangular form is considered.
4.2.3
Complex Plane
To geometrically represent complex numbers as points in the plane two perpendicular
coordinate axis in the Cartesian coordinate system are chosen. The horizontal x-axis is
called the real axis, and the vertical y-axis is called the imaginary axis. Plot a given
complex number z= x + iy as the point P with coordinates (x, y). The xy-plane in which
the complex numbers are represented in this way is called the Complex Plane.
User’s Manual for Keil Compiler
4-27
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
(Imaginary
Axis)
y
P
z = x + iy
(Real Axis)
O
Figure 4-1
4.2.4
x
The Complex Plane
Complex Arithmetic
Addition
if z1 and z2 are two complex numbers given by z1 =x1+iy1 and z2 = x2 + iy2,
z1+z2 = (x1+iy1) + (x2 + iy2) = (x1+x2) + i(y1+y2)
[4.5]
Subtraction
if z1 and z2 are two complex numbers given by z1 =x1+iy1 and z2 = x2 + iy2,
z1-z2 = (x1-x2) + i(y1-y2)
[4.6]
Multiplication
if z1 and z2 are two complex numbers given by z1 =x1+iy1 and z2 = x2 + iy2,
z1.z2 = (x1+iy1).(x2 + iy2) = x1x2 + ix1y2 + iy1x2 + i2 y1y2
= (x1x2 - y1y2) + i(x1y2 + x2y1)
User’s Manual for Keil Compiler
[4.7]
4-28
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
Conjugate
The complex conjugate, z of a complex number z = x+iy is given by
z = x - iy
[4.8]
and is obtained by geometrically reflecting the point z in the real axis.
4.2.5
Complex Number Schematic
15
0
High Addr.
Imaginary
Low Addr.
Real
Sign Bit
Figure 4-2
4.2.6
16-bit Complex number representation
Descriptions
The following arithmetic functions for 16 bit and 32 bit are described.
•
•
•
•
16 bit complex addition
16 bit complex subtraction
16 bit complex multiplication
32 bit real multiplication
User’s Manual for Keil Compiler
4-29
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
CplxAdd_16
Signature
Inputs
16 bit Complex Number Addition
void CplxAdd_16 (CplxS* X, CplxS* Y, ClpxS* R)
X
:
Pointer to 16 bit Complex input
value in 1Q15 format
Y
:
Pointer to 16 bit Complex input
value in 1Q15 format
Output
None
Return
Pointer to the sum of two complex numbers as a 16 bit
complex number in 1Q15 format
Implementation
Description
This function computes the sum of two 16 bit complex
numbers. Wraps around the result in case of overflow.
The algorithm is as follows
Rr = xr + yr
[4.9]
Ri = xi + yi
Pseudo code
{
R.real = X.real + Y.real;
//add the real part
R.imag = X.imag + Y.imag;
//add the imaginary part
return R;
}
Techniques
None
Assumption
Register Usage
• From .c file to inline assembly file:
Decided by compiler
User’s Manual for Keil Compiler
4-30
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
CplxAdd_16
16 bit Complex Number Addition (cont’d)
Memory Note
15
0
Imaginary
15
Imaginary
0
Imaginary
0
15
+
Real
Real
+
Real
Figure 4-3
Example
Complex Number addition for 16 bits
C166Lib\Keil\Examples\Arith_16\Arith_16.c
Cycle Count
Initialization and
read input values
6
Real Addition
3
Imaginary Addition
3
Total
12
Initialization and
read input values
12 bytes
Real Addition
10 bytes
Code Size
User’s Manual for Keil Compiler
4-31
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
CplxAdd_16
16 bit Complex Number Addition (cont’d)
Imaginary Addition
10 bytes
Total
32 bytes
User’s Manual for Keil Compiler
4-32
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
CplxSub_16
Signature
Inputs
16 bit Complex Number Subtraction
void CplxSub_16 (CplxS* X, CplxS* Y, CplxS* R)
X
:
Pointer to 16 bit complex input
value in 1Q15 format
Y
:
Pointer to 16 bit complex input
value in 1Q15 format
Output
None
Return
Pointer to the difference of two complex numbers as a 16 bit
complex number
Implementation
Description
This function computes the difference of two 16 bit complex
numbers. Wraps around the result in case of underflow. The
algorithm is as follows.
Rr = xr – yr
[4.10]
Ri = xi – yi
Pseudo code
{
R.real = X.real - Y.real;
//subtract the real part
R.imag = X.imag - Y.imag;
//subtract the imaginary part
return R;
}
Techniques
None
Assumption
Register Usage
• From .c file to inline assembly file:
Decided by compiler
User’s Manual for Keil Compiler
4-33
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
CplxSub_16
16 bit Complex Number Subtraction (cont’d)
Memory Note
15
0
Imaginary
0
15
Real
Imaginary
15
0
Real
Imaginary
Real
Figure 4-4
Example
Complex number subtraction for 16 bits
C166Lib\Keil\Examples\Arith_16\Arith_16.c
Cycle Count
Initialization
and
read input values
6
Real Subtraction
3
Imaginary
Subtraction
3
Total
12
Initialization
and
read input values
12 bytes
Real Subtraction
10 bytes
Imaginary
Subtraction
10 bytes
Total
32 bytes
Code Size
User’s Manual for Keil Compiler
4-34
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
CplxMul_16
16 bit Complex Number Multiplication
Signature
void CplxMul_16 (CplxS* X, CplxS* Y, CplxS* R)
Inputs
X
:
Pointer to 16 bit Complex input
value in 1Q15 format
Y
:
Pointer to 16 bit Complex input
value in 1Q15 format
Return
Pointer to the multiplication result in 1Q15 format
Implementation
Description
This function computes the product of the two 16 bit complex
numbers. Wraps around the result in case of overflow.
The complex multiplication is computed as follows.
Rr = xr × yr – xi × yi
Ri = xi × yr + xr × yi
Pseudo code
{
R->real = X.real*Y.real - Y.imag*X.imag;
R->imag = X.real*Y.imag + Y.real*X.imag;
}
Techniques
None
Assumption
Register Usage
• From .c file to inline assembly file:
Decided by compiler
User’s Manual for Keil Compiler
4-35
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
CplxMul_16
16 bit Complex Number Multiplication (cont’d)
Memory Note
15
0
Imaginary
x
Real
15
x
0
Imaginary
+
x
Imaginary
0
15
-
Real
x
Real
Figure 4-5
Example
Complex number multiplication for 16 bits
C166Lib\Keil\Examples\Arith_16\Arith_16.c
Cycle Count
Initialization and
read input values
5
Real multiplication
3
Imaginary
multiplication
3
Total
11
Initialization and
read input values
10 bytes
Real multiplication
12 bytes
Code Size
User’s Manual for Keil Compiler
4-36
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
CplxMul_16
16 bit Complex Number Multiplication (cont’d)
Imaginary
multiplication
12 bytes
Total
34 bytes
User’s Manual for Keil Compiler
4-37
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
Mul_32
32 bit Real Multiplication
Signature
DataL Mul_32 (DataL X, DataL Y)
Inputs
X
:
32 bit real input value in 1Q31
Y
:
32 bit real input value in 1Q31
Return
Multiplication result in 1Q31 format
Implementation
Description
This function computes the product of the two 32 bit real
numbers. Wraps around the result in case of overflow.
The multiplication is computed as follows.
R = x L × y L + x L × y H + (x H × y L + x H × y H) » 16
Pseudo code
{
R = xL*yL + xL*yH + (xH*yL + xH*yH)>>16 ;
}
Techniques
None
Assumption
Register Usage
• From .c file to inline assembly file:
Decided by compiler.
• From .asm file to .c file:
RL(LSW) is stored in R4.
RH(MSW) is stored in R5.
User’s Manual for Keil Compiler
4-38
V 1.2, 2003-11
DSP Library for
XC16x Family
Function Descriptions
Mul_32
32 bit Real Multiplication (cont’d)
Memory Note
15
0
XL
x
XH
32
x
16
RL
+
RH
x
YL
0
15
32
x
16
YH
Figure 4-6
Example
32 bit real number multiplication
C166Lib\Keil\Examples\Arith_16\Arith_16.c
Cycle Count
Code Size
Initialization
5
Multiplication
8
Output
2
Total
15
Initialization
10
bytes
Multiplication
32
bytes
Output
8
Total
User’s Manual for Keil Compiler
50
4-39
bytes
V 1.2, 2003-11
DSP Library for
XC16x Family
4.3
FIR Filters
The FIR (Finite Impulse Response) filter, as its name suggests, will always have a finite
duration of non-zero output values for given finite duration of non-zero input values. FIR
filters use only current and past input samples, and none of the filter's previous output
samples, to obtain a current output sample value.
For causal FIR systems, the system function has only zeros (except for poles at z=0).
The realization of an FIR filter has many forms. But the transversal and lattice forms are
most useful structures in practice.
4.3.1
Transversal Form
The transversal form of an Fir filter showed in Figure 4-7 is realized by a tapped delay
line. The delay line stores the past input values. The input x(n) for the current calculation
will become x(n-1) for the next calculation. The output from each tap is summed to
generate the filter output. For a general N tap FIR filter, the difference equation is
N–1
y(n) =
∑ hi ⋅ x (n – i)
[4.11]
i=0
where,
x(n)
:
the filter input for nth sample
y(n)
:
output of the filter for nth sample
hi
:
filter coefficients
N
:
filter order
The filter coefficients, which decide the scaling of current and past input samples stored
in the delay line, define the filter response.
The transfer function of the filter in Z-transform is
[z]- =
H[z] = Y
----------X[z]
N–1
∑ hi ⋅ z
–i
[4.12]
i=0
User’s Manual for Keil Compiler
-40
V 1.2, 2003-11
DSP Library for
XC16x Family
Delay
Line
x(n)
(Filter
Input)
h0
x(n)
z-1
X
h1
x(n-1)
z-1
z-1
hN-1
X
x(n-N+1)
X
+
y(n)
(Filter
Output)
Figure 4-7
4.3.2
Block Diagram of the FIR Filter
Lattice Form
The structure of a lattice FIR filter is showed in Figure 4-8 . Each stage of the filter has
an input and output that are related by the equations:
yi (n) = yi – 1 (n) + ki ui (n – 1)
ui (n) = ki yi – 1 (n) + ui – 1 (n – 1)
1 ≤ i≤ M
[4.13]
The initial values are equal to the filter input x(n):
User’s Manual for Keil Compiler
-41
V 1.2, 2003-11
DSP Library for
XC16x Family
y0 (n) = x (n)
u0 (n) = x (n)
At the last stage we have the output of the lattice FIR filter y(n)=yM(n).
+
x(n)
k1
z-1
y1(n)
y2(n)
….
+
k2
u1(n)
+
+
kM
+
z-1
….
z-1
u2(n)
Figure 4-8
4.3.3
yM(n)
+
uM(n)
Lattice FIR Filter
Multirate FIR Filters
Multirate filters are a kind of digital filters that change the sampling rate of a digital signal.
A multirate filter converts a digital signal with sampling rate M to another digital signal
with sampling rate N. The both digital signals represent the same analog signal at
differtent sampling rates. A multirate filter can be realized in an FIR filter or an IIR filter.
Due to the advantages of FIR filters, such as linear phase, unconditional stability, simple
structure and easy coefficient design, most of the multirate filters are implemented with
FIR filters. Hier we describe only FIR multirate filters.
The basic operations of the multirate filters are decimation and interpolation. Decimation
reduces the sample rate of a signal and can be used to eliminate redundant or
unnecessary information contained in the signal. Interpolation increases the sample rate
of a signal through filling in missing information between the samples of a signal based
on the calculation on the existing data.
4.3.3.1
FIR Decimation Filter
The FIR decimation filter can be described using the equation
N–1
y(m) =
∑ h (k)x (mM – k)
[4.14]
k=0
User’s Manual for Keil Compiler
-42
V 1.2, 2003-11
DSP Library for
XC16x Family
where h(k) is filter coefficient vector, x(n) is the input signal and M represents the
decimation factor. Figure 4-9 shows the block diagram of an FIR decimation filter. Its
equivelent form is showed in Figure 4-10 .
x(n)
Figure 4-9
h(k)
w (n)
LM
y(m)
Block Diagram of FIR Decimation Filter
h(0)
x(n)
z -1
z
y(m)
h(1)
-1
h(2)
z -1
z -1
LM
h(3)
i
i
i
i
i
i
h(N-1)
i
i
i
Figure 4-10 Equivelent Implementation of FIR Decimation Filter
4.3.3.2
FIR Interpolation Filter
In comparison with decimation filter the interpolation filter can be used in the
reconstruction of a digital signal from another digital signal. Figure 4-11 shows a block
diagram of an interpolation filter, where the low-pass filter of the interpolator uses an Fir
filter structure. An Fir interpolation filter can be described as
N–1
y(m) =
∑ h (k)x ((m – k) ⁄ L)
[4.15]
k=0
User’s Manual for Keil Compiler
-43
V 1.2, 2003-11
DSP Library for
XC16x Family
for m-k=0, L, 2L, An equivelent implementation of the Fir interpolation filter is showed
in Figure 4-12.
x(n)
L
h(k)
y(m)
Figure 4-11 Block Diagram of FIR Interpolation Filter
x(n)
h(0)
KL
z -1
z
-1
z
-1
z -1
y(m)
h(1)
h(2)
h(3)
i
i
i
i
i
i
h(N-1)
i
i
i
Figure 4-12 Equivelent Implementation of FIR Interpolation Filter
4.3.4
Descriptions
The following FIR filter routines are implemented in the library.
•
•
•
•
•
•
•
Fir filter with transversal form, 16 bit filter coefficients, Sample processing
Fir filter with transversal form, 32 bit filter coefficients, Sample processing
Complex Fir filter with transversal form, 16 bit filter coefficients, Vector processing
Symmetric Fir filter, 16 bit filter coefficients, Vector processing
Lattice Fir filter, 16 bit filter coefficients, Vector processong
Fir decimation filter, 16 bit filter coefficients, Vector processing
Fir interpolation filter, 16 bit filter coefficients, Vector processing
User’s Manual for Keil Compiler
-44
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_16
FIR Filter with transversal form, 16 bit coefficients,
Sample processing
Signature
DataS Fir_16 (DataS* H, DataS* IN, DataS N_h,
DataS* D_buffer)
Inputs
H
:
Pointer to filter coefficients in 1Q15
format
IN
:
Pointer to the new input sample in
1Q15 format
L
:
Filter order
D_buffer
Pointer to delay buffer
Output
:
Return
Y
Implementation
Description
The implementation of FIR filter uses transversal structure
(direct form). A single input is processed at a time and output
for every sample is returned. The filter operates on 16-bit real
input, 16-bit coefficients and gives 16-bit real output. The
number of coefficients given by the user is arbitrary. The delay
line is implemented in parallel to the multiply-accumulate
operation using instructions CoMACM. Delay buffer will be
located in the DPRAM area.
User’s Manual for Keil Compiler
:
-45
Filter output in 1Q15 format
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_16
FIR Filter with transversal form, 16 bit coefficients,
Sample processing (cont’d)
Pseudo code
{
short x(N_h)={0,...};
short Y;
short i;
//Update
for(i=0;
x(i) =
x(N_h-1)
//Input vector
//Filter result
the input vector with the new input value
i<N_h-1; i++)
x(i+1);
= IN;
//move the new input unto X[N_h-1]
//Calculate the current FIR output
Y = 0;
for(i=0; i<N_h; i++)
Y = Y + h(i)*x(N_h-1-i)
//FIR filter output
return Y;
//Filter output returned
}
Techniques
• Memory bandwidth conflicts removing
Assumptions
• Delay buffer must be located in DPRAM area
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
Y is stored in R4
User’s Manual for Keil Compiler
-46
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_16
FIR Filter with transversal form, 16 bit coefficients,
Sample processing (cont’d)
Memory Note
High Addr.
Low Addr.
High Addr.
Low Addr.
DPRAM
d(n-N_h+1)
d(n-N_h+2)
.
.
d(n-3)
d(n-2)
d(n-1)
d(n-1)
Memory
h(N_h-1)
h(N_h-2)
.
.
.
h(2)
h(1)
h(0)
DPRAM
d(n-N_h+2)
d(n-N_h+3)
.
.
d(n-2)
d(n-1)
d(n)
d(n)
IDX0
IDX0
Memory
h(N_h-1)
h(N_h-2)
.
.
.
h(2)
h(1)
h(0)
CoMACM
1Q15
1Q15
Before
After
Figure 4-13 Fir_16
Example
C166Lib\Keil\Examples\Filters\Fir\Fir16.c
Cycle Count
Memory
Initialization
9
Read new input into
DPRAM
2
FIR loop
N_h
User’s Manual for Keil Compiler
-47
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_16
FIR Filter with transversal form, 16 bit coefficients,
Sample processing (cont’d)
Write output
3
Total
N_h + 14
Example:
N_h = 14
cycle = 28
Code Size
Memory
18
bytes
8
bytes
FIR loop
10
bytes
Write output
10
bytes
Total
46
bytes
initialization
Read new input into
DPRAM
User’s Manual for Keil Compiler
-48
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_32
FIR Filter with transversal form, 32 bit coefficients,
Sample processing
Signature
DataS Fir_32 (DataL* H, DataS* IN, DataS N_h,
DataS* D_buffer)
Inputs
H
:
Pointer to filter coefficients in 1Q31
format
IN
:
Pointer to the new input sample in
1Q15 format
N_h
:
Filter order
D_buffer
Pointer to delay buffer located in
DPRAM area from 0xf200 to
0xfe00 (3 KBytes)
Output
:
Return
Y
Implementation
Description
The implementation of FIR filter uses transversal structure
(direct form). A single input is processed at a time and output
for every sample is returned. The filter operates on 16-bit real
input, 32-bit coefficients and gives 16-bit real output. The
number of coefficients given by the user is arbitrary. The delay
line is implemented in parallel to the multiply-accumulate
operation using instructions CoMACM. Delay buffer will be
located in the DPRAM area.
User’s Manual for Keil Compiler
:
-49
Filter output in 1Q15 format
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_32
FIR Filter with transversal form, 32 bit coefficients,
Sample processing (cont’d)
Pseudo code
{
short
short
short
long
x(N_h)={0,...};
Y;
i;
temp;
//Update
for(i=0;
x(i) =
x(N_h-1)
//Input vector
//Filter result
the input vector with the new input value
i<N_h-1; i++)
x(i+1);
= IN;
//move the new input unto X[N_h-1]
//Calculate the current FIR output
temp = 0;
for(i=0; i<N_h; i++)
temp = temp + h(i)*x(N_h-1-i)
Y = (short)temp;
return Y;
//FIR filter output
//Filter output returned
}
Techniques
• Memory bandwidth conflicts removing
• Instruction re-ordering
• Loop unrolling
Assumptions
• Delay buffer must be located in DPRAM area
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
Y is stored in R4
User’s Manual for Keil Compiler
-50
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_32
FIR Filter with transversal form, 32 bit coefficients,
Sample processing (cont’d)
Memory Note
High Addr.
Low Addr.
High Addr.
Low Addr.
DPRAM
d(n-1)
d(n-1)
d(n-2)
d(n-3)
.
.
d(n-N_h+2)
d(n-N_h+1)
Memory
hH(0)
hL(0)
hH(1)
hL(1)
.
.
hH(N_h-1)
hL(N_h-1)
DPRAM
d(n)
d(n)
d(n-1)
d(n-2)
.
.
d(n-N_h+3)
d(n-N_h+2)
IDX0
IDX0
Memory
hH(0)
hL(0)
hH(1)
hL(1)
.
.
hH(N_h-1)
hL(N_h-1)
CoMACM
1Q15
1Q15
Before
After
Figure 4-14 Fir_32
Example
C166Lib\Keil\Examples\Filters\Fir\Fir32.c
Cycle Count
Memory
Initialization
16
Read new input into
DPRAM
2
FIR loop (LSW)
N_h + 4
FIR loop (MSW)
N_h + 1
User’s Manual for Keil Compiler
-51
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_32
FIR Filter with transversal form, 32 bit coefficients,
Sample processing (cont’d)
Write output
1
Total
2*N_h + 24
Example:
N_h = 12
cycle = 48
Code Size
Memory
32 bytes
initialization
Read new input into
DPRAM
8 bytes
FIR loop (LSW)
28 bytes
FIR loop (MSW)
14 bytes
Write output
4 bytes
Total
User’s Manual for Keil Compiler
86 bytes
-52
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_cplx
Complex Fir filter with transversal form, 16 bit filter
coefficients, Vector processing
Signature
DataS Fir_cplx (CplxS* x, CplxS* h, CplxS* y,
DataS* d_buffer, DataS N_x, DataS N_h)
Inputs
x
:
Pointer to the input vector in 1Q15
format
h
:
Pointer to filter coefficients in 1Q15
format
d_buffer
:
Pointer to delay buffer
Pointer to the new input sample in
1Q15 format
N_x
:
Size of input vector
N_h
Output
Filter order
y
:
Filter output vector in 1Q15 format
Return
Implementation
Description
The implementation of the complex FIR filter uses transversal
structure (direct form). A vector of the inputs is processed at a
time and the output vector is returned. The filter operates on
16-bit complex input vector, 16-bit complex coefficients and
gives 16-bit complex output vector. The number of
coefficients given by the user is arbitrary. The delay line is
implemented in parallel to the multiply-accumulate operation
using instructions CoMACM. Delay buffer must be located in
the DPRAM area.
User’s Manual for Keil Compiler
-53
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_cplx
Complex Fir filter with transversal form, 16 bit filter
coefficients, Vector processing (cont’d)
Pseudo code
{
CplxS
CplxS
CplxS
CplxS
short
x[N_x];
//Input vector
Y[N_x];
//Filter result
h[N_h];
//filter coefficient vector
d_buffer[N_h]={0,...}
i, j;
for(j=0; j<N_x; j++)
{
//Update the delay buffer with the new input value
for(i=0; i<N_h-1; i++)
d_buffer[i] = d_buffer[i+1];
d_buffer[N_h-1] = x[j]; //move the new input unto d_buffer[N_h-1]
//Calculate the current FIR output
y_real[j] = 0;
y_imag[j] = 0;
for(i=0; i<N_h; i++)
{
y_real[j] = y_real[j] + h_real[i]*d_buffer_real[j-i]h_imag[i]*d_buffer_imag[j-i];
y_imag[j] = y_imag[j] + h_real[i]*d_buffer_imag[j-i]h_imag[i]*d_buffer_real[j-i];
}
}
}
Techniques
Assumptions
• Delay buffer must be located in DPRAM area
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
User’s Manual for Keil Compiler
-54
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_cplx
Complex Fir filter with transversal form, 16 bit filter
coefficients, Vector processing (cont’d)
Memory Note
High Addr.
Low Addr.
High Addr.
Low Addr.
DPRAM
dim(n-N_h+1)
dre(n-N_h+1)
.
.
dim(n-1)
dre(n-1)
dim(n-1)
dre(n-1)
DPRAM
dim(n-N_h+2)
dre(n-N_h+2)
.
.
dim(n)
dre(n)
dim(n)
dre(n)
IDX0
Memory
him(N_h-1)
hre(N_h-1)
.
.
him(1)
hre(1)
him(0)
hre(0)
IDX0
Memory
him(N_h-1)
hre(N_h-1)
.
.
him(1)
hre(1)
him(0)
hre(0)
CoMACM
1Q15
1Q15
Before
After
Figure 4-15 Fir_cplx
Example
C166Lib\Keil\Examples\Filters\Fir\FirCplx.c
Cycle Count
Read parameters
1
Memory
initialization
10
Set counters
3
Fir loop
User’s Manual for Keil Compiler
N_x(4N_h + 24)
-55
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_cplx
Complex Fir filter with transversal form, 16 bit filter
coefficients, Vector processing (cont’d)
Return
1
Total
N_x(4N_h + 24) + 15
Example:
N_x = 1
N_h = 14
cycle = 95
Code Size
Read parameters
Memory
initialization
20 bytes
FIR loop
124 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
2 bytes
148 bytes
-56
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_sym
Symmetric Fir filter, 16 bit filter coefficients, Vector
processing
Signature
DataS Fir_sym (DataS* x, DataS* h, DataS* y,
DataS* d_buffer, DataS N_x, DataS N_h)
Inputs
x
:
Pointer to the input vector in 1Q15
format
h
:
Pointer to symmetric filter
coefficients in 1Q15 format
d_buffer
:
Pointer to delay buffer
N_x
:
Size of input vector
N_h
Output
Half of the filter order
y
:
Filter output vector in 1Q15 format
Return
Implementation
Description
The implemented Fir filter has the symmetric filter coefficient,
i.e. h(i)=h(2N_h-1-i), for i=0,1,..., N_h-1. The implementation
uses transversal structure (direct form) and vector
processing. The filter operates on 16-bit real input vector, 16bit real coefficients and gives 16-bit real output vector. The
number of coefficients should be even.The delay line is
implemented in parallel to the multiply-accumulate operation
using instructions CoMACM. Delay buffer must be located in
the DPRAM area.
User’s Manual for Keil Compiler
-57
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_sym
Symmetric Fir filter, 16 bit filter coefficients, Vector
processing (cont’d)
Pseudo code
{
short
short
short
short
short
x[N_x];
y[N_x];
h[2N_h];
d_buffer[2N_h]={0,...};
i, j;
//Input vector
//Filter result vector
//filter coefficient vector
//delay buffer
for(j=0; j<N_x; j++)
{
//Update the input vector with the new input value
for(i=0; i<2N_h-1; i++)
d_buffer[i] = d_buffer[i+1];
d_buffer(2N_h-1) = x[j]; //move the new input unto d_buffer[2N_h-1]
//Calculate the current FIR output
y[j] = 0;
for(i=0; i<2N_h; i++)
y[j] = y[j] + h(i)*d_buffer(2N_h-1-i)
//FIR filter output
}
return;
}
Techniques
Assumptions
• Delay buffer must be located in DPRAM area
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
User’s Manual for Keil Compiler
-58
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_sym
Symmetric Fir filter, 16 bit filter coefficients, Vector
processing (cont’d)
Memory Note
High Addr.
Low Addr.
High Addr.
Low Addr.
DPRAM
d(n-N_h+1)
d(n-N_h+2)
.
.
d(n-3)
d(n-2)
d(n-1)
d(n-1)
DPRAM
d(n-N_h+2)
d(n-N_h+3)
.
.
d(n-2)
d(n-1)
d(n)
d(n)
IDX0
Memory
h(N_h-1)
h(N_h-2)
.
.
.
h(2)
h(1)
h(0)
IDX0
Memory
h(N_h-1)
h(N_h-2)
.
.
.
h(2)
h(1)
h(0)
CoMACM
1Q15
1Q15
Before
After
Figure 4-16 Fir_sym
Example
C166Lib\Keil\Examples\Filters\Fir\FirSym.c
Cycle Count
Read parameters
1
Memory
initialization
7
Set counters
3
Fir loop
N_x(2N_h + 12)
User’s Manual for Keil Compiler
-59
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_sym
Symmetric Fir filter, 16 bit filter coefficients, Vector
processing (cont’d)
Return
1
Total
N_x(2N_h + 12) + 11
Example:
N_x = 1
N_h = 14
cycle = 51
Code Size
Read parameters
2
bytes
Memory
initialization
14
bytes
Set counters
6
FIR loop
Return
Total
User’s Manual for Keil Compiler
-60
68
bytes
2
bytes
92
bytes
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_lat
Lattice Fir filter, 16 bit filter coefficients, Vector
processing
Signature
DataS Fir_lat (DataS* x, DataS* K, DataS* y,
DataS* u, DataS N_x, DataS M)
Inputs
x
:
Pointer to the input vector in 1Q15
format
K
:
Pointer to lattice coefficients in
1Q15 format
u
:
Pointer to state variable vector
N_x
:
Size of input vector
M
Output
Nummber of stages of the lattice
filter
y
:
Filter output vector in 1Q15 format
Return
Implementation
Description
The implementation uses lattice structure showed in
Figure 4-8 and vector processing. The filter operates on 16bit real input vector, 16-bit real coefficients and gives 16-bit
real output vector. The number of stages used in the lattice Fir
filter implementation is arbitrary. Lattice coefficient K must be
located in the DPRAM area.
User’s Manual for Keil Compiler
-61
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_lat
Lattice Fir filter, 16 bit filter coefficients, Vector
processing (cont’d)
Pseudo code
{
short x[N_x];
short yn[M]={0,..};
short K[M];
short un[M];
short un-1[M]={0,...};
//Input vector
//Output vector of different stages at time n
//Lattice filter coefficient vector
//State variable vector at time n
//State variable vector at time n-1
short i, j;
for(j=0; j<N_x; j++)
{
//Initialization
yn[j] = x[j];
//Calculate the output and state vector
for(i=1; i<M; i++)
{
un[i] = K[i]*yn[j] + un-1[i-1];
//State variable
yn[j] = yn[j] + K[i]*un-1[i-1];
//Output
un-1[i] = un[i];
//Update the state vector
}
//Update the first state variable
un-1[0] = x[j];
}
return;
}
Techniques
Assumptions
• Lattice coefficient vector must be located in DPRAM area.
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
User’s Manual for Keil Compiler
-62
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_lat
Lattice Fir filter, 16 bit filter coefficients, Vector
processing (cont’d)
Memory Note
DPRAM
High Addr.
Low Addr.
Memory
K(M-1)
K(M-2)
.
.
K(1)
K(0)
X
IDX0
+
X
ui-1(n-1)
ui-1(n-1)
.
.
ui-1(n-1)
ui-1(n-1)
+
yi(n)
ui(n)
x(n)
Figure 4-17 Fir_lat
Example
C166Lib\Keil\Examples\Filters\Fir\FirLat.c
Cycle Count
Read parameters
1
Memory
initialization
9
Set counters
1
Fir loop
N_x(15M - 6)
User’s Manual for Keil Compiler
-63
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_lat
Lattice Fir filter, 16 bit filter coefficients, Vector
processing (cont’d)
Return
1
Total
N_x(15M - 6) + 12
Example:
N_x = 1
M=3
cycle = 51
Code Size
Read parameters
2
bytes
Memory
initialization
18
bytes
Set counters
2
bytes
62
bytes
2
bytes
86
bytes
FIR loop
Return
Total
User’s Manual for Keil Compiler
-64
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_dec
Fir decimation filter, 16 bit filter coefficients, Vector
processing
Signature
DataS Fir_dec (DataS* x, DataS* h, DataS* y,
DataS* d_buffer, DataS N_x, DataS N_h,
DataS D)
Inputs
x
:
Pointer to the input vector in 1Q15
format
h
:
Pointer to the filter coefficient vector
in 1Q15 format
d_buffer
:
Pointer to the delay buffer
N_x
:
Size of the input vector
N_h
:
Filter order
D
Output
Decimation factor
y
:
Return
Implementation
Description
Pointer to output vector
:
The implementation of the decimation filter is after Figure 4-9,
where the FIR filter uses transversal structure (direct form).
The vector processing is used in the implementation. The filter
operates on 16-bit real input, 16-bit coefficients and gives 16bit real output. The number of coefficients and the decimator
factor given by the user is arbitrary. The delay line is
implemented in parallel to the multiply-accumulate operation
using instructions CoMACM. Delay buffer will be located in the
DPRAM area.
User’s Manual for Keil Compiler
-65
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_dec
Fir decimation filter, 16 bit filter coefficients, Vector
processing (cont’d)
Pseudo code
{
short
short
short
short
x[N_x];
d_buffer[N_h];
y[N_x/D];
i, j, k;
//Input vector
//Delay buffer
//Filter result
for(j=0; j<N_x/D; j++)
{
for(k=0; k<D; k++)
{
//Update the delay buffer with the new input value
for(i=0; i<N_h-1; i++)
d_buffer[i] = d_buffer[i+1];
d_buffer[N_h-1] = x[j*D+k];
if(k==0)
{//Calculate the current decimation FIR filter
y[j] = 0;
for(i=0; i<N_h; i++)
y[j] = y[j] + h(i)*d_buffer[N_h-i]; //filter output
}
}
}
return;
}
Techniques
• Memory bandwidth conflicts removing
Assumptions
• Delay buffer must be located in DPRAM area
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
Ouput in vector y
User’s Manual for Keil Compiler
-66
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_dec
Fir decimation filter, 16 bit filter coefficients, Vector
processing (cont’d)
Memory Note
High Addr.
Low Addr.
High Addr.
Low Addr.
DPRAM
d(n-N_h+1)
d(n-N_h+2)
.
.
d(n-3)
d(n-2)
d(n-1)
d(n-1)
X
DPRAM
d(n-N_h+2)
d(n-N_h+3)
.
.
d(n-2)
d(n-1)
d(n)
d(n)
CoMACM
Memory
h(N_h-1)
h(N_h-2)
.
.
.
h(2)
h(1)
h(0)
IDX0
Memory
h(N_h-1)
h(N_h-2)
.
.
.
h(2)
h(1)
h(0)
LM
Output
1Q15
1Q15
Before
After
Figure 4-18 Fir_dec
Example
C166Lib\Keil\Examples\Filters\Fir\FirDec.c
Cycle Count
Read parameter
1
Memory Initialization
7
Set counters
6
FIR loop
N_x(N_h + 13)
Return
1
User’s Manual for Keil Compiler
-67
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_dec
Fir decimation filter, 16 bit filter coefficients, Vector
processing (cont’d)
Total
N_x(N_h + 13) + 15
Example:
N_x = 1
N_h = 10
cycle = 33
Code Size
Read parameter
2 bytes
Memory
14 bytes
initialization
Set counters
12 bytes
FIR loop
44 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
74 bytes
-68
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_inter
Fir interpolation filter, 16 bit filter coefficients,
Vector processing
Signature
DataS Fir_inter (DataS* x, DataS* h, DataS* y,
DataS* d_buffer, DataS N_x, DataS N_h,
DataS I)
Inputs
x
:
Pointer to the input vector in 1Q15
format
h
:
Pointer to the filter coefficient
vector in 1Q15 format
d_buffer
:
Pointer to the delay buffer
N_x
:
Size of the input vector
N_h
:
Filter order
I
Output
Interpolation factor
y
:
Return
Implementation
Description
Pointer to output vector
:
The implementation of the interpolation filter is after Figure 411, where the FIR filter uses transversal structure (direct
form). The vector processing is used in the implementation.
The filter operates on 16-bit real input, 16-bit coefficients and
gives 16-bit real output. The number of coefficients and the
interpolation factor given by the user is arbitrary. The delay
line is implemented in parallel to the multiply-accumulate
operation using instructions CoMACM. Delay buffer will be
located in the DPRAM area.
User’s Manual for Keil Compiler
-69
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_inter
Fir interpolation filter, 16 bit filter coefficients,
Vector processing (cont’d)
Pseudo code
{
short
short
short
short
x[N_x];
d_buffer[N_h];
y[N_x*I];
i, j, k, m;
//Input vector
//Delay buffer
//Filter result
for(j=0; j<N_x; j++)
{
for(k=0; k<I; k++)
{
//Update the delay buffer with the new input value
for(i=0; i<N_h-1; i++)
d_buffer[i] = d_buffer[i+1];
if(k==0)
d_buffer[N_h-1] = x[j];
else
d_buffer[N_h-1] = 0;
//Calculate the current decimation FIR filter
y[j*I+k] = 0;
for(i=0; i<N_h; i++)
y[j*I+k] = y[j*I+k] + h(i)*d_buffer[N_h-i];
//filter output
}
}
return;
}
Techniques
• Memory bandwidth conflicts removing
Assumptions
• Delay buffer must be located in DPRAM area
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
Ouput in vector y
User’s Manual for Keil Compiler
-70
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_inter
Fir interpolation filter, 16 bit filter coefficients,
Vector processing (cont’d)
Memory Note
High Addr.
Low Addr.
High Addr.
Low Addr.
DPRAM
d(n-N_h+1)
d(n-N_h+2)
.
.
d(n-3)
d(n-2)
d(n-1)
d(n-1)
Memory
h(N_h-1)
h(N_h-2)
.
.
.
h(2)
h(1)
h(0)
Input
KL
DPRAM
d(n-N_h+2)
d(n-N_h+3)
.
.
d(n-2)
d(n-1)
d(n)
d(n)
IDX0
Memory
h(N_h-1)
h(N_h-2)
.
.
.
h(2)
h(1)
h(0)
CoMACM
X
Output
1Q15
1Q15
Before
After
Figure 4-19 Fir_inter
Example
C166Lib\Keil\Examples\Filters\Fir\FirInter.c
Cycle Count
Read parameter
1
Memory
Initialization
7
Set counters
6
FIR loop
N_x(N_h + 13)
User’s Manual for Keil Compiler
-71
V 1.2, 2003-11
DSP Library for
XC16x Family
Fir_inter
Fir interpolation filter, 16 bit filter coefficients,
Vector processing (cont’d)
Return
1
Total
N_x(N_h + 13) + 15
Example:
N_x = 1
N_h = 10
cycle = 33
Code Size
Read parameter
2 bytes
Memory
14 bytes
initialization
Set counters
12 bytes
FIR loop
44 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
74 bytes
-72
V 1.2, 2003-11
DSP Library for
XC16x Family
4.4
IIR Filters
Infinite Impulse Response (IIR) filters have infinite duration of non-zero output values for
a given finite duration of non-zero impulse input. Infinite duration of output is due to the
feedback used in IIR filters.
Recursive structures of IIR filters make them computational efficient but because of
feedback not all IIR structures are realizable (stable). An IIR filter has different
implementation structures according to its mathematical description.
4.4.1
Direct Form 1
th
The N order difference equation for the direct form 1 of the IIR filter is given by
y(n) =
N
M
i=1
i=0
∑ a(i – 1) ⋅ y(n – i) + ∑ b(i) ⋅ x(n – i)
[4.16]
where, x(n) is the nth input and y(n) is the corresponding output.
If M=N=2, we have the biquad (second order) IIR filter as
y (n) = b (0)x (n) + b (1)x (n – 1) + b (2)x (n – 2)
+ a (0)y (n – 1) + a (1)y (n – 2)
[4.17]
where a(0), a(1) correspond to the poles and b(0), b(1), b(2) correspond to the zeroes of
the filter.
The equivalent transform function is
–1
–2
[z]- = --b (0) + b (1)z + b (2)z H[z] = Y
----------–1
–2
X[z]
1 – a (0)z – a (1)z
4.4.2
.
[4.18]
Direct Form 2
In the case of a linear shift-invariant system, the overall input-output relationship of a
cascade is independent of the order in which systems are cascaded. This property
suggests a second direct form realization. Breaking Equation [4.16] into two parts in
terms of zeroes and poles of transfer function (M=N), we have
User’s Manual for Keil Compiler
-73
V 1.2, 2003-11
DSP Library for
XC16x Family
N
u(n) = x(n) +
∑ a(i – 1) ⋅ u(n – i)
[4.19]
i=1
N
y(n) =
∑ b(i) ⋅ u(n – i)
[4.20]
i=0
where intermediate state variable u(n) is used to calculate the filter output y(n). This
representation is called "Direct Form 2" implementation of an IIR filter and is illustrated
in Figure 4-20. Direct Form 2 has an advantage over Direct Form 1 as it requires less
data memory.
x(n)
u(n)
+
b(0)
+
y(n)
z-1
a(0)
+
u(n-1) b(1)
+
z-1
a(1)
+
+
u(n-2) b(2)
+
u(n-N+1)
a(N-2)
b(N-1)
+
z-1
+
a(N-1)
u(n-N) b(N)
+
Figure 4-20 Canonical Form (Direct Form 2)
User’s Manual for Keil Compiler
-74
V 1.2, 2003-11
DSP Library for
XC16x Family
4.4.3
Cascaded Biquad IIR Filter with Direct Form 2
If N=2, Equation [4.19] and Equation [4.20] are reduced to the biquad (second order)
IIR filter with direct form 2 implementation:
u(n) = x(n) + a(0) ⋅ u(n – 1) + a(1) ⋅ u(n – 2)
[4.21]
y(n) = b(0) ⋅ u(n) + b(1) ⋅ u(n – 1) + b(2) ⋅ u(n – 2)
[4.22]
Any higher order IIR filter can be constructed by cascading several biquad stages
together. A cascaded realization of a fourth order system using direct form 2 realization
of each biquad subsystem would be as shown in the following diagram.
x(n)
+
u1(n)
b1(0)
+
u2(n) b2(0)
+
z-1
+
u1(n-1)
+
+
a2(0)
b2(1)
u2(n-1)
+
z-1
z-1
a1(1)
y(n)
z-1
b1(1)
a1(0)
+
b1(2)
a2(1)
u1(n-2)
b2(2)
u2(n-2)
Figure 4-21 Cascaded Biquad IIR Filter with Direct Form 2 Implementation
4.4.4
Cascaded Biquad IIR Filter with Direct Form 1
In Figure 4-21 each biquad subsystem is realized with direct form 2 structure. Similarly,
the biquad subsystem can also be implemented with direct form 1 structure. Rewriting
Equation [4.17]we have
y(n) = b(0) ⋅ x(n) + u(n – 1)
u(n) = a(1) ⋅ y(n) + b(1) ⋅ x(n) + w(n – 1)
w(n) = a(2) ⋅ y(n) + b(2) ⋅ x(n)
User’s Manual for Keil Compiler
-75
[4.23]
[4.24]
[4.25]
V 1.2, 2003-11
DSP Library for
XC16x Family
where u(n) and w(n) are state variables at time n. According to Equation [4.23],
Equation [4.24] and Equation [4.25] we have another cascaded biquads IIR filter
implementation showed in Figure 4-22.
x(n)
+
+
b1(0)
b1(1)
+
z-1
u1(n)
a1(0)
+
+
+
b2(0)
b2(1)
z-1
u2(n)
a2(0)
y(n)
+
z-1
z-1
b1(2)
+
b2(2)
w1(n)
w2(n)
a2(1)
a1(1)
Figure 4-22 Cascaded Biquad IIR Filter with Direct Form 1 Implementation
A Comparison between FIR and IIR filters:
• IIR filters are computational efficient than FIR filters i.e., IIR filters require less memory
and fewer instruction when compared to FIR to implement a specific transfer function.
• The number of necessary multiplications are least in IIR while it is most in FIR.
• IIR filters are made up of poles and zeroes. The poles give IIR filter an ability to realize
transfer functions that FIR filters cannot do.
• IIR filters are not necessarily stable, because of their recursive nature it is designer’s
task to ensure stability, while FIR filters are guaranteed to be stable.
• IIR filters can simulate prototype analog filter while FIR filters cannot.
• Probability of overflow errors is quite high in IIR filters in comparison to FIR filters.
• FIR filters are linear phase as long as H(z) = H(z-1) but all stable, realizable IIR filters
are not linear phase except for the special cases where all poles of the transfer
function lie on the unit circle.
4.4.5
Lattice IIR Filter
Similar with lattice Fir filter the IIR filter can be also realized using the lattice filter
structure. The typical application of the lattice IIR filter is found in voice analysis and
sythesis system, where lattice Fir filer is used to analyse the speech and the lattice IIR
filter is used in the synthesis of speech.
User’s Manual for Keil Compiler
-76
V 1.2, 2003-11
DSP Library for
XC16x Family
The lattice IIR filter showed in
equations.
Figure 4-23 can be described using the following
yi – 1 (n) = yi (n) –ki ui – 1 (n – 1)
[4.26]
0 ≤ i≤ M– 1
ui (n) = ki yi – 1 (n) + ui – 1 (n – 1)
The initial value is equal to the filter input x(n):
yM (n) = x (n)
At the last stage (i=0) we have the output of the lattice IIR filter y(n)=y0(n).
yM-1(n)
yM(n)=x(n)
….
+
kM
+
….
z-1
uM(n)
y(n)=y0(n)
y 1(n)
+
+
k2
k1
+
+
z-1
u1(n)
uM-1(n)
z-1
u0(n)
Figure 4-23 Lattice IIR Filter Structure
4.4.6
Descriptions
The following IIR filter routines are described.
• 16 bit filter coefficients, direct form 1, sample processing
• 16 bit filter coefficients, direct form 2, sample processing
• 16 bit filter coefficients, N-cascaded real biquads, direct form 1, 5-coefs per biquad,
vector processing
• 16 bit filter coefficients, N-cascaded real biquads, direct form 2, 5-coefs per biquad,
vector processing
• 32 bit filter coefficients, N-cascaded real biquads, direct form 2, 5-coefs per biquad,
vector processing
User’s Manual for Keil Compiler
-77
V 1.2, 2003-11
DSP Library for
XC16x Family
• 16 bit filter coefficients, N-cascaded real biquads, direct form 2, 4-coefs per biquad,
vector processing
• Lattice IIR filter, 16 bit filter coefficients, vector processong
User’s Manual for Keil Compiler
-78
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_1
16 bit filter coefficients, Direct form 1, Sample
processing
Signature
DataS IIR_1(DataS* h, DataS* IN, DataS N, DataS* x_y)
Inputs
h
:
Pointer to filter coefficients in 2Q14
IN
:
Pointer to new input sample in
1Q15
N
:
Filter order
x_y
:
Pointer to delay buffer containing
the past input and output samples
Output
:
Return
Y
Implementation
Description
The routine is implemented according to the Equation [4.16] ,
which is called direct form 1 implementation. The vector h
contains IIR filter coefficient a(i) and b(i), and is stored in
memory. Before starting the routine the delay buffer x_y
containing the past input and output signals should be located
in DPRAM area. This IIR filter routine processes one sample at
a time and returns the output for that sample in 1Q15 format.
User’s Manual for Keil Compiler
:
-79
Filter output in 1Q15 format
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_1
16 bit filter coefficients, Direct form 1, Sample
processing (cont’d)
Pseudo code
{
;
;
;
;
x(n) = input signal at time n
y(n) = output signal at time n
a(k), b(k) = IIR filter coefficients
N refer to the filter order in Equation [4.16]
DataS
DataS
DataS
a[N], b[N+1];
y[N], x[N+1];
i, temp;
//Filter vectors
//input and output signal vectors
;Move the new input sample into input vector in DPRAM
for(i=N; i>0; i--)
x(n-i-1) = x(n-i);
x(n) = IN;
//New input sample
;IIR filtering
y(n) = 0;
for(i=0 to N)
y(n) = y(n)+b(i)*x(n-i);
for(i=1 to N)
y(n) = y(n)+a(i)*y(n-i);
Y = y(n)
return Y;
//Filter Output returned
}
Techniques
• Memory bandwidth conflicts removing
• Instruction re-ordering
Assumptions
• Delay buffer must be located in DPRAM area
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
Y is stored in R4
Memory Note
User’s Manual for Keil Compiler
-80
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_1
High Addr.
Low Addr.
High Addr.
Low Addr.
16 bit filter coefficients, Direct form 1, Sample
processing (cont’d)
DPRAM
DPRAM
y(n-1)
y(n)
:
y(n-N+1)
y(n-N)
x(n-1)
x(n-1)
x(n-2)
:
x(n-M+2)
x(n-M+1)
x(n-M)
:
y(n-N+2)
y(n-N+1)
x(n)
x(n)
x(n-1)
:
x(n-M+3)
x(n-M+2)
x(n-M+1)
IDX0
Memory
Memory
a(0)
a(1)
:
a(N-2)
a(N-1)
b(0)
b(1)
:
b(M-2)
b(M-1)
b(M)
2Q14
IDX0
CoMACM
a(0)
a(1)
:
a(N-2)
a(N-1)
b(0)
b(1)
:
b(M-2)
b(M-1)
b(M)
2Q14
CoMACM
Before
After
Figure 4-24 IIR_1
Example
C166Lib\Keil\Examples\Filters\IIR\ IIRform1.c
Cycle Count
Memory Initialization
10
Read the new
sample into DPRAM
2
User’s Manual for Keil Compiler
-81
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_1
16 bit filter coefficients, Direct form 1, Sample
processing (cont’d)
First IIR loop
N+1
Repeat count reinitialization
2
Second IIR loop
N
Write the output
6
Total
2N + 21
Example:
N=4
cycle = 29
Code Size
Memory initialization
20 bytes
Read the new
sample into DPRAM
8 bytes
First IIR loop
10 bytes
Repeat count reinitialization
4 bytes
Second IIR loop
10 bytes
Write the output
22 bytes
Total
74 bytes
User’s Manual for Keil Compiler
-82
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_2
16 bit filter coefficients, Direct form 2, Sample
processing
Signature
DataS IIR_2 (DataS* h, DataS* IN, DataS N, DataS* u)
Inputs
h
:
Pointer to filter coefficients in 2Q14
IN
:
Pointer to new input sample in
1Q15
N
:
Filter order
u
:
Pointer to state variable vector
Output
:
Return
Y
:
Filter output in 1Q15 format
Implementation
Description
The IIR filter routine is implemented based on direct form II
implementation (Nth Order) showed in Figure 4-20. The filter
operates on 16-bit real input, 16-bit real coefficients and
returns 16-bit real output. The number of inputs is arbitrary.
Pseudo code
{
;
;
;
;
;
x(n) = input signal at time n
u(n) = state variable at time n
y(n) = output signal at time n
a(k), b(k) = IIR filter coefficients
N = M refer to the filter order in Equation [4.16]
DataS
DataS
DataS
a[N], b[N+1];
u[N+1];
i;
//Filter vectors
//state variable vector
;Calculate the sate variable at time n, u(n)
u(n) = x(n);
for(i=1; i<N; i++)
u(n) = u(n) + a(i-1)*u(n-i);
;Calculate the output at time n
y(n) = 0;
for(i=0; i<=N; i++)
y(n) = y(n)+b(i)*u(n-i);
Y = y(n)
return Y;
//Filter Output returned
}
User’s Manual for Keil Compiler
-83
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_2
16 bit filter coefficients, Direct form 2, Sample
processing (cont’d)
Techniques
• Memory bandwidth conflicts removing
• Use of CoMAC and CoMACM instructions
• Filter output converted to 16-bit with saturation
Assumptions
• The state variable vector must be located in DPRAM area.
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
Y is stored in R4
User’s Manual for Keil Compiler
-84
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_2
16 bit filter coefficients, Direct form 2, Sample
processing (cont’d)
Memory Note
High Addr.
Low Addr.
High Addr.
Low Addr.
DPRAM
u(n-1)
u(n-1)
u(n-2)
u(n-3)
:
u(n-N+2)
u(n-N+1)
u(n-N)
DPRAM
u(n)
u(n)
u(n-1)
u(n-2)
u(n-3)
:
u(n-N+2)
u(n-N+1)
IDX0
Memory
Memory
b(0)
b(1)
b(2)
b(3)
:
b(N-1)
b(N)
a(0)
a(1)
a(2)
:
a(N-1)
a(N)
b(0)
b(1)
b(2)
b(3)
:
b(N-1)
b(N)
a(0)
a(1)
a(2)
:
a(N-1)
a(N)
CoMACM
CoMAC
2Q14
2Q14
Before
After
IDX0
Figure 4-25 IIR_2
Example
C166Lib\Keil\Examples\Filters\IIR\ IIRform2.c
Cycle Count
Memory
Initialization
User’s Manual for Keil Compiler
9
-85
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_2
16 bit filter coefficients, Direct form 2, Sample
processing (cont’d)
Read the new input
sample
2
First IIR loop
N+4
Repeat count reinitialization
1
Second IIR loop
N+1
Write the output
3
Return
1
Total
2N + 21
Example:
N=4
cycle = 29
Code Size
Memory
initialization
Read the new input
sample
First IIR loop
Repeat count reinitialization
18
bytes
6
bytes
20
bytes
2
bytes
Second IIR loop
8
bytes
Write the output
12
bytes
Return
Total
User’s Manual for Keil Compiler
-86
2
bytes
68
bytes
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_1
16 bit filter coefficients, N-cascaded real biquads,
direct form 1, 5-coefs per biquad, vector processing
Signature
DataS IIR_bi_1(DataS* x, DataS* h, DataS* y, DataS* u_w,
DataS N_x, DataS N_biq)
Inputs
x
:
Pointer to input vector in 1Q15
h
:
Pointer to filter coefficent vecotr in
1Q15
u_w
:
Pointer to the state variable vector
N_x
:
Size of input vector
N_biq
:
Number of the biquads
y
:
Pointer to output vector in 1Q15
format
Output
Return
Implementation
:
The IIR filter is implemented as a cascade of direct form 1
biquads according to Figure 4-21. If the number of biquads is
'N', the filter order is 2*N. A vector of samples is processed at
a time and the output vector for those samples is returned.
The filter operates on 16-bit real vector input, 16-bit real
coefficients and returns 16-bit real vector output. The number
of inputs is arbitrary. Length of delay line is 2*N.
User’s Manual for Keil Compiler
-87
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_1
16 bit filter coefficients, N-cascaded real biquads,
direct form 1, 5-coefs per biquad, vector processing
(cont’d)
Pseudo code
{
;
;
;
;
;
;
X[N_x], input vector
xi(n) = input buffer at time n of biquad number i
ui(n), wi(n) = state variables at time n of biquad number i
yi(n) = output signal at time n of biquad number i
ai(k), bi(k) = Filter coefficients of biquad number i
N = number of biquads
DataS
DataS
DataS
DataS
ai(n), bi(n);
ui(n), wi(n);
yi(n), Y[N_x];
i, j;
//Filter vectors
//state variable vector
//output
for(j=0;j<N_x;j++)
{
xi(n) = X[j];
for(i=1; i<=N_biq; i++)
{
;Calculate the output at time n
yi(n) = bi(0)*xi(n) + ui(n-1);
;Update the sate variable ui(n)at time n
ui(n) = bi(1)*xi(n) + ai(0)*yi(n) + wi(n-1);
;Update the sate variable wi(n)at time n
wi(n) = bi(2)*xi(n) + ai(1)*yi(n);
;Set i-th biquad output to (i+1)-th biquad input
xi+1(n) = yi(n);
}
;Output of the last biquad
Y[j] = yN-1(n);
}
return;
}
User’s Manual for Keil Compiler
-88
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_1
16 bit filter coefficients, N-cascaded real biquads,
direct form 1, 5-coefs per biquad, vector processing
(cont’d)
Techniques
•
•
•
•
Assumptions
• The state variable vector must be located in DPRAM area.
Register Usage
• From .c file to .asm file:
Memory bandwidth conflicts removing
Use of CoMAC instructions
Instruction re-ordering
Filter output converted to 16-bit with saturation
Decided by compiler
• From .asm file to .c file:
Y is stored in R4
Memory Note
User’s Manual for Keil Compiler
-89
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_1
High Addr.
Low Addr.
16 bit filter coefficients, N-cascaded real biquads,
direct form 1, 5-coefs per biquad, vector processing
(cont’d)
DPRAM
wN(n-1)
uN(n-1)
:
:
w2(n-1)
u2(n-1)
w1(n-1)
u1(n-1)
DPRAM
wN(n)
uN(n)
:
:
w2(n)
u2(n)
w1(n)
u1(n)
IDX0
IDX0
Memory
High Addr.
Low Addr.
bN(2)
aN(1)
bN(1)
aN(0)
bN(0)
:
:
:
b1(2)
a1(1)
b1(1)
a1(0)
b1(0)
bN(2)
aN(1)
bN(1)
aN(0)
bN(0)
:
:
:
b1(2)
a1(1)
b1(1)
a1(0)
b1(0)
1Q15
1Q15
Before
After
Figure 4-26 IIR_bi_1
Example
C166Lib\Keil\Examples\Filters\IIR\ IIRbi_1.c
Cycle Count
Read parameter
User’s Manual for Keil Compiler
1
-90
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_1
16 bit filter coefficients, N-cascaded real biquads,
direct form 1, 5-coefs per biquad, vector processing
(cont’d)
Memory
Initialization
11
Biquad loop
N_x(17*N_biq + 7)
Return
1
Total
N_x(17*N_biq +7) + 13
Example:
N_x = 1
N_biq = 2
cycle = 54
Code Size
Read parameter
2
bytes
Memory
initialization
22
bytes
Biquad loop
118
bytes
2
bytes
144
bytes
Return
Total
User’s Manual for Keil Compiler
-91
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_2
16 bit filter coefficients, N-cascaded real biquads,
direct form 2, 5-coefs per biquad, vector processing
Signature
DataS IIR_bi_2 (DataS* x, DataS* h, DataS* y, DataS* u,
DataS N_x, DataS N_biq)
Inputs
x
:
Pointer to input vector in 1Q15
h
:
Pointer to filter coefficients in 1Q15
u
:
Pointer to state variable vector
N_x
:
Size of input vector
N_biq
:
Number of the biquads
y
:
Pointer to filter output in 1Q15
Output
Return
Implementation
Description
:
The IIR filter is implemented as a cascade of direct form 2
biquads according to Figure 4-21. If number of biquads is 'N',
the filter order is 2*N. The filter operates on 16-bit real input,
16-bit real coefficients and returns 16-bit real output. The
number of inputs is arbitrary. Length of delay line is 2*N.
User’s Manual for Keil Compiler
-92
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_2
16 bit filter coefficients, N-cascaded real biquads,
direct form 2, 5-coefs per biquad, vector processing
(cont’d)
Pseudo code
{
;
;
;
;
;
;
X[N_x], input vector
xi(n) = input buffer at time n of biquad number i
ui(n) = state variables at time n of biquad number i
yi(n) = output signal at time n of biquad number i
ai(k), bi(k) = Filter coefficients of biquad number i
N = number of biquads
DataS
DataS
DataS
DataS
ai(n), bi(n);
ui(n);
yi(n), Y;
i, j;
//Filter vectors
//state variable vector
//output
for(j=0; j<N_x; j++)
{
xi(n) = X[j];
for(i=1; i<=N_biq; i++)
{
;Update the sate variable ui(n)at time n
ui(n) = xi(n) + ai(0)*ui(n-1) + ai(1)*ui(n-2);
;Calculate the output at time n
yi(n) = bi(0)*ui(n) + bi(1)*ui(n-1) + bi(2)*ui(n-2);
;Set i-th biquad output to (i+1)-th biquad input
xi+1(n) = yi(n);
}
;Output of the last biquad
Y[j] = yN-1(n);
}
return;
//Filter Output returned
}
Techniques
•
•
•
•
Memory bandwidth conflicts removing
Use of CoMAC instructions
Instruction re-ordering
Filter output converted to 16-bit with saturation
User’s Manual for Keil Compiler
-93
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_2
16 bit filter coefficients, N-cascaded real biquads,
direct form 2, 5-coefs per biquad, vector processing
(cont’d)
Assumptions
• The state variable vector must be located in DPRAM area.
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
Y is stored in R4
User’s Manual for Keil Compiler
-94
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_2
16 bit filter coefficients, N-cascaded real biquads,
direct form 2, 5-coefs per biquad, vector processing
(cont’d)
Memory Note
High Addr.
Low Addr.
DPRAM
uN(n-1)
uN(n-2)
:
:
u2(n-1)
u2(n-2)
u1(n-1)
u1(n-2)
DPRAM
uN(n-1)
uN(n-2)
:
:
u2(n-1)
u2(n-2)
u1(n-1)
u1(n-2)
IDX1
IDX0
IDX1
IDX0
Memory
High Addr.
Low Addr.
bN(0)
bN(1)
bN(2)
aN(0)
aN(1)
:
:
:
b1(0)
b1(1)
b1(2)
a1(0)
a1(1)
bN(0)
bN(1)
bN(2)
aN(0)
aN(1)
:
:
:
b1(0)
b1(1)
b1(2)
a1(0)
a1(1)
1Q15
1Q15
Before
After
Figure 4-27 IIR_bi_2
Example
C166Lib\Keil\Examples\Filters\IIR\ IIRbi_2.c
Cycle Count
User’s Manual for Keil Compiler
-95
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_2
16 bit filter coefficients, N-cascaded real biquads,
direct form 2, 5-coefs per biquad, vector processing
(cont’d)
Parameter read
1
Memory
Initialization
16
Biquad loop
N_x(13*N_biq + 7)
Return
1
Total
N_x(13*N_biq + 7) + 18
Example:
N_x = 1
N_biq = 2
cycle = 51
Code Size
Parameter read
2
bytes
Memory
Initialization
32
bytes
Biquad loop
54
bytes
2
bytes
90
bytes
Return
Total
User’s Manual for Keil Compiler
-96
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi2_32
32 bit filter coefficients, N-cascaded real biquads,
direct form 2, 5-coefs per biquad, vector processing
Signature
DataS IIR_bi2_32 (DataS* x, DataSL* h, DataS* y, DataS* u,
DataS N_x, DataS N_biq)
Inputs
x
:
Pointer to input vector in 1Q15
h
:
Pointer to filter coefficients in 1Q31
u
:
Pointer to state variable vector
N_x
:
Size of input vector
N_biq
:
Number of the biquads
y
:
Pointer to filter output in 1Q15
Output
Return
Implementation
Description
:
The IIR filter is implemented as a cascade of direct form 2
biquads according to Figure 4-21 . If number of biquads is 'N',
the filter order is 2*N. A vector of samples is processed at a
time and the output vector for those samples is returned. The
filter operates on 16-bit real input, 32-bit real coefficients and
returns 16-bit real output. The number of inputs is arbitrary.
Length of delay line is 2*N.
User’s Manual for Keil Compiler
-97
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi2_32
32 bit filter coefficients, N-cascaded real biquads,
direct form 2, 5-coefs per biquad, vector processing
(cont’d)
Pseudo code
{
;
;
;
;
;
;
X[N_x], input vector
xi(n) = input buffer at time n of biquad number i
ui(n) = state variables at time n of biquad number i
yi(n) = output signal at time n of biquad number i
ai(k), bi(k) = Filter coefficients of biquad number i
N = number of biquads
DataS
DataS
DataS
DataS
ai(n), bi(n);
ui(n);
yi(n), Y;
i, j;
//Filter vectors
//state variable vector
//output
for(j=0; j<N_x; j++)
{
xi(n) = X[j];
for(i=1; i<=N_biq; i++)
{
;Update the sate variable ui(n)at time n
ui(n) = xi(n) + ai(0)*ui(n-1) + ai(1)*ui(n-2);
;Calculate the output at time n
yi(n) = bi(0)*ui(n) + bi(1)*ui(n-1) + bi(2)*ui(n-2);
;Set i-th biquad output to (i+1)-th biquad input
xi+1(n) = yi(n);
}
;Output of the last biquad
Y[j] = yN-1(n);
}
return;
//Filter Output returned
}
Techniques
•
•
•
•
Memory bandwidth conflicts removing
Use of CoMAC instructions
Instruction re-ordering
Filter output converted to 16-bit with saturation
User’s Manual for Keil Compiler
-98
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi2_32
32 bit filter coefficients, N-cascaded real biquads,
direct form 2, 5-coefs per biquad, vector processing
(cont’d)
Assumptions
• The state variable vector must be located in DPRAM area.
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
Y is stored in R4
User’s Manual for Keil Compiler
-99
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi2_32
32 bit filter coefficients, N-cascaded real biquads,
direct form 2, 5-coefs per biquad, vector processing
(cont’d)
Memory Note
High Addr.
Low Addr.
DPRAM
uN(n-1)
uN(n-2)
:
:
u2(n-1)
u2(n-2)
u1(n-1)
u1(n-2)
DPRAM
uN(n-1)
uN(n-2)
:
:
u2(n-1)
u2(n-2)
u1(n-1)
u1(n-2)
IDX1
IDX0
IDX1
IDX0
Memory
High Addr.
Low Addr.
bN(0)
bN(1)
bN(2)
aN(0)
aN(1)
:
:
:
b1(0)
b1(1)
b1(2)
a1(0)
a1(1)
bN(0)
bN(1)
bN(2)
aN(0)
aN(1)
:
:
:
b1(0)
b1(1)
b1(2)
a1(0)
a1(1)
1Q31
1Q31
Before
After
Figure 4-28 IIR_bi2_32
Example
C166Lib\Keil\Examples\Filters\IIR\ IIRbi2_32.c
Cycle Count
User’s Manual for Keil Compiler
-100
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi2_32
32 bit filter coefficients, N-cascaded real biquads,
direct form 2, 5-coefs per biquad, vector processing
(cont’d)
Parameter read
1
Memory
Initialization
18
Biquad loop
N_x(24*N_biq + 7)
Return
1
Total
N_x(24*N_biq + 7) + 20
Example:
N_x = 1
N_biq = 2
cycle = 75
Code Size
Parameter read
2
bytes
Memory
Initialization
36
bytes
Biquad loop
156
bytes
2
bytes
Return
Total
User’s Manual for Keil Compiler
196 bytes
-101
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_24
16 bit filter coefficients, N-cascaded real biquads,
direct form 2, 4-coefs per biquad, vector processing
Signature
DataS IIR_bi_24 (DataS* x, DataS* h, DataS* y, DataS* u,
DataS N_x, DataS N_biq)
Inputs
x
:
Pointer to input vector in 1Q15
h
:
Pointer to filter coefficients in 1Q15
u
:
Pointer to state variable vector
N_x
:
Size of input vector
N_biq
:
Number of the biquads
y
:
Pointer to filter output in 1Q15
Output
Return
Implementation
Description
:
The IIR filter is implemented as a cascade of direct form 2
biquads according to Figure 4-21 . If number of biquads is 'N',
the filter order is 2*N. A vector of samples is processed at a
time and the output vector for those samples is returned. The
filter operates on 16-bit real input, 16-bit real coefficients and
returns 16-bit real output. The number of inputs is arbitrary.
Length of delay line is 2*N.
User’s Manual for Keil Compiler
-102
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_24
16 bit filter coefficients, N-cascaded real biquads,
direct form 2, 4-coefs per biquad, vector processing
(cont’d)
Pseudo code
{
;
;
;
;
;
;
X[N_x], input vector
xi(n) = input buffer at time n of biquad number i
ui(n) = state variables at time n of biquad number i
yi(n) = output signal at time n of biquad number i
ai(k), bi(k) = Filter coefficients of biquad number i
N = number of biquads
DataS
DataS
DataS
DataS
ai(n), bi(n);
ui(n);
yi(n), Y;
i, j;
//Filter vectors
//state variable vector
//output
for(j=0; j<N_x; j++)
{
xi(n) = X[j];
for(i=1; i<=N_biq; i++)
{
;Update the sate variable ui(n)at time n
ui(n) = xi(n) + ai(0)*ui(n-1) + ai(1)*ui(n-2);
;Calculate the output at time n
yi(n) = bi(0)*ui(n) + bi(1)*ui(n-1) + bi(2)*ui(n-2);
;Set i-th biquad output to (i+1)-th biquad input
xi+1(n) = yi(n);
}
;Output of the last biquad
Y[j] = yN-1(n);
}
return;
//Filter Output returned
}
Techniques
•
•
•
•
Memory bandwidth conflicts removing
Use of CoMAC instructions
Instruction re-ordering
Filter output converted to 16-bit with saturation
User’s Manual for Keil Compiler
-103
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_24
16 bit filter coefficients, N-cascaded real biquads,
direct form 2, 4-coefs per biquad, vector processing
(cont’d)
Assumptions
• The state variable vector must be located in DPRAM area.
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
Y is stored in R4
User’s Manual for Keil Compiler
-104
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_24
16 bit filter coefficients, N-cascaded real biquads,
direct form 2, 4-coefs per biquad, vector processing
(cont’d)
Memory Note
High Addr.
Low Addr.
DPRAM
uN(n-1)
uN(n-2)
:
:
u2(n-1)
u2(n-2)
u1(n-1)
u1(n-2)
DPRAM
uN(n-1)
uN(n-2)
:
:
u2(n-1)
u2(n-2)
u1(n-1)
u1(n-2)
IDX1
IDX0
IDX1
IDX0
Memory
High Addr.
Low Addr.
bN(1)
bN(2)
aN(0)
aN(1)
:
:
:
:
:
b1(1)
b1(2)
a1(0)
a1(1)
bN(1)
bN(2)
aN(0)
aN(1)
:
:
:
:
:
b1(1)
b1(2)
a1(0)
a1(1)
1Q15
1Q15
Before
After
Figure 4-29 IIR_bi_24
Example
C166Lib\Keil\Examples\Filters\IIR\ IIRbi_24.c
Cycle Count
User’s Manual for Keil Compiler
-105
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_bi_24
16 bit filter coefficients, N-cascaded real biquads,
direct form 2, 4-coefs per biquad, vector processing
(cont’d)
Parameter read
1
Memory
Initialization
16
Biquad loop
N_x(13*N_biq + 5)
Return
1
Total
N_x(13*N_biq + 5) + 17
Example:
N_x = 1
N_biq = 2
cycle = 48
Code Size
Parameter read
2
bytes
Memory
Initialization
32
bytes
Biquad loop
100
bytes
2
bytes
136
bytes
Return
Total
User’s Manual for Keil Compiler
-106
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_lat
Lattice IIR filter, 16 bit filter coefficients, Vector
processing
Signature
DataS Fir_lat (DataS* x, DataS* K, DataS* y,
DataS* u, DataS N_x, DataS M)
Inputs
x
:
Pointer to the input vector in 1Q15
format
K
:
Pointer to lattice coefficients in
1Q15 format
u
:
Pointer to state variable vector
N_x
:
Size of input vector
M
Output
Nummber of stages of the lattice
filter
y
:
Filter output vector in 1Q15 format
Return
Implementation
Description
The implementation uses lattice structure showed in
Figure 4-23 and vector processing. The filter operates on 16bit real input vector, 16-bit real coefficients and gives 16-bit
real output vector. The number of stages used in the lattice IIR
filter implementation is arbitrary. Lattice coefficient K must be
located in the DPRAM area.
User’s Manual for Keil Compiler
-107
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_lat
Lattice IIR filter, 16 bit filter coefficients, Vector
processing (cont’d)
Pseudo code
{
short x[N_x];
short yn[M]={0,..};
short K[M];
short un[M];
short un-1[M]={0,...};
//Input vector
//Output vector of different stages at time n
//Lattice filter coefficient vector
//State variable vector at time n
//State variable vector at time n-1
short i, j;
for(j=0; j<N_x; j++)
{
//Initialization
yn[j] = x[j];
//Calculate the output and state vector
for(i=1; i<M; i++)
{
yn[j] = yn[j] - K[i]*un-1[i-1];
//Output
un[i] = K[i]*yn[j] + un-1[i-1];
//Update the state variable
}
}
return;
}
Techniques
Assumptions
• Lattice coefficient vector must be located in DPRAM area.
Register Usage
• From .c file to .asm file:
Decided by compiler
• From .asm file to .c file:
User’s Manual for Keil Compiler
-108
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_lat
Lattice IIR filter, 16 bit filter coefficients, Vector
processing (cont’d)
Memory Note
DPRAM
High Addr.
Low Addr.
Memory
K(M-1)
K(M-2)
.
.
K(1)
K(0)
X
IDX0
+
X
ui-1(n-1)
ui-1(n-1)
.
.
ui-1(n-1)
ui-1(n-1)
yi(n)
ui(n)
x(n)
Figure 4-30 IIR_lat
Example
C166Lib\Keil\Examples\Filters\IIR\IIRLat.c
Cycle Count
Read parameters
1
Memory
initialization
9
IIR loop
N_x(11*M + 1)
Return
1
User’s Manual for Keil Compiler
-109
V 1.2, 2003-11
DSP Library for
XC16x Family
IIR_lat
Lattice IIR filter, 16 bit filter coefficients, Vector
processing (cont’d)
Total
N_x(11*M + 1) + 11
Example:
N_x = 1
M=3
cycle = 45
Code Size
Read parameters
2
bytes
Mmeory
initialization
18
bytes
FIR loop
66
bytes
2
bytes
Return
Total
User’s Manual for Keil Compiler
88
-110
bytes
V 1.2, 2003-11
DSP Library for
XC16x Family
4.5
Adaptive Digital Filters
An adaptive filter adapts to changes in its input signals automatically.
Conventional linear filters are those with fixed coefficients.These can extract signals
where the signal and noise occupy fixed and separate frequency bands. Adaptive filters
are useful when there is a spectral overlap between the signal and noise or if the band
occupied by the noise is unknown or varies with time. In an adaptive filter, the filter
characteristics are variable and they adapt to changes in signal characteristics. The
coefficients of these filters vary and cannot be specified in advance.
The self-adjusting nature of adaptive filters is largely used in applications like telephone
echo cancelling, radar signal processing, equalization of communication channels etc.
Adaptive filters with the LMS (Least Mean Square) algorithm are the most popular kind.
The basic concept of an LMS adaptive filter is as follows.
x(n)
FIR
(h(0,n), h(1,n) ...
h(N-1,n))
y(n)
+
d(n)
e(n)
LMS Algorithm
Figure 4-31 Adaptive filter with LMS algorithm
The filter part is an N-tap FIR filter with coefficients h(0,n), h(1,n),..., h(N-1,n), whose
input signal is x(n) and output is y(n). The difference between the actual output y(n) and
a desired output d(n), gives an error signal
e(n) = d(n) – y(n)
User’s Manual for Keil Compiler
[4.27]
-111
V 1.2, 2003-11
DSP Library for
XC16x Family
The algorithm uses the input signal x(n) and the error signal e(n) to adjust the filter
coefficients h(0,n), h(1,n),..., h(N-1,n), such that the difference, e(n) is minimized on a
criterion. The LMS algorithm uses the minimum mean square error criterion
min h(0,n), h(1,n),..., h(N-1,n) E(e2(n))
[4.28]
Where E denotes statistical expectation. The algorithm of a regular (non-delayed) LMS
adaptive filter is mathematically expressed as follows.
y (n) = h (0, n) ⋅ x (n) + h (1, n) ⋅ x (n – 1) + h (2, n) ⋅ x (n – 2) + …
+ h (N – 1, n) ⋅ x (n – N + 1)
[4.29]
e(n) = d(n) – y(n)
[4.30]
h (k, n + 1) = h (k, n) + x (n – k) × µ × e (n)
[4.31]
where µ >0 is a constant called step-size. Note that the filter coefficients are time
varying. h(i,n) denotes the value of the i-th coefficient at time n. The algorithm has three
stages:
1. calculate the current filter output y(n).
2. calculate the current error value e(n) using the current expected value d(n) and
currently calculated output y(n).
3. update the filter coefficients for next iteration using current error e(n) and samples
x(n-k).
Step-size µ controls the convergence of the filter coefficients to the optimal (or
stationary) state. The larger the µ value, the faster the convergence of the adaptation.
On the other hand, a large value of µ also leads to a large variation of h(i,n) (a bad
accuracy) and thus a large variation of the output error (a large residual error). Therefore,
the choice of µ is always a trade-off between fast convergence and high accuracy. µ
must not be larger than a certain threshold. Otherwise, the LMS algorithm diverges.
4.5.1
Delayed LMS algorithm for an adaptive filter
In the regular LMS adaptive filter the update of filter coefficients makes use of current
error value and input value. This makes the choice of step-size µ more difficult due to
the effect of µ on convergence of adaptive filter. To minimize the effect of µ on the filter
convergence a delayed LMS algorithm for an adaptive filter is introduced. The algorithm
of a delayed LMS adaptive filter can be represented by the following mathematical
equations.
User’s Manual for Keil Compiler
-112
V 1.2, 2003-11
DSP Library for
XC16x Family
N–1
y(n) =
∑ h (k, n) ⋅ x (n – k)
[4.32]
k=0
h (k, n + 1) = h (k, n) + x (n – k – 1) × µ × e (n – 1)
e(n) = d(n) – y(n)
[4.33]
[4.34]
where,
y(n)
:
output sample of the filter at index n
x(n)
:
input sample of the filter at index n
d(n)
:
expected output sample of the filter at index n
h(0,n),h(1,n),..
:
filter coefficients at index n
N
:
filter order (number of coefficients)
µ
:
step-size
e(n)
:
error value at index n
The algorithm has three stages:
1. calculate the current filter output y(n).
2. update filter coefficients for the next iteration using previous error value e(n-1) and the
delayed input sample x(n-k-1).
3. calculate the current error value e(n) and store it in memory.
4.5.2
Descriptions
In the DSP library, the delayed LMS adaptive filters are implemented. The following are
the implemented delayed LMS adaptive FIR filter functions with 16 bit input and 16 bit or
32 bit filter coefficients.
• 16 bit real coefficients, delayed LMS, Sample processing
• 32 bit real coefficients, delayed LMS, Sample processing
User’s Manual for Keil Compiler
-113
V 1.2, 2003-11
DSP Library for
XC16x Family
Adap_filter_16
Signature
16 bit real coefficients, Delayed LMS, Sample
Processing
DataS Adap_filter_16 (
DataS*
DataS*
DataS*
DataS*
DataS
DataS
DataS*
h,
IN,
D,
error,
N_h,
Step,
d_buffer
)
Inputs
h
:
Pointer to filter coefficients in 1Q15
IN
:
Pointer to new input value
D
:
Pointer to the expected signal at
time n
error
:
Pointer to error signal
N_h
Filter size
Step
:
d_buffer
Adaptive gain
Pointer to delay buffer
Return
Y
Implementation
Description
Delayed LMS algorithm has been used to realize an adaptive
FIR filter. That is, the update of coefficients in the current
instant is done using the error in the previous output.
:
Output value of the filter in 1Q15
The FIR filter is implemented using transversal structure and
is realized as a tapped delay line. In this routine, both of
signals and filter coefficients have 16 bit precision.
This routine processes one sample at a time and returns
output of that sample. The input for which the output is to be
calculated is sent as an argument to the function.
User’s Manual for Keil Compiler
-114
V 1.2, 2003-11
DSP Library for
XC16x Family
Adap_filter_16
16 bit real coefficients, Delayed LMS, Sample
Processing (cont’d)
Pseudo code
{
;
;
;
;
;
;
x(n) = input signal at time n
d(n) = desired signal at time n
y(n) = output signal at time n
h(k,n) = k-th coefficient at time n
gain = adaptive gain
N = number of coefficient taps in the filter
DataS
DataS
DataS
DataS
DataS
x(n);
d(n);
h(k,n);
y(n), Y;
k;
//input signal
//desired signal
//filter coefficient
//output
;Calculate the output at time n
y(n) = 0;
for(k=0; k<N_h; k++)
y(n) = y(n) + h(k,n)*x(n-k);
;Update the filter coefficients
for(k=0; k<N_h; k++)
h(k,n+1) = h(k,n) + gain*e(n-1)*x(n-k-1);
;Error signal at time n
e(n) = d(n) - y(n);
Y = y(n);
return Y;
//Filter Output returned
}
Techniques
•
•
•
•
Memory bandwidth conflicts removing
Use of CoMACM instructions
Instruction re-ordering
Filter output converted to 16-bit with saturation
Assumptions
• Delay buffer must be located in DPRAM area.
Register Usage
• From .c file to .asm file:
Defined by the Compiler
• From .asm file to .c file:
(R4) = Y
User’s Manual for Keil Compiler
-115
V 1.2, 2003-11
DSP Library for
XC16x Family
Adap_filter_16
16 bit real coefficients, Delayed LMS, Sample
Processing (cont’d)
Memory Note
High Addr.
Low Addr.
High Addr.
Low Addr.
DPRAM
d(n-1)
d(n-1)
d(n-2)
d(n-3)
.
.
d(n-N_h+2)
d(n-N_h+1)
DPRAM
d(n)
d(n)
d(n-1)
d(n-2)
.
.
d(n-N_h+3)
d(n-N_h+2)
IDX0
Memory
h(0,n)
h(1,n)
h(2,n)
h(3,n)
.
.
h(N_h-2,n)
h(N_h-1,n)
IDX0
Memory
h(0,n+1)
h(1,n+1)
h(2,n+1)
h(3,n+1)
.
.
h(N_h-2,n+1)
h(N_h-1,n+1)
CoMACM
1Q16
1Q16
Before
After
Figure 4-32 Adap_filter_16
Example
C166Lib\Keil\Example\Adaptive_filter\Ad_filter_16.c
Cycle Count
Memory
Initialization
13
Read the new input
sample
Calculate the
current output
User’s Manual for Keil Compiler
3
N_h + 6
-116
V 1.2, 2003-11
DSP Library for
XC16x Family
Adap_filter_16
16 bit real coefficients, Delayed LMS, Sample
Processing (cont’d)
Filter coefficient
adaptation
7N_h + 1
Calculation of the
error signal
Total
3
8*N_h + 26
Example:
N_h = 12
cycle = 122
Code Size
Memory
Initialization
26 bytes
Read the new input
sample
12 bytes
Calculate the
current output
32 bytes
Filter coefficient
adaptation
52 bytes
Calculation of the
error signal
6 bytes
Total
128 bytes
User’s Manual for Keil Compiler
-117
V 1.2, 2003-11
DSP Library for
XC16x Family
Adap_filter_32
32 bit real coefficients, Delayed LMS, Sample
Processing
Signature
DataS Adap_filter_32(
DataL*
DataS*
DataS*
DataS*
DataS
DataS
DataS*
)
Inputs
h
:
Pointer to filter coefficients in 1Q31
IN
:
Pointer to new input value
D
:
Pointer to the expected signal at
time n
error
:
Pointer to error signal
N_h
h,
IN,
D,
error,
N_h,
Step,
d_buffer
Filter size
Step
:
d_buffer
Adaptive gain
Pointer to delay buffer
Return
Y
Implementation
Description
LMS algorithm has been used to realize an adaptive FIR filter.
That is, the update of coefficients in the current instant is done
using the error in the previous output.
:
Output value of the filter
The FIR filter is implemented using transversal structure and
is realized as a tapped delay line. Here, the filter coefficients
have 32 bit precision, while input and output signals have 16
bit precision.
This routine processes one sample at a time and returns
output of that sample. The input for which the output is to be
calculated is sent as an argument to the function.
User’s Manual for Keil Compiler
-118
V 1.2, 2003-11
DSP Library for
XC16x Family
Adap_filter_32
32 bit real coefficients, Delayed LMS, Sample
Processing (cont’d)
Pseudo code
{
;
;
;
;
;
;
x(n) = input signal at time n
d(n) = desired signal at time n
y(n) = output signal at time n
h(k,n) = k-th coefficient at time n
gain = adaptive gain
N = number of coefficient taps in the filter
DataS
DataS
DataL
DataS
DataS
x(n);
d(n);
h(k,n);
y(n), Y;
k;
//input signal
//desired signal
//filter coefficient
//output
;Calculate the output at time n
y(n) = 0;
for(k=0; k<N_h; k++)
y(n) = y(n) + (short)h(k,n)*x(n-k);
;Update the filter coefficients
for(k=0; k<N_h; k++)
h(k,n+1) = h(k,n) + (long)gain*e(n)*x(n-k);
;Error signal at time n
e(n) = d(n) - y(n);
Y = y(n);
return Y;
//Filter Output returned
}
Techniques
•
•
•
•
Memory bandwidth conflicts removing
Use of CoMAC instructions
Instruction re-ordering
Filter output converted to 16-bit with saturation
Assumptions
• Delay buffer must be located in DPRAM area.
Register Usage
• From .c file to .asm file:
Defined by the compiler
• From .asm file to .c file:
(R4) = Y
User’s Manual for Keil Compiler
-119
V 1.2, 2003-11
DSP Library for
XC16x Family
Adap_filter_32
32 bit real coefficients, Delayed LMS, Sample
Processing (cont’d)
Memory Note
High Addr.
Low Addr.
High Addr.
Low Addr.
DPRAM
d(n-1)
d(n-1)
d(n-2)
d(n-3)
.
.
d(n-N_h+2)
d(n-N_h+1)
Memory
hH(0,n)
hL(0,n)
hH(1,n)
hL(1,n)
.
.
hH(N_h-1,n)
hL(N_h-1,n)
DPRAM
d(n)
d(n)
d(n-1)
d(n-2)
.
.
d(n-N_h+3)
d(n-N_h+2)
IDX0
IDX0
Memory
hH(0,n)
hL(0,n)
hH(1,n)
hL(1,n)
.
.
hH(N_h-1,n)
hL(N_h-1,n)
CoMACM
1Q16
1Q16
Before
After
Figure 4-33 Adap_filter_32
Example
C166Lib\Keil\Example\Adaptive_filter\Ad_filter_32.c
Cycle Count
Memory
Initialization
20
Read the new input
Calculation of the
current output y(n)
(LSW)
User’s Manual for Keil Compiler
-120
3
N_h + 3
V 1.2, 2003-11
DSP Library for
XC16x Family
Adap_filter_32
32 bit real coefficients, Delayed LMS, Sample
Processing (cont’d)
Calculation of the
current output y(n)
(MSW)
N_h + 3
Filter coefficient
adaptation
6N_h +1
Calculation of the
error signal
4
Total
8*N_h + 34
Example:
N_h = 12
cycle = 130
Code Size
Memory
Initialization
40 bytes
Read the new input
12 bytes
Calculation of the
current output y(n)
(LSW)
24 bytes
Calculation of the
current output y(n)
(MSW)
26 bytes
Filter coefficient
adaptation
48 bytes
Calculation of the
error signal
10 bytes
Total
160 bytes
User’s Manual for Keil Compiler
-121
V 1.2, 2003-11
DSP Library for
XC16x Family
User’s Manual for Keil Compiler
-122
V 1.2, 2003-11
DSP Library for
XC16x Family
4.6
Fast Fourier Transforms
Spectrum (Spectral) analysis is a very important methodology in Digital Signal
Processing. Many applications have a requirement of spectrum analysis. The spectrum
analysis is a process of determining the correct frequency domain representation of the
sequence. The analysis gives rise to the frequency content of the sampled waveform
such as bandwidth and centre frequency.
One of the method of doing the spectrum analysis in Digital Signal Processing is by
employing the Discrete Fourier Transform (DFT).
The DFT is used to analyze, manipulate and synthesize signals in ways not possible with
continuous (analog) signal processing. It is a mathematical procedure that helps in
determining the harmonic, frequency content of a discrete signal sequence. The DFT is
defined by
N –1
∑ x (n)WN
X(k) =
nk
[4.35]
n=0
where
WN = e
– j2π ⁄ N
= cos (2πnk ⁄ N) – j sin (2πnk ⁄ N)
.
[4.36]
Using Equation [4.36] in Equation [4.35] we can rewrite X(k) as
N–1
∑ x (n) [cos (2πnk ⁄ N) – j sin (2πnk ⁄ N)]
X(k) =
[4.37]
n=0
X(k) is the kth DFT output component for k=0,1,2,....,N-1
x(n) is the sequence of discrete sample for n=0,1,2,...,N-1
j is imaginary unit
–1
N is the number of samples of the input sequence (and number of frequency points of
DFT output).
While the DFT is used to convert the signal from time domain to frequency domain. The
complementary function for DFT is the IDFT, which is used to convert a signal from
frequency to time domain. The IDFT is given by
1
x (n) = ---N
N–1
∑ X (k)e
j2πnk ⁄ N
[exponential form]
[4.38]
k=0
User’s Manual for Keil Compiler
-123
V 1.2, 2003-11
DSP Library for
XC16x Family
1x (n) = --N
N–1
∑ X (k) [cos (2πnk ⁄ N) + j sin (2πnk ⁄ N)]
[4.39]
k=0
Notice the difference between DFT in Equation [4.37] and Equation [4.39] , the IDFT
Kernel is the complex conjugate of the DFT and the output is scaled by N.
WNnk, the Kernel of the DFT and IDFT is called the Twiddle-Factor and is given by,
In exponential form,
e
e
– j 2πnk ⁄ N
j2πnk ⁄ N
for DFT
for IDFT
In rectangular form,
cos (2πnk ⁄ N) – j sin (2πnk ⁄ N)
for DFT
cos (2πnk ⁄ N) + j sin (2πnk ⁄ N)
for IDFT
While calculating DFT, a complex summation of N complex multiplications is required for
each of N output samples. N2 complex multiplications and N(N-1) complex additions
compute an N-point DFT. The processing time required by large number of calculation
limits the usefulness of DFT. This drawback of DFT is overcome by a more efficient and
fast algorithm called Fast Fourier Transform (FFT). The radix-2 FFT computes the DFT
in N*log2(N) complex operations instead of N2 complex operations for that of the DFT.
(where N is the transform length.)
The FFT has the following preconditions to operate at a faster rate.
• The radix-2 FFT works only on the sequences with lengths that are power of two.
• The FFT has a certain amount of overhead that is unavoidable, called bit reversed
ordering. The output is scrambled for the ordered input or the input has to be arranged
in a predefined order to get output properly arranged. This makes the straight DFT
better suited for short length computation than FFT. The graph shows the algorithm
complexity of both on a typical processor like pentium.
User’s Manual for Keil Compiler
-124
V 1.2, 2003-11
DSP Library for
XC16x Family
Execution time (seconds)
1000
correlation DFT
100
10
1
0.1
FFT
0.01
0.001
8
16
32
64
128 256 512
Number points in DFT
1024
2048 4096
Figure 4-34 Complexity Graph
The Fourier transform plays an important role in a variety of signal processing
applications. Anytime, if it is more comfortable to work with a signal in the frequency
domain than in the original time or space domain, we need to compute Fourier transform.
FFT is an incredibly efficient algorithm for computing DFT. The main idea of FFT is to
nk
exploit the periodic and symmetric properties of the DFT Kernel W N . The resulting
algorithm depends strongly on the transform length N. The basic Cooley-Tukey
algorithm assumes that N is a power of two. Hence it is called radix-2 algorithm.
Depending on how the input samples x(n) and the output data X(k) are grouped, either
a decimation-in-time (DIT) or a decimation-in-frequency (DIF) algorithm is obtained. The
technique used by Cooley and Tukey can also be applied to DFTs, where N is a power
of r. The resulting algorithms are referred as radix-r FFT. It turns out that radix-4, radix8, and radix-16 are especially interesting. In cases where N cannot be represented in
terms of powers of single number, mixed-radix algorithms must be used. For example
for 28 point input, since 28 cannot be represented in terms of powers of 2 and 4 we use
radix-7 and radix-4 FFT to get the frequency spectrum. In this library the basic radix-2
decimation-in-frequency FFT algorithm is implemented.
User’s Manual for Keil Compiler
-125
V 1.2, 2003-11
DSP Library for
XC16x Family
4.6.1
Radix-2 Decimation-In-Time FFT Algorithm
The decimation-in-time (DIT) FFT divides the input (time) sequence into two groups, one
of even samples and the other of odd samples. N/2-point DFTs are performed on these
sub-sequences and their outputs are combined to form the N-point DFT.
First, x(n) the input sequence in the Equation [4.35] is divided into even and odd subsequences.
N
---- – 1
2
X(k) =
2nk
∑ x (2n)WN
2nk
∑ x (2n)WN
+ WN
2nk
WN
k
for k=0 to N-1
N
---- – 1
2
[4.40]
2nk
∑ x (2n + 1)WN
n=0
n=0
But,
(2n + 1)k
∑ x (2n + 1)WN
+
n=0
n=0
N
---- – 1
2
=
N
---- – 1
2
= (e
(– j2π) ⁄ N 2nk
)
= (e
(– j2π) ⁄ (N ⁄ 2) nk
nk
) = WN ⁄ 2
By substituting the following in Equation [4.40]
h(n)=x(2n)
g(n)=x(2n+1) ,
Equation [4.40] becomes
N⁄2–1
X(k) =
∑
nk
k
h (n)W N ⁄ 2 + W N
N⁄2–1
∑
nk
g (n)W N ⁄ 2
n=0
n=0
k
= H (k) + WN G (k)
for k=0 to N-1
[4.41]
Equation [4.41] is the radix-2 DIT FFT equation. It consists of two N/2-point DFTs H(k)
and G(k) performed on the subsequences of even and odd samples of the input
sequence x(n), respectively. Multiples of WN, the Twiddle-Factors are the coefficients in
the FFT calculation.
Further,
WN
k+N⁄2
= (e
– j 2π ⁄ N k
) × (e
– j 2π ⁄ N N ⁄ 2
User’s Manual for Keil Compiler
)
k
= –WN .
-126
[4.42]
V 1.2, 2003-11
DSP Library for
XC16x Family
Equation [4.41] can be expressed in two equations
k
X (k) = H (k) + WN G (k)
[4.43]
k
X (k + N ⁄ 2) = H (k) – WN G (k)
for k=0 to N/2-1
[4.44]
The decomposition procedure can be continued until two-point DFTs are reached.
Figure 4-36 illustrates the flow graph of a real 8-point DIT FFT.
Input
Stage 1
Stage 3
+
x(0)
W0
x(4)
x(1)
W0
x(2)
W2
W0
x(3)
-
x(6)
W0
+
x(1)
W0
x(5)
W0
x(4)
W1
x(5)
+
x(3)
Output
x(0)
+
x(2)
x(7)
Stage 2
W0
W2
W2
W3
x(6)
x(7)
-
Figure 4-35 8-point DIT FFT
Note that the input sequence x(n) in Figure 4-35 is in the scrabbled order. The same
procedure can be repeated with the linear input order. Then we have the alternate form
of the DIT FFT shown in Figure 4-36 , where the output sequence X(n) is rearranged to
appear in bit-reversed order. The only difference between Figure 4-35 and Figure 4-36
is a rearrangement of the butterflies and the computational load and final results are
identical. In the library the implementation of real-valued forward FFT is based on
Figure 4-36 .
User’s Manual for Keil Compiler
-127
V 1.2, 2003-11
DSP Library for
XC16x Family
Input
Stage 1
Stage 2
Stage 3
x(0)
Output
+
x(0)
-
x(4)
+
x(2)
-
x(6)
+
x(1)
-
x(5)
+
x(3)
-
x(7)
W0
x(1)
W0
x(2)
W0
W2
x(3)
W0
x(4)
W0
W1
x(5)
W0
W2
W0
W2
x(6)
W3
x(7)
Figure 4-36 Alternate Form of 8-point DIT FFT
4.6.2
Radix-2 Decimation-In-Frequency FFT Algorithm
A second variant of the radix-2 FFT is the decimation-in-frequency algorithm. In order to
get this algorithm, we split the input sequence into the first and second halves and write
the DFT as
N –1
X(k) =
n=0
N⁄2–1
=
∑
n=0
N⁄2–1
=
nk
∑ x (n)WN
∑
nk
x (n)W N +
N⁄2–1
∑
(n + N ⁄ 2)k
x (n + N ⁄ 2)W N
n=0
k
nk
[x (n) + (– 1) x (n + N ⁄ 2)]W N
,
for k=0 to N.
[4.45]
n=0
For the even and odd numbered DFT points we get
User’s Manual for Keil Compiler
-128
V 1.2, 2003-11
DSP Library for
XC16x Family
N⁄2–1
X (2k) =
∑
nk
[x (n) + x (n + N ⁄ 2)]W N ⁄ 2
n=0
N⁄2–1
X (2k + 1) =
∑
n
[4.46]
nk
[x (n) – x (n + N ⁄ 2)]W N W N ⁄ 2
, for k=0 to N/2.
[4.47]
n=0
As with the decimation-in-time algorithm, the N-point DFT is decomposed into two N/2point DFTs. Using the principle repeatedly results in an FFT algorithm where the input
values appear in their natural order, but where the output values appear in bit reversed
order. The complexity is the same as for the decimation-in-time FFT. Figure 4-37 shows
the flow graph of an 8-point DIF FFT. The comparison of Figure 4-35 and Figure 4-37
shows that the two graphs can be viewed as transposed versions of one another.
Input
Stage 1
Stage 2
Stage 3
Output
x(0)
+
x(0)
-
x(1)
W0
x(2)
W2
x(3)
W0
+
-
x(4)
x(2)
W0
x(6)
W0
+
x(4)
W1
-
x(5)
W2
W0
W3
W2
x(6)
x(5)
x(3)
+
-
x(7)
x(1)
W0
W0
x(7)
Figure 4-37 8-point DIF FFT
Similar to FFT with decimation-in-time, if the inputs in Figure 4-37 are rearranged in bitinverse order and the outputs in linear order, we have an alternate implementation for
DIF FFT showed in Figure 4-38 .
User’s Manual for Keil Compiler
-129
V 1.2, 2003-11
DSP Library for
XC16x Family
Input
Stage 1
Stage 2
Stage 3
Output
+
x(0)
x(0)
W0
-
x(4)
x(1)
W0
+
x(2)
x(2)
W0
W2
x(3)
-
x(6)
W0
+
x(1)
x(4)
-
x(5)
W0
W3
x(5)
+
x(3)
W0
W2
W0
x(6)
W1
-
x(7)
W2
x(7)
Figure 4-38 Alternate Form of 8-point DIF FFT
4.6.3
Complex FFT Algorithm
If the input sequence is complex, according to Equation [4.43] andEquation [4.44] ,
we can write the complex DFT as
k
X (k) = P (k) + WN Q (k)
k
X (k + N ⁄ 2) = P (k) – WN Q (k)
for k=0 to N/2-1,
[4.48]
where P(k) and Q(k) are the complex even and odd partial DFTs. As same as real FFT,
the complex FFT has also two implementations, i.e. decimation-in-time and decimationin-frequency complex FFT.Figure 4-39 shows an 8-point DIT complex FFT
implementation.
In Figure 4-39 , each pair of arrows represents a Butterfly. The whole of the complex
FFT is computed by different patterns of Butterflies. These are called groups and stages.
User’s Manual for Keil Compiler
-130
V 1.2, 2003-11
DSP Library for
XC16x Family
Stage 1
Input
x0
x1
x2
x3
x4
x5
x6
x7
Stage 2
Stage 3
x(0)
+
x(1)
W0
x(2)
-
x(3)
W0
x(4)
+
x(5)
W0
x(6)
W2
-
x(7)
x(8)
W0
+
x(9)
x(10)
W0
W1
-
x(11)
x(12)
x(13)
x(14)
W0
W2
+
W0
W2
W3
-
x(15)
Output
x(0)
x(1)
x(8)
x(9)
x(4)
x(5)
x(12)
x(13)
x(2)
x(3)
x(10)
x(11)
x(6)
x(7)
x(14)
x(15)
x0
x4
x2
x6
x1
x5
x3
x7
Figure 4-39 8-point DIT complex FFT
For 8-point DIT FFT the first stage consists of one groups of four Butterfly, second
consists of two groups of two butterflies and third stage has four group of one Butterflies.
Each Butterfly is represented as in Figure 4-40 .
Dual node
spacing
Primary
node
Dual
node
Re(Pn)
+
Im(Pn)
Re(Qn)
WNk
-
Im(Qn)
Re(Pn+1)
Im(Pn+1)
Re(Qn+1)
Im(Qn+1)
Figure 4-40 Butterfly of Radix-2 DIT complex FFT
User’s Manual for Keil Compiler
-131
V 1.2, 2003-11
DSP Library for
XC16x Family
The output is derived as follows
k
Pn + 1 = Pn + Qn ⋅ WN
[4.49]
k
Qn + 1 = Pn –Qn ⋅ WN
,
[4.50]
where n represents the number of stages.
Of course, the complex FFT can also be implemented with decimation-in-frequency FFT
showed in Figure 4-38 . In this case, an 8-point complex FFT has the implementation
structure depicted in Figure 4-41 .
Stage 1
Input
x0
x4
x2
x6
x1
x5
x3
x7
x(0)
x(1)
x(8)
x(9)
x(4)
x(5)
x(12)
x(13)
x(2)
x(3)
x(10)
x(11)
x(6)
x(7)
x(14)
x(15)
Stage 2
Stage 3
Output
x(0)
+
x(1)
W0
-
x(2)
x(3)
W0
+
x(4)
x(5)
W2
-
W0
x(6)
x(7)
W0
+
x(8)
x(9)
W0
W1
-
x(10)
x(11)
+
W2
W0
W2
W0
x(12)
x(13)
W3
-
x(14)
x(15)
x0
x1
x2
x3
x4
x5
x6
x7
Figure 4-41 8-point DIF complex FFT
The corresponding butterfly is illustrated in Figure 4-42, in that the input-output
relationship writes
Pn + 1 = Pn + Qn
[4.51]
k
Qn + 1 = (Pn – Qn) ⋅ WN
User’s Manual for Keil Compiler
[4.52]
-132
V 1.2, 2003-11
DSP Library for
XC16x Family
Dual node
spacing
Primary
node
Re(Pn)
Dual
node
Re(Qn)
+
Im(Pn)
Re(Pn+1)
Im(Pn+1)
WNk
-
Im(Qn)
Re(Qn+1)
Im(Qn+1)
Figure 4-42 Butterfly of Radix-2 DIF complex FFT
4.6.4
Calculation of Real Forward FFT from Complex FFT
Having only real valued input data x(n), the computational effort of a N point real FFT can
be reduced to a N/2 point complex FFT. Firstly, even indexed data h(n)=x(2n) and odd
indexed data g(n)=x(2n+1) are separated. According to Equation [4.43] and
Equation [4.44], The spectrum X(k) can be decomposed into the spectra H(k) and G(k)
as follows:
X (k) = H (k) + cos 2πk
---------- – j sin 2πk
---------- G (k)

N
N
for k=0 to N/2-1.
[4.53]
In order to cut the N-point real FFT into N/2-point complex transformation a complex
input vector y(n) = h(n)+jg(n) is formed with the index n running from 0 to N/2-1. The real
part values are formed by the even indexed input data h(n). The imaginary part is formed
by the odd indexed input data g(n). Then y(n) is transformed into the frequency domain
resulting in a spectrum consisting of the spectra H(k) and G(k).
Y (k) = H (k) + jG (k) = Re { Y (k) } + jIm { Y (k) }
[4.54]
Now the complex spectra H(k) and G(k) have to be extracted out of the complex
spectrum Y(k). By employing symmetry relations, the spectra H(k) and G(k) can be
derived from the spectrum Y(k) as follows:
{ Y (N ⁄ 2 – k) } + Re { Y (k) }
Re { H (k) } = Re
---2
Im
{
Y
(
k
)
}
–
Im
{ Y (N ⁄ 2 – k) }Im { H (k) } = --2
{ Y (k) } + Im { Y (N ⁄ 2 – k) }
Re { G (k) } = Im
---2
Re
{
Y
(
N
⁄
2
–
k
) } – R e { Y (k) }Im { G (k) } = --2
User’s Manual for Keil Compiler
-133
[4.55]
V 1.2, 2003-11
DSP Library for
XC16x Family
Therefore, computing an N-point real forward FFT has the following steps:
1. Generating the N/2 point complex sequence y(n)=x(2n)+jx(2n+1),
2. Computing the complex spectra Y(k) using complex FFT,
3. Extracting H(k) and G(k) from computed Y(k) according to ,Equation [4.55]
4. Calculating the first N/2+1 points of X(k) based on Equation [4.53] using H(k) and
G(k),
5. Using the symmetry relation of the spectra of the real sequence to get the complete
N-point X(k).
4.6.5
Calculation of Real Inverse FFT from Complex FFT
Using the algorithm in Section 4.6.4 we can calculate a N-point real-valued FFT through
N/2-point complex FFT. Now we present the corresponding inverse FFT algorithm to
repeat the original real-valued input sequences based on the FFT spectrum. Usually a
N-point real-valued forward FFT produces N-point complex spectrum. To get the original
real-valued sequences one can simply input this N-point complex spectrum to an inverse
FFT. But it needs N-point real inverse FFT. With the symmetry properties of real-valued
FFT a N-point real inverse FFT can be reduced to N/2-point complex inverse FFT.
This can be realized through two steps. In the first step the real FFT spectrum will be
unpacked to the corresponding complex spectrum similar with the unpack stage in the
forward FFT. Then, the results are inputted into a N/2-point inverse complex FFT to get
real-valued sequences.
In the unpack stage only the first (N/2+1)-point spectrum are needed because the first
(N/2+1)-point spectrum of a N-point real-valued FFT contain all information. According
to Equation [4.53] and the symmetry properties of H(k) and G(k), we have
Re { X (k) } + Re { X (N ⁄ 2 – k) }
Re { H (k) } = ---2
Im { X (k) } – Im { X (N ⁄ 2 – k) }Im { H (k) } = --2
for k=0 to N/2-1.
[4.56]
Defining
G′ (k) = X (k) – H (k) ,
[4.57]
and replacing Equation [4.56] into Equation [4.57] we get
User’s Manual for Keil Compiler
-134
V 1.2, 2003-11
DSP Library for
XC16x Family
{ X (k) } – R e { X (N ⁄ 2 – k) }Re { G′ (k) } = Re
--2
Im
{
X
(
k
)
}
+
Im
{X(N ⁄ 2 – k)}
Im { G′ (k) } = ---2
[4.58]
Finally we have the expression of the complex spectrum Y(k) from Equation [4.54]
2πk- ⋅ Re { G′ (k) } – cos 2πk
Re { Y (k) } = Re { H (k) } – sin ------------------ ⋅ Im { G′ (k) }
N
N
2πk
2πk
Im { Y (k) } = Im { H (k) } + cos ---------- ⋅ Re { G′ (k) } – sin ---------- ⋅ Im { G′ (k) }
N
N
[4.59]
where K=0 to N/2-1.
Summarily, computing an N-point real inverse FFT has the following steps:
1. Extracting H(k) according to Equation [4.56] ,
2. Extracting G’(k) according to Equation [4.58],
3. Computing the complex spectrum Y(k) based on H(k) and G’(k)
using Equation [4.59],
4. Calculating N/2-point inverse complex FFT with input Y(k).
User’s Manual for Keil Compiler
-135
V 1.2, 2003-11
DSP Library for
XC16x Family
4.7
C166S V2 Core Implementation Note
4.7.1
Organization of FFT functions
In the library the radix-2 FFT is implemented. Basically there are following three kinds of
functions:
• Bit reverse function (Bit_reverse.c)
• Floating point to 1Q15 format function (FloatTo1Q15.c)
• FFT kernel function
The first two functions will be as subroutines called by FFT kernel function. The
subroutine Bit_reverse.c is used for bit reversing the binary presentation of the input
indices to get the output data indices. FloatTo1Q15.c is used to change the floating point
format to 1Q15 fractional format. The kernel FFT realizes the kernel FFT algorithm that
may be complex and real FFT. Butterflies are implemented in the form of macros.
The kernel FFT implementation in the C166S V2 Core Library is based on an application
note performed early by Siemens HL MCB AT, in which an implementation of a realvalued 1024-point radix-2 decimation-in-time forward FFT for C166 microcontroller
family is described. However, there are many basic differences between the two
implementations. Firstly, the FFT implementation for C166S V2 Core is not only Ccallable but also Assembler-callable, while the early implementation for C166 is only
Assembler-callable. Secondly, the FFT implementation for C166S V2 Core is performed
with the new DSP MAC instruction set, while the early implementation for C166 has only
used the normal instruction set. Therefore, the FFT implementation for C166S V2 Core
is a more optimal implementation in comparison with early implementation. Thirdly, the
size of input data of the new FFT implementation for C166S V2 Core can be changed
from 2 to 2048 points, while the early implementation is only suitable for 1024-point FFT.
This library provides not only forward FFT but also inverse FFT implementation as well
as their implementation theory basis.
4.7.2
Implementation of Real Forward FFT
A real valued N point FFT can be reduced to a N/2 point complex FFT followed by an
unweave phase in order to compute the N/2 point spectrum. The N/2 complex FFT
consists of log2(N/2) stages and each stage calculates N/4 butterflies.
The input data is stored in the vector FFT_in that consists of N 16 bit words and is
defined in C main function. Since we perform an in-place FFT, the input data field will be
overwritten by the output data. For providing the trigonometric functions, the
precomputed sinus and cosines values are stored in memory. Because the input data
and the trigonometric function values are represented by a 15 bit fixed-point fraction in
two’s complement (1Q15 format), the floating-point sinus and cosines values have to be
changed into 1Q15 format with the routine FloatToQ15. To rearrange the bit reversed
User’s Manual for Keil Compiler
-136
V 1.2, 2003-11
DSP Library for
XC16x Family
output of the complex FFT and to calculate the twiddle factor Wk, a bit reversal index
table has been precomputed.
Regarding the N/2 point complex FFT, the number of twiddle factors amounts N/2.
However, due to the symmetry only the first N/4 are used. The implementation consists
of log2(N/2) stages. Each stage contains basically three loops, i.e. Outloop, Mitloop and
Inloop. One stage has one Outloop and N/2 Inloops, but different Mitloops due to
different twiddle factors. Each Inloop implements one butterfly with a twiddle factor. For
example, an 8-point DIT complex FFT in Figure 4-39 has the following structure:
Stage 1 (Outloop_1): 4 butterflies with W0
Stage 2 (Outloop_2): 2 butterflies with W0
2 butterflies with W2
Stage 3 (Outloop_3): 1 butterfly with W0
1 butterfly with W1
1 butterfly with W2
1 butterfly with W3
The output of the decimation-in-time FFT shows a bit reversed order that has to be
ordered to calculate the final frequency spectrum. Supposing the input data has been in
a sequential order, the indices of the output data can be easily computed by bit reversing
the binary presentation of the input indices. The table below gives an example of the bit
reversal for an 8-point FFT.
Order of input data
Order of output data
index
binary
binary
index
0
000
000
0
1
001
100
4
2
010
010
2
3
011
110
6
4
100
001
1
5
101
101
5
6
110
011
3
7
111
111
7
The second part of the program unweaves the bit reversed output of the N/2 point FFT
to extract the N point real valued FFT.
User’s Manual for Keil Compiler
-137
V 1.2, 2003-11
DSP Library for
XC16x Family
4.7.3
Implementation of Real Inverse FFT
From Section 4.6.5 we know that the N-point real inverse FFT can be realized by N/2
point complex inverse FFT. Different from forward FFT the unpack stage will be
performed at beginning to get the N/2 point complex input spectra according to N point
real FFT spectra.
The input data is the first (N/2+1)-point real FFT spectra and stored in the vector with
size N/2+1 that consists of N+2 16 bit words and is defined in C main function. After
unpacking the N/2 point complex spectra are strode in vector FFT_out. Note that the
input data should be by 1/N scaled real FFT spectra. All data has 1Q15 format. Here we
use the name real inverse FFT, which doesn’t mean that the input data is real value.
Actually here the input data is complex value coming from a real-valued FFT. The word
real indicates that the input value come from a real-valued forward FFT instead of a
complex forward FFT.
The butterfly of inverse FFT has the same structure as forward FFT beside the twiddle
– nk
instead of
factor. The twiddle factor of the inverse FFT butterfly has the form W N
nk
W N . Similar with forward FFT the inverse FFT can be also implemented with DIT and
DIF. For example, for an 8-point real inverse FFT, if the DIF implementation in Figure 441 is used, there are following structure:
Stage 1 (Outloop_1): 1 butterfly with W0
1 butterfly with W1
1 butterfly with W2
1 butterfly with W3
Stage 2 (Outloop_2): 2 butterflies with W0
2 butterflies with W2
Stage 3 (Outloop_3): 4 butterflies with W0
In this case the output shows the linear order while the input has bit-reversed order. The
corresponding butterfly has the structure showed in Figure 4-42.
4.7.4
Description
The following functions are described.
•
•
•
•
•
Bit_reverse.c
FloatTo1Q15.c
real_DIT_FFT.c
real_DIF_IFFT.a66
Q15toFloat.c
User’s Manual for Keil Compiler
-138
V 1.2, 2003-11
DSP Library for
XC16x Family
Bit_reverse
Reverse the binary bit of the input data
Signature
DataS Bit_reverse(DataS* X,
Inputs
X
:
16 bit Input data vector
N
:
Size of the vector, N=2n (n<12)
Output
X
:
Bit reversed data vector
Return
n
:
Exponent of N
Implementation
Description
This routine is a subroutine in the DIT FFT implementation
packet and used to obtain a bit reversed data in respect to the
input data. The bit reversed data is also stored in the vector X.
DataS N)
For an 8 bit input data there is following algorithm:
Before bit reverse: b7.b6.b5.b4.b3.b2.b1.b0
After bit reverse: b0.b1.b2.b3.b4.b5.b6.b7
Pseudo code
{
; X = input/output data vector
; N = the size of the vector, N=2n (n<12)
DataS*
DataS
DataS
X;
N;
i, k, n;
//input/output vector
//size of vector N
for(k=0; k<N; k++)
{
temp = 0;
for(i=15; i>0; i--)
temp = temp + (X(k)<<i)>>(15-i);
//write the output into X
X(k) = temp;
}
n = (DataS)log10(N);
Y = n;
return Y;
//Filter Output returned
}
Techniques
User’s Manual for Keil Compiler
-139
V 1.2, 2003-11
DSP Library for
XC16x Family
Bit_reverse
Reverse the binary bit of the input data (cont’d)
Assumptions
• 16 bit Input data vector X
• N = 2n (n < 12)
Register Usage
• From .c file to .asm file:
Defined by the compiler
• From .asm file to .c file:
(R4) = n (exponent of N)
Memory Note
Memory
Memory
High Addr. b15b14b13 b2b1b0
b0b1b2 b13b14b15
b15b14b13 b2b1b0
b0b1b2 b13b14b15
b15b14b13 b2b1b0
b0b1b2 b13b14b15
.
.
.
.
.
.
X(N-1)
.
.
.
b15b14b13 b2b1b0
b0b1b2 b13b14b15
Low Addr. b15b14b13 b2b1b0
b0b1b2 b13b14b15
1Q15
1Q15
Before
bitreverse
After
bitreverse
X(0)
Figure 4-43 Bit_reverse
Example
C166Lib\Keil\Examples\FFT\real_FFT\bit_rev.c
Cycle Count
Exponent
determination
6
Bit reverse:
User’s Manual for Keil Compiler
-140
V 1.2, 2003-11
DSP Library for
XC16x Family
Bit_reverse
Reverse the binary bit of the input data (cont’d)
if N=21
3
if N=22 , N=23
10
if N=24 , N=25
12
if
N=26 ,
N=27
14
if N=28 , N=29
10
if N=2
, N=2
16
11
18
Restore state
3
Return
1
Total
Code Size
Exponent
determination
12 bytes
Bit reverse:
if N=21
6 bytes
if N=22 , N=23
20 bytes
if N=24 , N=25
24 bytes
N=27
28 bytes
if N=28 , N=29
32 bytes
if
if
N=26 ,
N=210 ,
N=211
36 bytes
Restore state
6 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
304 bytes
-141
V 1.2, 2003-11
DSP Library for
XC16x Family
FloatTo1Q15
Change the floating point format to fixed point format
1Q15
Signature
DataS FloatTo1Q15 (float x)
Inputs
x
:
Output
:
Return
:
Implementation
Description
Input in float format
Output in 1Q15 format
This routine is a subroutine in the DIT FFT implementation
packet and used to change the floating point data into a 1Q15
fixed point format.
The floating point format has the structure:
1. word:
s e e e e e e e e mmmmmmm
2. word: mmmmmmmmmmmmmmmm
where s =sign, e=exponent, m=mantissa. After format change
we have the 1Q15 fixed point data with the structure:
s. b1 b2 b3 b4 b15
sig. 2-1 2-2 2-3 2-4 2-15
For example:
binary
0111 1111 1111 1111
0110 0000 0000 0000
1010 0000 0000 0000
1000 0000 0000 0000
hex
7FFF
6000
A000
8000
value
+1
+0.75
- 0.75
-1
Pseudo code
Assumption
DPRAM begins with the address # f200h (it can be changed)
Register Usage
• From .c file to .asm file:
Defined by the Compiler
• From .asm file to .c file:
The output is stored in R4.
User’s Manual for Keil Compiler
-142
V 1.2, 2003-11
DSP Library for
XC16x Family
FloatTo1Q15
Change the floating point format to fixed point format
1Q15 (cont’d)
Memory Note
s
m15
e7
m14
...
m13
e0
m22
m2
...
...
m1
m16
m0
s
b1
b2
sign
2-1
2-2
Floating point format
...
b14
b15
2-14 2-15
Fixed point format
Figure 4-44 FloatTo1Q15
Example
C166Lib\Keil\Examples\Misc\Float_1Q15.c
Cycle Count
Read exponent
10
Read mantissa
7
Output
12
Return
1
Total
30
Read exponent
20 bytes
Read mantissa
14 bytes
Output
20 bytes
Return
2 bytes
Code SIze
Total
User’s Manual for Keil Compiler
56 bytes
-143
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIT_FFT
Real Forward Radix-2 Decimation-in-Time Fast
FourierTransformation
Signature
void real_DIT_FFT (
Inputs
x
DataS*
DataS*
DataS
DataS*
DataS*
x,
index,
exp,
table,
X
)
:
index
Output
Bit reversed input index vector
exp
:
Exponent of the input block size
table
:
The precalculated trigonometric
function (sinus and cosine) table
X
:
The FFT output vector in 1Q15
format
Return
Implementation
Description
16 bit real input vector
:
This function computes the N-point real forward radix-2
decimation-in-time Fast Fourier Transform on the given Npoint real input array. The detailed implementation is given in
the Section 4.7.2 .
The function is implemented as a complex FFT of size N/2
followed by a unpack stage to unpack the real FFT results.
Normally an FFT of a real sequence of size N produces a
complex sequence of size N or 2N real numbers that will not fit
in the input sequence. To accommodate all the results without
requiring extra memory locations, the output reflects only half
of the complex spectrum plus the spectrum at the nyquist point
(N/2). This still provides the full information because an FFT of
a real sequence has even symmetry around the nyquist point.
User’s Manual for Keil Compiler
-144
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIT_FFT
Real Forward Radix-2 Decimation-in-Time Fast
FourierTransformation (cont’d)
Pseudo code
{
DataS*
DataS*
CplxS*
CplxS
DataS
table;
//sinus and cosine table
x;
//16 bit real input vector
X;
//FFT output vector
P(n), P(n+1), Q(n), Q(n+1), Y(N/2), H(N/2), G(N/2);
k,i,n;
//building the complex sequences P(n) and Q(n)
Q(n) = x(2n) + jx(2n+1);
P(n) = x(2n+N/4) + jx(2n+N/4+1);
//Outloop = 1 to exp=log2(N/2)
for(k=0; k++; k<exp)
{
//Midloop = 1 to N/4 according to which stage
for(i=0; i<Midloop; i++)
{
//Inloop = N/2 to 1 (number of butterflies)
for(n=0; n<Inloop; n++)
{
P(n+1) = Re(P(n))+Re(Q(n))*cos(X)+Im(Q(n))*sin(X)
+j[Im(P(n))-Im(Q(n))*cos(X)-Re(Q(n)*sin/X)];
Q(n+1) = Re(P(n))-Re(Q(n))*cos(X)-Im(Q(n))*sin(X)
+j[Im(P(n))-Im(Q(n))*cos(X)-Re(Q(n)*sin/X)];
}
//if all elements processed, jump out of the Midloop
}
}
//output the first half of N/2 point complex FFT values Y,
//Extracting H and G from computed Y according to Equation [4.55],
//Calculating the first N/2 points of X based on
Equation [4.53] using H and G
}
Assumption
• Scale factor = 1/N (N = 2exp), preventing overflow
• FFT spectra = N * X(k)
Techniques
•
•
•
•
Memory bandwidth conflicts removing
Use of CoMAC instructions
Instruction re-ordering
output converted to 16-bit with saturation
User’s Manual for Keil Compiler
-145
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIT_FFT
Register Usage
Real Forward Radix-2 Decimation-in-Time Fast
FourierTransformation (cont’d)
• From .c file to .asm file:
R8 points to input vector x
R9 points to index vector
(R10) = exp
R11 points to the trigonometric function table
R12 contains the pointer of output vector X
User’s Manual for Keil Compiler
-146
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIT_FFT
Real Forward Radix-2 Decimation-in-Time Fast
FourierTransformation (cont’d)
Memory Note
Hi
Memory
Input-Buffer
Last Stage
Output-Spectrum
x(N-1)
Bit reversed
data fetch
X(N/2)
x(N-2)
.
.
X(N/2-1)
Hi
Memory
.
.
Stage 1 -- Stage exp-1
x(3)
X(3)
x(2)
X(2)
x(1)
X(1)
x(0)
X(0)
Butterfly
32 bit
16 bit
N point real input
data in 1Q15 in
linear order
Sinus, cosine
table
The first N/2+1
point FFT spectra
in linear order
sinus(N-1)
The N point real data is
rearranged as N/2 point
complex data
sinus(N-2)
.
.
sinus(3)
sinus(2)
sinus(1)
sinus(0)
16 bit
Figure 4-45 Real_DIT_FFT
User’s Manual for Keil Compiler
-147
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIT_FFT
Example
Real Forward Radix-2 Decimation-in-Time Fast
FourierTransformation (cont’d)
C166Lib\Keil\Examples\FFT\real_FFT\ real_T_FFT.c
Cycle Count
Store state
3
Read parameters
and memory
Initialization
12
Butterfly
31
FFT kernel
exp – 2

n
N
 6 + 2 • 29 + ---- • 36
4

n=0
∑
(FFT_cycle)
where exp=Log2N.
Unpack stage
71 + (N/4-1)*44
(U_cycle)
Restore state
3
Return
1
Total
19 + FFT_cycle + U_cycle
Examples:
N = 8 : cycle = 360
N = 16 : cycle = 876
N = 1024: cycle = 109111
Code Size
Store state
6
bytes
Read parameters
and memory
initialization
24
bytes
Butterfly
96
bytes
FFT kernel
88
bytes
User’s Manual for Keil Compiler
-148
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIT_FFT
Real Forward Radix-2 Decimation-in-Time Fast
FourierTransformation (cont’d)
Unpack Stage
178 bytes
Restore state
6 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
400 bytes
-149
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIF_IFFT
Real Inverse Radix-2 Decimation-in-Frequency Fast
Fourier Transformation
Signature
void real_DIF_IFFT
Inputs
index
(DataS*
DataS*
DataS
DataS*
DataS*
)
:
exp
Output
Bit reversed input index vector
Exponent of the input block size
table
:
The precalculated trigonometric
function (sinus and cosine) table
X
:
Input vector, FFT spectra in 1Q15
format
x
:
16 bit output of inverse FFT, real
sequences
Return
Implementation
Description
x,
index,
exp,
table,
X
:
This function computes the N-point real inverse radix-2 Fast
Fourier Transform with decimation-in-frequency on the given
N-point FFT spectra. The detailed implementation is given in
the Section 4.7.3.
The function is implemented as a unpack stage followed by a
complex inverse FFT of size N/2. The unpack stage aims to
unpack the N-point real FFT as N/2-point complex FFT. The
N/2-point complex inverse FFT is implemented with
decimation-in-frequency structure showed in Figure 4-41,
nk
– nk
where the butterfly W N should be replaced by W N .
User’s Manual for Keil Compiler
-150
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIF_IFFT
Real Inverse Radix-2 Decimation-in-Frequency Fast
Fourier Transformation (cont’d)
Pseudo code
{
CplxS*
DataS*
CplxS
DataS
X;
//input FFT spectra
x;
//16 bit real output vector
P(n), P(n+1), Q(n), Q(n+1), Y(N/2), H(N/2), G’(N/2);
k,i,n;
//extracting H(k) according to Equation [4.56]
Re{H(n)} = {Re{X(n)} + Re{X(N/2-n)}}/2;
Im{H(n)} = {Im{X(n)} - Im{X(N/2-n)}}/2;
//extracting G’(k) according to Equation [4.58]
Re{G’(n)} = {Re{X(n)} - Re{X(N/2-n)}}/2;
Im{G’(n)} = {Im{X(n)} + Im{X(N/2-n)}}/2;
//computing the complex spectrum Y according to Equation [4.59]
Re{Y(n)} = Re{H(n)}-sin(2*pi*n/N)*Re{G’(n)}cos(2*pi*n/N)*Im{G’(k)};
Im{Y(n)} = Im{H(n)}+cos(2*pi*n/N)*Re{G’(n)}sin(2*pi*n/N)*Im{G’(k)};
//define
P(n) = Y(2n); Q(n) = Y(2n+1);
//N/2-point inverse complex FFT
//Outloop = 1 to exp=log2(N/2)
for(k=0; k++; k<exp)
{
//Midloop = 1 to N/4 according to which stage
for(i=0; i<Midloop; i++)
{
//Inloop = 1 to N/4 (number of butterflies)
for(n=0; n<Inloop; n++)
{
P(n+1) = Re{P(n)}+Re{Q(n)}+j[Im{P(n)}+Im{Q(n)}];
Re{Q(n+1)} = (Re{P(n)}-Re{Q(n)})*cos(x)(Im{Q(n)}-Im{Q(n)}*sin(X);
Im[Q(n+1)} = (Im{P(n)}-Im{Q(n)})*cos(X)+
(Re(Q(n)-Re{Q(n)})*sin/X);
}
//if all elements processed, jump out of the Midloop
}
}
}
User’s Manual for Keil Compiler
-151
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIF_IFFT
Real Inverse Radix-2 Decimation-in-Frequency Fast
Fourier Transformation (cont’d)
Assumption
• The inputs are the scaled FFT spectra with factor = 1/N (N
= 2exp)
• Output without scale
Techniques
•
•
•
•
Register Usage
• From .c file to .asm file:
Memory bandwidth conflicts removing
Use of CoMAC instructions
Instruction re-ordering
output converted to 16-bit with saturation
R8
pointer of output vector x
R9
pointer of index vector
(R10) = exp
R11
pointer of trigonomic function table
R12
contains the pointer of input vector X
User’s Manual for Keil Compiler
-152
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIF_IFFT
Real Inverse Radix-2 Decimation-in-Frequency Fast
Fourier Transformation (cont’d)
Memory Note
Hi
Memory
Input-Buffer
Output-Buffer
Stage 1 -- Stage exp-1 Output-Buffer
X(N/2)
Y(N/2-1)
x(N-1)
X(N/2-1)
Y(N/2-2)
x(N-2)
.
.
.
.
.
.
X(3)
Y(3)
x(3)
X(2)
Y(2)
x(2)
X(1)
Y(1)
X(0)
Y(0)
32 bit
32 bit
N/2+1 point
complex input
data in 1Q15
in linear order
x(1)
Butterfly
x(0)
16 bit
rearranged N/2
point complex
data in 1Q15 in
bit-reversed order
Sinus, cosine
table
sinus(N-1)
sinus(N-2)
.
First Stage:
.
sinus(3)
The N/2+1 point complex
data is rearranged as N/2
point complex data
sinus(2)
sinus(1)
sinus(0)
16 bit
Figure 4-46 Real_DIF_IFFT
User’s Manual for Keil Compiler
-153
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIF_IFFT
Example
Real Inverse Radix-2 Decimation-in-Frequency Fast
Fourier Transformation (cont’d)
C166Lib\Keil\Examples\real_IFFT\ real_F_IFFT.c
Cycle Count
Store state
4
Read parameters
and memory
Initialization
7
Butterfly
28
Unpack stage
6 + 48*N/4
(U_cycle)
IFFT kernel
exp – 2

n
N
 7 + 2 • 28 + ---- • 33
4

n=0
∑
(IFFT_cycle)
where exp=Log2N.
Restore state
4
Return
1
Total
16 + IFFT_cycle + U_cycle
Examples:
N = 8 : cycle = 338
N = 16 : cycle = 817
N = 1024: cycle = 77654
Code Size
Store state
8
bytes
Read parameters
and memory
initialization
14
bytes
Butterfly
78
bytes
Unpack Stage
122 bytes
IFFT kernel
102 bytes
User’s Manual for Keil Compiler
-154
V 1.2, 2003-11
DSP Library for
XC16x Family
real_DIF_IFFT
Real Inverse Radix-2 Decimation-in-Frequency Fast
Fourier Transformation (cont’d)
Restore state
8 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
334 bytes
-155
V 1.2, 2003-11
DSP Library for
XC16x Family
Q15toFloat Change the Fixed point 1Q15 format to Floating point
format
Signature
float Q15toFloat (DataS X)
Inputs
X
:
The input value in 1Q15 format
Output
None
Return
Y
:
The output value in floating
format
Implementation
Description
This routine is used to change the 1Q15 fixed point format into
the floating point data.
we have the 1Q15 fixed point data with the structure:
s. b1 b2 b3 b4 b15
sig. 2-1 2-2 2-3 2-4 2-15
The floating point format has the structure:
1. word: mmmmmmmmmmmmmmmm
2. word: s e e e e e e e e mmmmmmm
where s =sign, e=exponent, m=mantissa. After format change
Pseudo code
Techniques
None
Assumption
Register Usage
• From .c file to .asm file:
Defined by the Compiler
• Output:
R4 =Mantissa, R5 =Exponent
User’s Manual for Keil Compiler
-156
V 1.2, 2003-11
DSP Library for
XC16x Family
Q15toFloat Change the Fixed point 1Q15 format to Floating point
format (cont’d)
Memory Note
s
sign
b1
2-1
b2
...
b14
b15
m15
s
...
m14
e7
...
...
e0
m2
m22
m1
...
m0 R4
m16 R5
2-14 2-15
2-2
Floating point format
Fixed point format
Figure 4-47 Q15toFloat
Example
C166Lib\Keil\Examples\Misc\Q15_Float.c
Cycle Count
Check if X=0 or X=1
4
Get sign bit
6
Initialise Exponent and
Mantissa
3
Check Most significant
bit
1+3N
Compute
output
8
floating
Write Output
6
Return
1
Total
28+3N
Example:
N=3
Cycle =37
Code Size
Check if X=0 or X=1
12 bytes
Get sign bit
12 bytes
User’s Manual for Keil Compiler
-157
V 1.2, 2003-11
DSP Library for
XC16x Family
Q15toFloat Change the Fixed point 1Q15 format to Floating point
format (cont’d)
Initialise Exponent and
Mantissa
6 bytes
Check Most significant
bit
12 bytes
Compute
output
16 bytes
floating
Write Output
12 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
72 bytes
-158
V 1.2, 2003-11
DSP Library for
XC16x Family
4.8
Matrix Operations
A matrix is a rectangular array of numbers (or functions) enclosed in brackets. These
numbers (or functions) are called entries or elements of the matrix.The number of entries
in the matrix is product of number of rows and columns. An m × n matrix means matrix
with m rows and n columns. In the double-subscript notation for the entries, the first
subscript always denotes the row and the second the column.
4.8.1
Descriptions
The following Matrix Operations are described.
• Multiplication
• Transpose
User’s Manual for Keil Compiler
-159
V 1.2, 2003-11
DSP Library for
XC16x Family
Matrix_mul
Signature
[MxN][NxP] Matrix Multiplication
void Matrix(
DataS*
DataS*
DataS*
DataS
DataS
DataS
DataS
x_1,
x_2,
y,
row1,
col1,
row2,
col2
)
Inputs
Output
x_1
:
Pointer to the first matrix in 1Q15
format
x_2
:
Pointer to the second matrix in
1Q15 format
row1
:
M, the number of rows in the first
matrix
col1, row2
:
N, the number of columns in the
first matrix, the number of rows in
the second matrix
col2
:
P, M, the number of rows in the
second matrix
y
:
Pointer to the output in 1Q15
format
Return
Implementation
Description
The multiplication of two matrices A and B is done. The
multiplication results will be stored in the [MxP] matrix y. Both
the input matrices and output matrix are 16-bit. All the element
of the matrix are stored row-by-row in the buffer.
y 11 y 12 …y 1P
a 11 a 12 …a 1N
y 21 y 22 …y 2P
a 21 a 22 …a 2N
′
′
′
′
y M1 y M2
User’s Manual for Keil Compiler
′
′
…y MP
=
-160
′
′
′
′
a M1 a M2
′
′
…a MN
b 11 b 12 …b 1P
×
b 21 b 22 …b 2P
′
′
′
′
b N1 b N2
′
′
…b NP
V 1.2, 2003-11
DSP Library for
XC16x Family
Matrix_mul
[MxN][NxP] Matrix Multiplication (cont’d)
Pseudo code
{
DataS
DataS
DataS
DataS
x_1[M*N];
x_2[N*P];
y[M*P];
i,j;
//first input matrix
//second input matrix
//output matrix
for (i=0 to M-1)
for (k=0 to P-1)
{
y(i,k) = 0;
for (j=0 to N-1)
y(i,k) = y(i,k) + x_1(i,j)*x_2(j,k);
}
}
Assumption
Techniques
• Memory bandwidth conflicts removing
• Use of CoMAC instructions
• Instruction re-ordering
Register Usage
• From .c file to .asm file:
Decided by the compiler
User’s Manual for Keil Compiler
-161
V 1.2, 2003-11
DSP Library for
XC16x Family
Matrix_mul
[MxN][NxP] Matrix Multiplication (cont’d)
Memory Note
Input Matrix B
Input Matrix A
High Addr.
Low Addr.
a[M-1,N-1]
b[N-1,P-1]
.
b[N-1,P-2]
a[1,1]
.
a[1,0]
.
a[0,N-1]
.
.
b[0,2]
a[0,1]
b[0,1]
b[0,0]
a[0,0]
DPRAM
MAC
High Addr.
Low Addr.
Memory
Output Matrix Y
High Addr.
y[M-1,P-1]
y[M-1,P-2]
.
.
.
y[0,2]
y[0,1]
Low Addr.
y[0,0]
Memory
Figure 4-48 Matrix_mul
Example
C166Lib\Keil\Examples\Matrix\Matrixmul.c
Cycle Count
User’s Manual for Keil Compiler
-162
V 1.2, 2003-11
DSP Library for
XC16x Family
Matrix_mul
[MxN][NxP] Matrix Multiplication (cont’d)
Read parameters
and memory
Initialization
13
Matrix loop
M(4+P(6+3N))
Return
1
Total
14 + M(4 + P(6 + 3N))
Example: M = 4, N = 3, P = 5
cycle = 330
Code Size
Read parameters
and memory
initialization
26 bytes
Matrix loop
40 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
68 bytes
-163
V 1.2, 2003-11
DSP Library for
XC16x Family
Matrix_trans
[MxN] Matrix Transpose
Signature
void Matrix_trans(DataS*
DataS*
DataS
DataS
)
Inputs
x
:
Pointer to the input matrix in 1Q15
format
row
:
M, the number of rows in the matrix
col
:
N, the number of columns in the
matrix
y
:
Pointer to the output in 1Q15
format
Output
x,
y,
row,
col
Return
Implementation
Description
This function performs Transpose of the given matrix.It takes
pointer to input matrix,size of row and size of column as input.
multiplication of two matrices A and B is done. The Transpose
results will be stored in the [MxN] matrix y. Both the input
matrices and output matrix are 16-bit. All the element of the
input matrix are stored row-by-row in the buffer.
x 11 x 21 …x M1
x 11 x 12 …x 1N
x 12 x 22 …x M2
′
′
′
′
x 1N x 2N
User’s Manual for Keil Compiler
x 21 x 22 …x 2N
=
′
′
′
′
′
′
′
′
…x MN
x M1 x M2 …x MN
-164
V 1.2, 2003-11
DSP Library for
XC16x Family
Matrix_trans
[MxN] Matrix Transpose (cont’d)
Pseudo code
{
DataS*
DataS*
DataS
DataS
x;
y;
M,N;
i,k;
//input matrix
//output matrix
//Number of rows,columns
for (i=0 to M-1)
for (k=0 to N-1)
{
y(k,i) =x(i,k);
}
}
Assumption
Techniques
• Memory bandwidth conflicts removing
• Instruction re-ordering
Register Usage
• From .c file to .asm file:
Decided by the compiler
User’s Manual for Keil Compiler
-165
V 1.2, 2003-11
DSP Library for
XC16x Family
Matrix_trans
[MxN] Matrix Transpose (cont’d)
Memory Note
High Addr.
Low Addr.
Input Matrix x
Output Matrix y
x[M-1,N-1]
y[N-1,P-1]
.
y[N-1,P-2]
x[1,1]
.
x[1,0]
y[1,0]
x[0,N-1]
.
.
y[0,2]
x[0,1]
y[0,1]
x[0,0]
y[0,0]
Memory
High Addr.
Low Addr.
Memory
MOV
Figure 4-49 Matrix_trans
Example
C166Lib\Keil\Examples\Matrix\Matrixtrans.c
Cycle Count
Memory
Initialization
10
Matrix loop
M(2N+4)
Return
1
Total
11+M(2N+4))
Example: M = 4, N = 3
cycle = 51
Code Size
User’s Manual for Keil Compiler
-166
V 1.2, 2003-11
DSP Library for
XC16x Family
Matrix_trans
[MxN] Matrix Transpose (cont’d)
Memory
initialization
20 bytes
Matrix loop
22 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
44 bytes
-167
V 1.2, 2003-11
DSP Library for
XC16x Family
4.9
Mathematical Operations
Here we provide some assembly routines of basic mathematical operations which can
be used in many DSP algorithms, such as speech codecs and spectrum analysis.
The following routines are described.
•
•
•
•
•
•
Sine
N-th order power series
Windowing with N coefficients
div_q15
div_q31
Sqrt
User’s Manual for Keil Compiler
-168
V 1.2, 2003-11
DSP Library for
XC16x Family
Sine
Sine function
Signature
DataS Sine(DataS* x)
Inputs
x
:
Output
By pi normalized input value
between [-1,1] in 1Q15 format,
x=xrad/pi, where xrad contains the
angle in radians [-p1,p1].
:
Return
y
Implementation
Description
For the input value in 1th quadrant (0, π ⁄ 2) the Sin(x) can
be approximated using the polynomial expansion.
:
output in 1Q15 format
sin (x) = 3.140625 (x) + 0.02026367 (x)
3
2
– 5.325196 (x) + 0.5446778 (x)
+ 1.800293 (x)
4
[4.60]
5
·
0 ≤ x ≤ 05 .
The values of Sine function in other quadrants are computed
by using the relations,
sin (– x) = – sin (x) and sin (180 – x) = sin x .
The function takes 16 bit input in 1Q15 format to
accommodate the range (– 1, 1) . The output is 16 bits in
1Q15 format. Coefficients are stored in 4Q12 format.
The absolute value of the input is calculated. If the input is
negative (III/IV Quadrant), then sign=1. If absolute value of
the input is greater than 1/2 (II/III Quadrant), it is subtracted
from 1. If sign=1, the result is negated to give the final sine
result.
To have an optimal implementation with zero overhead load
store, the polynomial in Equation [4.60] is rearranged as
below.
User’s Manual for Keil Compiler
-169
V 1.2, 2003-11
DSP Library for
XC16x Family
Sine
Sine function (cont’d)
sin (x) = ((((1.800293 x + 0.5446778)x
– 5.325196)x + 0.02026367)x
+ 3.140625)x
[4.61]
Hence, 4 multiply-accumulate and 1 multiply instruction will
compute the Equation [4.61].
Pseudo code
{
DataS
DataS
DataS
DataS
DataS
a[5];
x;
y;
i;
sign;
//coefficient vector
//input value
//output value
//sign of input
//determine the sign of input
sign = 0;
if(x<0)
sign = 1
//if x in III/IV quadrant
if(abs(x)>0.5)
x = 1-abs(x);
//polynomial
y = a(0)*x + a(1);
y = y*x + a(2);
y = y*x + a(3);
y = y*x + a(4);
y = y*x;
//x in I/II quandrant
if(sign == 0)
y = y;
//x in III/IV quandrant
else if(sign == 1)
y = -y;
}
Assumption
User’s Manual for Keil Compiler
-170
V 1.2, 2003-11
DSP Library for
XC16x Family
Sine
Sine function (cont’d)
Techniques
• Use of CoMAC instructions
• Instruction re-ordering
Register Usage
• Defined by the compiler
• From .asm file to.c file
y is stored in R4
Memory Note
Data
Memory
High Addr.
x
Input
a(0)
(R4)=y
Output
4Q12
1Q15
a(4)
a(3)
a(2)
a(1)
Low Addr.
.
.
.
.
.
.
5
∑ a(i − 1) x
i
i =1
Figure 4-50 Sine
Example
C166Lib\Keil\Examples\Math\ Sinus.c
Cycle Count
Memory
Initialization
1
Polynomial
26
User’s Manual for Keil Compiler
-171
V 1.2, 2003-11
DSP Library for
XC16x Family
Sine
Sine function (cont’d)
Return
1
Total
28
Code Size
Memory
initialization
2 bytes
Polynomial
88 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
92 bytes
-172
V 1.2, 2003-11
DSP Library for
XC16x Family
P_series
N-th order power series
Signature
DataS P_series(DataS* a, DataS* IN, DataS N)
Inputs
a
:
Pointer to the coefficient vector in
1Q15 format
IN
:
Input value
N
:
Size of series that must be even
number
Y
:
Series output in 1Q15 format
Output
Return
Implementation
Description
The routine is implemented with CoMUL and CoADD
instructions. To optimize the routine, the implementation uses
"loop unrolling" technique and assumes that N is even. The
implementation formula is:
N
y =
∑ a(i) ⋅ x
i
i=0
= [[[[a (N) ⋅ x + a (N – 1)]x + a (N – 2)]x + a (N – 3)]x + …]
Pseudo code
{
DataS
DataS
DataS
DataS
a[N];
X;
Y;
i;
//coefficient vector
//input value
//output value
Y = a(N);
for(i=0; i<N; i++)
Y = Y*X + a(N-1);
}
Assumption
• N = even number
Techniques
• Use of CoMAC instructions
• Loop unrolling
• Instruction re-ordering
User’s Manual for Keil Compiler
-173
V 1.2, 2003-11
DSP Library for
XC16x Family
P_series
N-th order power series (cont’d)
Register Usage
• From .c file to .asm file:
Defined by the compiler
• From .asm file to.c file
Y is stored in R4
Memory Note
M em ory
High Addr.
IN
Input
a(0)
(R4)=y
O utput
1Q 15
1Q 15
a(N)
a(N-1)
a(2)
a(1)
Low Addr.
.
.
.
.
.
.
N
∑ a (i) x
i
i=0
Figure 4-51 P_series
Example
C166Lib\Keil\Examples\Math\ Power_Serie.c
Cycle Count
Memory
Initialization
13
Series loop
7N/2
Return
1
User’s Manual for Keil Compiler
-174
V 1.2, 2003-11
DSP Library for
XC16x Family
P_series
N-th order power series (cont’d)
Total
14 + 7N/2
Example:
N = 10
cycle = 49
Code Size
Memory
initialization
26 bytes
Series loop
28 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
56 bytes
-175
V 1.2, 2003-11
DSP Library for
XC16x Family
Windowing
Windowing with N coefficients
Signature
void Windowing(
DataS*
DataS*
DataS*
DataS
h,
x,
y,
N
Inputs
h
:
Pointer to the coefficient vector in
1Q15 format
x
:
Pointer to the input vector in 1Q15
format
N
:
The length of the window
y
:
Output vector in 1Q15 format
)
Output
Return
:
Implementation
Description
To optimize the routine, the implementation uses "loop
unrolling" technique and assumes that N is even number. The
implementation formula is:
y(i) = x(i) ⋅ w(i),
for
i = 0, 1, …N – 1
Pseudo code
{
DataS
DataS
DataS
DataS
w[N];
x[N];
y[N];
i;
//coefficient vector
//input value
//output value
for(i=0; i<N; i++)
y(i) = x(i)*w(i);
}
Assumption
• N should be even number.
Techniques
• Use of CoMUL instructions
• Loop unrolling with the factor 2
Register Usage
• From .c file to .asm file:
Defined by the compiler
User’s Manual for Keil Compiler
-176
V 1.2, 2003-11
DSP Library for
XC16x Family
Windowing
Windowing with N coefficients (cont’d)
Memory Note
High Addr.
Low Addr.
Input vector X
Coefficient
vector h
x(n)
h(n)
x(n-1)
h(n-1)
.
.
.
.
.
.
x(n-N+3)
h(n-N+3)
x(n-N+2)
h(n-N+2)
x(n-N+1)
CoMUL
Memory
h(n-N+1)
Memory
Output Matrix Y
High Addr.
y(n)
y(n-1)
.
.
.
y(n-N+3)
y(n-N+2)
Low Addr.
y(n-N+1)
Memory
Figure 4-52 Windowing
Example
C166Lib\Keil\Examples\Math\ Window.c
User’s Manual for Keil Compiler
-177
V 1.2, 2003-11
DSP Library for
XC16x Family
Windowing
Windowing with N coefficients (cont’d)
Cycle Count
Memory
Initialization
4
Loop
7N/2
Return
1
Total
5 + 7N/2
Example:
N = 128
cycle = 453
Code Size
Memory
initialization
8
Loop
24 bytes
Return
2
Total
34 bytes
User’s Manual for Keil Compiler
-178
bytes
bytes
V 1.2, 2003-11
DSP Library for
XC16x Family
div_q15
Division of two 1Q15 fractional inputs
Signature
DataS div_q15(DataS
DataS
)
Inputs
x
:
Dividend in 1Q15 format
y
:
Divisor in 1Q15 format
Output
x,
y
:
Return
r
Implementation
Description
This function performs the division of two fractional inputs.
The dividend and the divisor are in 1Q15 format.The result is
saturated to +1 or -1 if |x|>|y|.
:
Result in 1Q15 format
x--- = x---------------× 2 31- × 2 –15
y
y × 2 15
Pseudo code
Assumption
|x| should be less than |y|
Techniques
Register Usage
• From .c file to .asm file:
Defined by the compiler
• Output in R4
User’s Manual for Keil Compiler
-179
V 1.2, 2003-11
DSP Library for
XC16x Family
div_q15
Division of two 1Q15 fractional inputs (cont’d)
Memory Note
Dividend
x15 x14
...
x1
x0
Divisor
y15 y14
...
y1
y0
DIVL
r15
r14
...
r1
r0
R4
Output
Input
Figure 4-53 Division of two 1Q15 fractional inputs
Example
C166Lib\Keil\Examples\Math\ div_16.c
Cycle Count
Compute
values
absolute
Compute signs
6
8
Division
11
Return
1
Total
26
Code Size
Compute
values
absolute
20
bytes
Compute signs
24
bytes
Division
18
bytes
Return
Total
User’s Manual for Keil Compiler
-180
2
bytes
64
bytes
V 1.2, 2003-11
DSP Library for
XC16x Family
div_q31
Division of 1Q31 fractional by 1Q15 fractional
Signature
DataS div_q31(DataL x,
DataS y
)
Inputs
x
:
Dividend in 1Q31 format
y
:
Divisor in 1Q15 format
Return
r
:
Result in 1Q15 format
Implementation
Description
This function performs the division of two fractional inputs.
The dividend is in1Q31 format and the divisor is in 1Q15
format.The result is saturated to +1 or -1 if |x|>|y|,which is in
1Q15 format.
Output
x--- = x---------------× 2 31y
y × 2 15
Pseudo code
Assumption
• |x|should be less than |y|
Techniques
• Use of CoMUL instructions
Register Usage
• From .c file to .asm file:
Defined by the compiler
• Output in R4
User’s Manual for Keil Compiler
-181
V 1.2, 2003-11
DSP Library for
XC16x Family
div_q31
Division of 1Q31 fractional by 1Q15 fractional (cont’d)
Memory Note
Dividend x31 x30
...
x17 x16
Dividend x15 x14
...
x1
x0
...
Input
y1
y0
Divisor
y15 y14
DIVL
r15
r14
...
r1
r0
R4
Output
Figure 4-54 Division of 1Q31 fractional by 1Q15 fractional
Example
C166Lib\Keil\Examples\Math\div_32.c
Cycle Count
Compute
values
absolute
Compute signs
8
8
Division
11
Return
1
Total
28
Code Size
Compute
values
22
bytes
Compute signs
24
bytes
Division
18
bytes
User’s Manual for Keil Compiler
absolute
-182
V 1.2, 2003-11
DSP Library for
XC16x Family
div_q31
Division of 1Q31 fractional by 1Q15 fractional (cont’d)
Return
Total
User’s Manual for Keil Compiler
-183
2
bytes
60
bytes
V 1.2, 2003-11
DSP Library for
XC16x Family
Sqrt
Square root
Signature
DataS Sqrt(DataS x
Inputs
x
:
Input value in 1Q15 format in the
range [0,1)
Output
y
:
Output value in 1Q15 format
)
Return
Implementation
Description
:
The square root of the input value x can be calculated by
using the following polynomial expansion
Sqrt (x) = 1.454895 (x) – 1.34491 (x) 2 + 1.106812 (x) 3
– 0.536499 (x) 4 + 0.1121216 (x) 5 + 0.2075806
where,0.5<=x<=1
The coefficents of polynomial are stored in 2Q14 format.The
square root table(table of scale factors)stores 1/sqrt(2^n) in
1Q15 format where n ranges from 0 to15. As the polynomial
expansion needs input only in the range 0.5 to 1,the given
input has to be scaled up.If the input value is less than
0.5,then it is scaled up by the powers of two,so that the scaled
input value lies in the range 0.5 to 1.This scaled input is used
for polynomial calculation.The calculated output is scaled
down by 1/sqrt(2^n) to get the actual output.The obtained
result is in 1Q15 format.
User’s Manual for Keil Compiler
-184
V 1.2, 2003-11
DSP Library for
XC16x Family
Sqrt
Square root (cont’d)
Pseudo code
{
DataS
DataS
DataS
DataS
x;
//input value
C;
// Coeffcient
y;
//output value
*scale factor; //scaling
if(x>=0.5 && x<1)
{
y=((((c^5*x+c^4)x+c^3)x+c^2)x+c)x; //compute Square root
y=y+0.2075806;
//compute Square root
}
if(x>=0 && x<0.5)
{
x=x*scale factor;
y=((((c^5*x+c^4)x+c^3)x+c^2)x+c)x; //compute Square root
y=y+0.2075806;
y=y/scale factor;
}
Assumption
• Input is positive
Techniques
• Use of CoMUL instructions
Register Usage
• From .c file to .asm file:
Defined by the compiler
• From .asm file to .c file
R4 = y
Memory Note
Example
C166Lib\Keil\Examples\Math\ Squart.c
Cycle Count
Register
Initialization
1
checking if x<=0
3
checking if x>0.5
3N
compute
root
17
Multiplication
scalar
User’s Manual for Keil Compiler
square
with
-185
5
V 1.2, 2003-11
DSP Library for
XC16x Family
Sqrt
Square root (cont’d)
Return
1
Total
27+3N
Example:
N=4
cycle=39
Code Size
Register
Initialization
2
bytes
checking if x<0
8
bytes
checking if x>0.5
12
bytes
compute
root
square
66
bytes
with
14
bytes
2
bytes
Multiplication
scalar
Return
Total
User’s Manual for Keil Compiler
104 bytes
-186
V 1.2, 2003-11
DSP Library for
XC16x Family
4.10
Statistical Functions
The following statistical functions are described.
• Correlation
Cross-correlation
Autocorrelation
• Convolution
4.10.1
Correlation
4.10.1.1 Definitions of Correlation
Correlation determines the degree of similarity between two signals. If two signals are
identical their correlation coefficient is 1, and if they are completely different it is 0. If they
are identical by 180 phase shift between them, then the correlation coefficient is -1.
There are two types of correlation, Cross-Correlation and Autocorrelation.
When two independent signals are compared, the procedure is cross-correlation. When
the same signal is compared to phase shifted copies of itself, the procedure is
autocorrelation. Autocorrelation is used to extract the fundamental frequency of a signal.
The distance between correlation peaks is the fundamental period of the signal.
Suppose that N1 and N2 represent the size of input signals x1 and x2, respectively, and
N=N1+N2 and N1 ≥ N2 . Extending x1 to N-point vector through adding N2-points of
zero at the beginning, and x2 to N-point vector through adding N1-points of zero in the
end, we can define the discrete cross-correlation as follows.
Raw Cross-correlation:
N1 + j – 1
r(j) =
∑
x1 (i)x2 (i + j)
– N 2 + 1 ≤ j ≤ N1 – 1
,
[4.62]
i=0
Biased Cross-correlation:
1- ×
r (j) = -----N1
N1 + j – 1
∑
x1 (i)x2 (i + j)
i=0
,
– N 2 + 1 ≤ j ≤ N1 – 1
[4.63]
Unbiased Cross-correlation:
1
r (j) = ------------------------- ×
N – abs (j)
N1 + j – 1
∑
x1 (i)x2 (i + j)
,
i=0
User’s Manual for Keil Compiler
-187
– N 2 + 1 ≤ j ≤ N1 – 1
[4.64]
V 1.2, 2003-11
DSP Library for
XC16x Family
The above definitions contain the full-length cross-correlation of the real input signals x1
and x2 with N points output, which consists of N2 points of the negative-side and N1
points of the positive-side.
If the input vectors x1 and x2 are same and equal to x with the size of N, we have the
following definitions of the positive-side of the autocorrelation.
Raw Autocorrelation:
N–j–1
r(j) =
∑
x (i)x (i + j)
for j = 0 to Nr ≤ N – 1
[4.65]
for j = 0 to Nr ≤ N – 1
[4.66]
for j = 0 to Nr ≤ N – 1 ,
[4.67]
i=0
Biased Autocorrelation:
1- ×
r (j) = --N
N–j–1
∑
x (i)x (i + j)
i=0
Unbiased Autocorrelation:
1 -×
r (j) = ----------N–j
N–j–1
∑
x (i)x (i + j)
i=0
where j is the lag value, as it indicates the shift/lag considered for the r(j) autocorrelation.
Nr is the correlation length and it determines how much data is used for each
autocorrelation result. Note that the full-length autocorrelation of vector x will have 2N-1
points with even symmetry around the lag 0 point r(0). The above definitions define only
the positive half for memory and computational savings.
4.10.1.2 Implementation Note
Directly implementing the cross-correlation according to definitions in Equation [4.62] ,
Equation [4.63] and Equation [4.64] has difficulty due to the negative index. To make
the algorithms realizable in assembly we need to rewrite the definitions.
Raw Cross-correlation:
User’s Manual for Keil Compiler
-188
V 1.2, 2003-11
DSP Library for
XC16x Family
The negative-side can be rewriten as with positive index
j
r(j) =
∑ x1 (i)x2 (N2 – j – 1 + i)
,
0 ≤ j ≤ N2 – 1
[4.68]
,
0 ≤ j ≤ N1 – N2 – 1
[4.69]
i=0
and the positive-side as
N2 – 1
r (j + N2) =
∑
x1 (i + j)x2 (i)
i=0
N1 – j – 1
∑
r (j + N2) =
x1 (i)x2 (N2 – j – 1 + i)
N1 – N2 < j ≤ N1 – 1
,
.
[4.70]
i=0
Biased Cross-correlation:
The negative-side:
1
r (j) = ------- ×
N1
j
∑ x1 (i)x2 (N2 – j – 1 + i)
0 ≤ j ≤ N2 – 1
,
i=0
[4.71]
The positive-side:
1- ×
r (j + N2) = -----N1
1- ×
r (j + N2) = -----N1
N2 – 1
∑
x1 (i + j)x2 (i)
i=0
,
0 ≤ j ≤ N1 – N2 – 1
N1 – j – 1
∑
x1 (i)x2 (N2 – j – 1 + i)
,
[4.72]
N1 – N2 < j ≤ N1 – 1
[4.73]
i=0
Unbiased Cross-correlation:
The negative-side:
1
r (j) = ------------------------ ×
abs (j + 1)
j
∑ x1 (i)x2 (N2 – j – 1 + i)
i=0
User’s Manual for Keil Compiler
-189
,
0 ≤ j ≤ N2 – 1
[4.74]
V 1.2, 2003-11
DSP Library for
XC16x Family
The positive-side:
1
r (j + N2) = ------- ×
N2
N2 – 1
∑
x1 (i + j)x2 (i)
i=0
1
r (j + N2) = ----------------------------×
N1 – abs (j)
4.10.2
,
0 ≤ j ≤ N1 – N2 – 1
[4.75]
N1 – j – 1
∑
x1 (i)x2 (N2 – j – 1 + i) , N1 – N2 < j ≤ N1 – 1
[4.76]
i=0
Implementation Description
The following routines are described.
•
•
•
•
•
•
Raw autocorrelation
Biased autocorrelation
Unbiased autocorrelation
Raw cross-correlation
Biased cross-correlation
Unbiased cross-correlation
User’s Manual for Keil Compiler
-190
V 1.2, 2003-11
DSP Library for
XC16x Family
Auto_raw
Raw autocorrelation
Signature
void Auto_raw(
DataS*
DataS*
DataS
DataS
x,
y,
N_x,
N_y
Inputs
x
:
Pointer to input vector in 1Q15 format
N_x
:
The length of input vector
N_y (Nr)
:
The length of output vector
y
:
Pointer to output vector in 1Q15
format
)
Output
Return
:
Implementation
Description
The function performs the positive side of the raw autocorrelation
function of real vector x according to the definition in
Equation [4.65] . The arguments to the function are pointer to the
input vector, pointer to output buffer to store autocorrelation
result, size of input buffer and number of auto correlated outputs
desired. The input values and output values are both in 16 bit
fractional format.
Pseudo code
{
DataS
DataS
DataS
DataS
DataS
*x;
*y;
N_x;
N_y;
i,j;
//Ptr to input vector
//Ptr to output vector
//size of input
//size of autocorrelation result
for(j=0; j<N_y; j++)
{
y[j] = 0;
for(i=0; i<N_x-j; i++)
y[j] = y[j] + x[i+j]*x[i];
}
}
Assumption
• N_y<=N_x
Techniques
• Use of CoMUL instructions
User’s Manual for Keil Compiler
-191
V 1.2, 2003-11
DSP Library for
XC16x Family
Auto_raw
Register Usage
Raw autocorrelation (cont’d)
• From .c file to .asm file:
Defined by the compiler
Memory Note
High Addr.
Low Addr.
Input vector
x(i)
shifted input
vector x(i+j)
x(Nx-1)
x(Nx-j-1)
x(Nx-2)
.
.
.
.
x(1)
.
x(0)
x(2)
.
x(1)
.
x(0)
0
CoMAC
Memory
Memory
Output y
High Addr.
y(Ny-1)
y(Ny-2)
.
.
.
y(2)
y(1)
Low Addr.
y(0)
Memory
Figure 4-55 Raw autocorrelation
User’s Manual for Keil Compiler
-192
V 1.2, 2003-11
DSP Library for
XC16x Family
Auto_raw
Example
Raw autocorrelation (cont’d)
C166Lib\Keil\Examples\Static_funcs\Auto_correlation\Autoc.c
Cycle Count
Memory Initialization
4
Loop_cyc
Ny – 1
2⋅
∑
(Nx – j + 8)
j=0
Return
1
Total
5 + loop_cyc
Example:
Nx = 10, Ny = 3
cycle = 107
Code Size
Memory Initialization
Loop_cyc
Return
Total
User’s Manual for Keil Compiler
8
46
bytes
2
bytes
56
-193
bytes
bytes
V 1.2, 2003-11
DSP Library for
XC16x Family
Auto_bias
Biased autocorrelation
Signature
void Auto_bias(DataS*
DataS*
DataS
DataS
)
Inputs
x
:
Pointer to input vector in 1Q15 format
N_x
:
The length of input vector
N_y (Nr)
:
The length of output vector
y
:
Pointer to output vector in 1Q15
format
Output
Return
x,
y,
N_x,
N_y
:
Implementation
Description
The function performs the positive side of the biased
autocorrelation function of real vector x according to the definition
in Equation [4.66]. The arguments to the function are pointer to
the input vector, pointer to output buffer to store autocorrelation
result, size of input buffer and number of auto correlated outputs
desired. The input values and output values are both in 16 bit
fractional format.
Pseudo code
{
DataS
DataS
DataS
DataS
DataS
*x;
*y;
N_x;
N_y;
i,j;
//Ptr to input vector
//Ptr to output vector
//size of input
//size of autocorrelation result
for(j=0; j<N_y; j++)
{
y[j] = 0;
for(i=0; i<N_x-j; i++)
y[j] = (y[j] + x[i+j]*x[i])/N_x;
}
}
Assumption
• N_y<=N_x
Techniques
• Use of CoMUL instructions
User’s Manual for Keil Compiler
-194
V 1.2, 2003-11
DSP Library for
XC16x Family
Auto_bias
Register Usage
Biased autocorrelation (cont’d)
• From .c file to .asm file:
Defined by the compiler
Memory Note
High Addr.
Input vector
x(i)
shifted input
vector x(i+j)
x(Nx-1)
x(Nx-j-1)
x(Nx-2)
.
Low Addr.
.
.
.
x(1)
.
x(0)
x(2)
.
x(1)
.
x(0)
0
CoMAC
Memory
Memory
Output y
High Addr.
y(Ny-1)
y(Ny-2)
.
.
.
y(2)
y(1)
Low Addr.
y(0)
Memory
Figure 4-56 Biased autocorrelation
User’s Manual for Keil Compiler
-195
V 1.2, 2003-11
DSP Library for
XC16x Family
Auto_bias
Example
Biased autocorrelation (cont’d)
C166Lib\Keil\Examples\Static_funcs\ Auto_correlation\Autoc.c
Cycle Count
Memory Initialization
4
Loop_cyc
Ny – 1
2⋅
∑
(Nx – j + 17)
j=0
Return
1
Total
5 + loop_cyc
Example:
Nx = 10, Ny = 3
cycle = 161
Code Size
Memory Initialization
Loop_cyc
Return
Total
User’s Manual for Keil Compiler
-196
8
bytes
54
bytes
2
bytes
64
bytes
V 1.2, 2003-11
DSP Library for
XC16x Family
Auto_unbias
Unbiased autocorrelation
Signature
void Auto_unbias(DataS*
DataS*
DataS
DataS
)
Inputs
x
:
Pointer to input vector in 1Q15 format
N_x
:
The length of input vector
N_y (Nr)
:
The length of output vector
y
:
Pointer to output vector in 1Q15
format
Output
Return
x,
y,
N_x,
N_y
:
Implementation
Description
The function performs the positive side of the unbiased
autocorrelation function of real vector x according to the definition
in Equation [4.67]. The arguments to the function are pointer to
the input vector, pointer to output buffer to store autocorrelation
result, size of input buffer and number of auto correlated outputs
desired. The input values and output values are both in 16 bit
fractional format.
Pseudo code
{
DataS
DataS
DataS
DataS
DataS
*x;
*y;
N_x;
N_y;
i,j;
//Ptr to input vector
//Ptr to output vector
//size of input
//size of autocorrelation result
for(j=0; j<N_y; j++)
{
y[j] = 0;
for(i=0; i<N_x-j; i++)
y[j] = (y[j] + x[i+j]*x[i])/(N_x-j);
}
}
Assumption
• N_y<=N_x
Techniques
• Use of CoMUL instructions
User’s Manual for Keil Compiler
-197
V 1.2, 2003-11
DSP Library for
XC16x Family
Auto_unbias
Register Usage
Unbiased autocorrelation (cont’d)
• From .c file to .asm file:
Defined by the compiler
Memory Note
High Addr.
Input vector
x(i)
shifted input
vector x(i+j)
x(Nx-1)
x(Nx-j-1)
x(Nx-2)
.
.
.
.
x(1)
.
x(0)
x(2)
.
Low Addr.
x(1)
.
x(0)
0
CoMAC
Memory
Memory
Output y
High Addr.
y(Ny-1)
y(Ny-2)
.
.
.
y(2)
y(1)
Low Addr.
y(0)
Memory
Figure 4-57 Unbiased autocorrelation
User’s Manual for Keil Compiler
-198
V 1.2, 2003-11
DSP Library for
XC16x Family
Auto_unbias
Example
Unbiased autocorrelation (cont’d)
C166Lib\Keil\Examples\Static_funcs\ Auto_correlation\Autoc.c
Cycle Count
Memory Initialization
4
Loop_cyc
Ny – 1
2⋅
∑
(Nx – j + 18)
j=0
Return
1
Total
5+ loop_cyc
Example:
Nx = 10, Ny = 3
cycle = 167
Code Size
Memory Initialization
Loop_cyc
Return
Total
User’s Manual for Keil Compiler
-199
8
bytes
56
bytes
2
bytes
66
bytes
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_raw
Raw cross-correlation
Signature
void Cross_raw(
DataS*
DataS*
DataS*
DataS
DataS
x1,
x2
y,
N_x1,
N_x2
Inputs
x1
:
Pointer to first input vector in 1Q15
format
x2
:
Pointer to second input vector in 1Q15
format
N_x1 (N1)
:
The length of the first input vector
N_x2 (N2)
:
The length of the second input vector
y
:
Pointer to output vector in 1Q15 format
)
Output
Return
Implementation
Description
:
The function performs the full-length raw cross-correlation function
of real vector x1 and x2 according to Equation [4.68],
Equation [4.69] and Equation [4.70]. The arguments to the
function are pointers to the input vectors, pointer to output buffer to
store autocorrelation result and sizes of input buffers. The input
values and output values are both in 16 bit fractional format.
User’s Manual for Keil Compiler
-200
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_raw
Raw cross-correlation (cont’d)
Pseudo code
{
DataS
DataS
DataS
DataS
DataS
DataS
*x1;
*x2;
*y;
N1;
N2;
i,j;
//Ptr to the first input vector
//Ptr to the second input vector
//Ptr to output vector
//size of the first input
//size of the second input
//negative side
for(j=0; j<N2; j++)
{
y[j] = 0;
for(i=0; i<j; i++)
y[j] = y[j] + x1[i]*x2[N2-j-1+i];
}
//positive side
if(0<=j<=(N1-N2-1))
{
y[j+N2] = 0;
for(i=0; i<N2; i++)
y[j+N2] = y[j+N2] + x1[i+j]*x2[i];
}
else if((N1-N2)<=j<=(N1-1))
{
y[j+N2] = 0;
for(i=0; i<N1-j; i++)
y[j+N2] = y[j+N2] + x1[i]*x2[N2-j-1+i];
}
}
Assumption
• N2<=N1
• x1 must be stored in DPRAM area.
Techniques
• Use of CoMUL instructions
Register Usage
• From .c file to .asm file:
Defined by the compiler
User’s Manual for Keil Compiler
-201
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_raw
Raw cross-correlation (cont’d)
Memory Note
Input vector x2
Input vector x1
High Addr.
Low Addr.
x1(N1-1)
IDX0
x2(N2-1)
x1(N1-2)
x2(N2-2)
.
.
.
.
.
.
x1(2)
x2(2)
x1(1)
x2(1)
x1(0)
CoMAC
DPRAM
x2(0)
Memory
Output y
High Addr.
y(N-1)
y(N-2)
.
.
.
y(2)
y(1)
Low Addr.
y(0)
Memory
Figure 4-58 Raw cross-correlation
Example
C166Lib\Keil\Examples\Static_funcs\ Cross_correlation\Cross.c
User’s Manual for Keil Compiler
-202
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_raw
Raw cross-correlation (cont’d)
Cycle Count
Memory Initialization
4
Neg_cyc
N2 – 1
∑
(j + 18)
j=0
Positive-side:
Intialization
3
Pos_cyc1
(N1-N2)*(N2+19)
Pos_cyc2
N2 – 1
∑
(N1 – j + 19)
j=0
Return
1
Total
8 + Neg_cyc + Pos_cyc1 + Pos_cyc2
Example:
N1 = 3, N2 = 3
cycle = 128
Code Size
Memory Initialization
8
bytes
50
bytes
6
bytes
Pos_cyc1
36
bytes
Pos_cyc2
44
bytes
2
bytes
146
bytes
Neg_cyc
Positive-side:
Intialization
Return
Total
User’s Manual for Keil Compiler
-203
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_bias
Biased cross-correlation
Signature
void Cross_bias(
DataS*
DataS*
DataS*
DataS
DataS
x1,
x2
y,
N_x1,
N_x2
Inputs
x1
:
Pointer to first input vector in 1Q15
format
x2
:
Pointer to second input vector in 1Q15
format
N_x1 (N1)
:
The length of the first input vector
N_x2 (N2)
:
The length of the second input vector
y
:
Pointer to output vector in 1Q15 format
)
Output
Return
Implementation
Description
:
The function performs the full-length biased cross-correlation
function of real vector x1 and x2 according to
Equation [4.71],Equation [4.72] and Equation [4.73]. The
arguments to the function are pointers to the input vectors, pointer
to output buffer to store autocorrelation result and sizes of input
buffers. The input values and output values are both in 16 bit
fractional format.
User’s Manual for Keil Compiler
-204
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_bias
Biased cross-correlation (cont’d)
Pseudo code
{
DataS
DataS
DataS
DataS
DataS
DataS
*x1;
*x2;
*y;
N1;
N2;
i,j;
//Ptr to the first input vector
//Ptr to the second input vector
//Ptr to output vector
//size of the first input
//size of the second input
//negative side
for(j=0; j<N2; j++)
{
y[j] = 0;
for(i=0; i<j; i++)
y[j] = (y[j] + x1[i]*x2[N2-j-1+i])/N1;
}
//positive side
if(0<=j<=(N1-N2-1))
{
y[j+N2] = 0;
for(i=0; i<N2; i++)
y[j+N2] = (y[j+N2] + x1[i+j]*x2[i])/N1;
}
else if((N1-N2)<=j<=(N1-1))
{
y[j+N2] = 0;
for(i=0; i<N1-j; i++)
y[j+N2] = (y[j+N2] + x1[i]*x2[N2-j-1+i])/N1;
}
}
Assumption
• N2<=N1
• x1 must be stored in DPRAM area.
Techniques
• Use of CoMUL instructions
Register Usage
• From .c file to .asm file:
Defined by the compiler
User’s Manual for Keil Compiler
-205
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_bias
Biased cross-correlation (cont’d)
Memory Note
input vector x2
Input vector x1
High Addr.
Low Addr.
IDX0
x1(N1-1)
x2(N2-1)
x1(N1-2)
x2(N2-2)
.
.
.
.
.
.
x1(2)
x2(2)
x1(1)
x2(1)
x1(0)
CoMAC
DPRAM
x2(0)
Memory
Output y
High Addr.
y(N-1)
y(N-2)
.
.
.
y(2)
y(1)
Low Addr.
y(0)
Memory
Figure 4-59 Biased cross-correlation
Example
C166Lib\Keil\Examples\Static_funcs\ Cross_correlation\Cross.c
User’s Manual for Keil Compiler
-206
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_bias
Biased cross-correlation (cont’d)
Cycle Count
Memory Initialization
4
Neg_cyc
N2 – 1
∑
(j + 36)
j=0
Positive-side:
Intialization
3
Pos_cyc1
(N1-N2)*(N2+37)
Pos_cyc2
N2 – 1
∑
(N1 – j + 34)
j=0
Return
1
Total
8 + Neg_cyc + Pos_cyc1 + Pos_cyc2
Example:
N1 = 3, N2 = 3
cycle = 156
Code Size
Memory Initialization
8
bytes
56
bytes
6
bytes
Pos_cyc1
32
bytes
Pos_cyc2
52
bytes
2
bytes
Neg_cyc
Positive-side:
Intialization
Return
Total
User’s Manual for Keil Compiler
156 bytes
-207
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_unbias
Unbiased cross-correlation
Signature
void Cross_unbias(DataS*
DataS*
DataS*
DataS
DataS
)
Inputs
x1
:
Pointer to first input vector in 1Q15
format
x2
:
Pointer to second input vector in 1Q15
format
N_x1 (N1)
:
The length of the first input vector
N_x2 (N2)
:
The length of the second input vector
y
:
Pointer to output vector in 1Q15 format
Output
Return
Implementation
Description
x1,
x2
y,
N_x1,
N_x2
:
The function performs the full-length unbiased cross-correlation
function of real vector x1 and x2 according to
Equation [4.74],Equation [4.75] and Equation [4.76] . The
arguments to the function are pointers to the input vectors, pointer
to output buffer to store autocorrelation result and sizes of input
buffers. The input values and output values are both in 16 bit
fractional format.
User’s Manual for Keil Compiler
-208
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_unbias
Unbiased cross-correlation (cont’d)
Pseudo code
{
DataS
DataS
DataS
DataS
DataS
DataS
*x1;
*x2;
*y;
N1;
N2;
i,j;
//Ptr to the first input vector
//Ptr to the second input vector
//Ptr to output vector
//size of the first input
//size of the second input
//negative side
for(j=0; j<N2; j++)
{
y[j] = 0;
for(i=0; i<j; i++)
y[j] = (y[j] + x1[i]*x2[N2-j-1+i])/abs(j+1);
}
//positive side
if(0<=j<=(N1-N2-1))
{
y[j+N2] = 0;
for(i=0; i<N2; i++)
y[j+N2] = (y[j+N2] + x1[i+j]*x2[i])/N2;
}
else if((N1-N2)<=j<=(N1-1))
{
y[j+N2] = 0;
for(i=0; i<N1-j; i++)
y[j+N2] = (y[j+N2] + x1[i]*x2[N2-j-1+i])/(N1-abs(j));
}
}
Assumption
• N2<=N1
• x1 must be stored in DPRAM area.
Techniques
• Use of CoMUL instructions
Register Usage
• From .c file to .asm file:
Defined by the compiler
User’s Manual for Keil Compiler
-209
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_unbias
Unbiased cross-correlation (cont’d)
Memory Note
Input vector x2
Input vector x1
High Addr.
Low Addr.
x1(N1-1)
IDX0
x2(N2-1)
x1(N1-2)
x2(N2-2)
.
.
.
.
.
.
x1(2)
x2(2)
x1(1)
x2(1)
x1(0)
CoMAC
DPRAM
x2(0)
Memory
Output y
High Addr.
y(N-1)
y(N-2)
.
.
.
y(2)
y(1)
Low Addr.
y(0)
Memory
Figure 4-60 Unbiased cross-correlation
Example
C166Lib\Keil\Examples\Static_funcs\ Cross_correlation\Cross.c
User’s Manual for Keil Compiler
-210
V 1.2, 2003-11
DSP Library for
XC16x Family
Cross_unbias
Unbiased cross-correlation (cont’d)
Cycle Count
Memory Initialization
4
Neg_cyc
N2 – 1
∑
(j + 38)
j=0
Positive-side:
Intialization
3
Pos_cyc1
(N1-N2)*(N2+39)
Pos_cyc2
N2 – 1
∑
(N1 – j + 41)
j=0
Return
1
Total
8 + Neg_cyc + Pos_cyc1 + Pos_cyc2
Example:
N1 = 3, N2 = 3
cycle = 212
Code Size
Memory Initialization
8
bytes
60
bytes
6
bytes
Pos_cyc1
36
bytes
Pos_cyc2
64
bytes
2
bytes
176
bytes
Neg_cyc
Positive-side:
Intialization
Return
Total
User’s Manual for Keil Compiler
-211
V 1.2, 2003-11
DSP Library for
XC16x Family
4.10.3
Convolution
Discrete convolution is a process, whose input is two sequences, that provide a single
output sequence.
Convolution of two time domain sequences results in a time domain sequence. Same
thing applies to frequency domain.
Both the input sequences should be in the same domain but the length of the two input
sequences need not be the same.
Convolution of two sequences X(k) and H(k) of length nX and nH respectively can be
given mathematically as
nX + nH – 1
R(n) =
∑
H (k)X (n – k)
[4.77]
k=0
The resulting output sequence R(n) is of length nX+nH-1.
The convolution in time domain is multiplication in frequency domain and vice versa.
User’s Manual for Keil Compiler
-212
V 1.2, 2003-11
DSP Library for
XC16x Family
Convol
Convolution
Signature
DataS Convol (DataS* x,
DataS* h,
DataS* y,
DataS* d_buffer,
DataS N_x,
DataS N_h
)
Inputs
Output
x
:
Pointer to input vector x in 1Q15
format
h
:
Pointer to input vector h in 1Q15
format
d_buffer
:
Pointer to delay buffer
N_x
:
Size of x
N_h
:
Size of h
y
:
Convolution output in 1Q15 format
Return
Implementation
Description
The convolution of the two sequences x and h is done.The
delay line is implemented in parallel to the multiplyaccumulate operation using instructions CoMACM.The delay
buffer is located in the DPRAM area.
Pseudo code
{
DataS
DataS
DataS
DataS
*x;
*h;
i,j;
N_h,N_x;
//pointer to the input vector x
//pointer to the input vector h
for(j=0 to N_h+N_x-1)
{
for(k=0 to N_h-1)
{
y(j)=y(j)+h(k)*x(j-k);
}
}
return y;
}
Techniques
Use of CoMAC
instructions
User’s Manual for Keil Compiler
-213
V 1.2, 2003-11
DSP Library for
XC16x Family
Convol
Convolution (cont’d)
Assumption
Delay buffer must be located in DPRAM area(0xf200-0xfe00)
Register Usage
• From .c file to .asm file:
Defined by the compiler
Memory Note
High Addr.
Low Addr.
High Addr.
Low Addr.
DPRAM
x(n-N_h)
.
.
.
x(n-3)
x(n-2)
x(n-1)
x(n)
DPRAM
x(n_N_h+1)
x(n-N_h+2)
.
.
x(n-2)
x(n-1)
x(n)
x(n)
IDX0
Memory
h(N_h-1)
h(N_h-2)
.
.
h(3)
h(2)
h(1)
h(0)
IDX0
Memory
h(N_h-1)
h(N_h-2)
.
.
h(3)
h(2)
h(1)
h(0)
CoMACM
1Q15
1Q15
Before
After
Figure 4-61 Convolution
Example
C166Lib\Keil\Examples\Static_funcs\Convolution\conv.c
Cycle Count
Read parameters
4
Register
Initialization
7
Set counters
5
User’s Manual for Keil Compiler
-214
V 1.2, 2003-11
DSP Library for
XC16x Family
Convol
Convolution (cont’d)
Convolution
2N_h+8N_x-1
Write output
2
Return
1
Total
2N_h+8N_x+18
Example:
N_h=4 ,N_x=8
cycle:90
Code Size
Read parameters
8 bytes
Register
Initialization
14 bytes
Set counters
10 bytes
Convolution
42 bytes
Write output
8 bytes
Return
2 bytes
Total
User’s Manual for Keil Compiler
84 bytes
-215
V 1.2, 2003-11
DSP Library for
XC16x Family
References
5
References
1. C166S V2, 16-bit Microcontroller, User Manual, V 1.7, Jan. 2001.
2. C166S V2,A DSP Library for C166S V2 Core,User’s Manual,V1.1,Sept.2002.
3. XC161CJ, Peripheral Units, 16-Bit Single-Chip Microcontroller with C166S V2 Core,
V1.1, Dec. 2000.
4. XC16Board, Hardware Manual, Board REV. 200, V1.0, Sept. 2001.
5. TriLib, A DSP Library for TriCore, User’s Manual, V 1.2, Jan. 2001.
6. Application Note: ST10 DSP MAC Signal Processing Algorithms, 1998.
7. Application Note: Fast - Fourier - Transformation for C166 Microcontroller Family,
1997.
TMS320C54x DSPLIB User’s Guide, Texas Instruments, Sept. 1998.
User’s Manual for Keil Compiler
5-216
V 1.2, 2003-11
-217
Total Quality Management
Qualität hat für uns eine umfassende
Bedeutung. Wir wollen allen Ihren
Ansprüchen in der bestmöglichen
Weise gerecht werden. Es geht uns also
nicht nur um die Produktqualität –
unsere Anstrengungen gelten
gleichermaßen der Lieferqualität und
Logistik, dem Service und Support
sowie allen sonstigen Beratungs- und
Betreuungsleistungen.
Quality takes on an allencompassing
significance at Semiconductor Group.
For us it means living up to each and
every one of your demands in the best
possible way. So we are not only
concerned with product quality. We
direct our efforts equally at quality of
supply and logistics, service and
support, as well as all the other ways in
which we advise and attend to you.
Dazu gehört eine bestimmte
Geisteshaltung unserer Mitarbeiter.
Total Quality im Denken und Handeln
gegenüber Kollegen, Lieferanten und
Ihnen, unserem Kunden. Unsere
Leitlinie ist jede Aufgabe mit „Null
Fehlern“ zu lösen – in offener
Sichtweise auch über den eigenen
Arbeitsplatz hinaus – und uns ständig
zu verbessern.
Part of this is the very special attitude of
our staff. Total Quality in thought and
deed, towards co-workers, suppliers
and you, our customer. Our guideline is
“do everything with zero defects”, in an
open manner that is demonstrated
beyond your immediate workplace, and
to constantly improve.
Unternehmensweit orientieren wir uns
dabei auch an „top“ (Time Optimized
Processes), um Ihnen durch größere
Schnelligkeit den entscheidenden
Wettbewerbsvorsprung zu verschaffen.
Geben Sie uns die Chance, hohe
Leistung durch umfassende Qualität zu
beweisen.
Wir werden Sie überzeugen.
http://www.infineon.com
Published by Infineon Technologies AG
Throughout the corporation we also
think in terms of Time Optimized
Processes (top), greater speed on our
part to give you that decisive
competitive edge.
Give us the chance to prove the best of
performance through the best of quality
– you will be convinced.

				

 Open as PDF

 	Similar pages
	

										TriLib DSP Library User's Manual

	

										AN1326, Barometric Pressure Measurement Using Semiconductor

	

										PMC PM73488

	

										AD DAC1136J

	

										Media:Sprueb8b.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

